A growing number of studies have reported the toxic effects of nanoplastics (NPs) on organisms. However, the focus of these studies has almost exclusively been on the use of polystyrene (PS) nanospheres. Herein, we aim to evaluate the sublethal effects on Daphnia magna juveniles of three different NP polymers: PS-NPs with an average size of 200 nm, polyethylene [PE] NPs and polyvinyl chloride [PVC] NPs with a size distribution between 50 and 350 nm and a comparable mean size. For each polymer, five environmentally relevant concentrations were tested (from 2.5 to 250 μg/L) for an exposure time of 48 h. NP effects were assessed at the biochemical level by investigating the amount of reactive oxygen species (ROS) and the activity of the antioxidant enzyme catalase (CAT) and at the behavioral level by evaluating the swimming behavior (distance moved). Our results highlight that exposure to PVC-NPs can have sublethal effects on Daphnia magna at the biochemical and behavioral levels. The potential role of particle size on the measured effects cannot be excluded as PVC and PE showed a wider size range distribution than PS, with particles displaying sizes from 50 to 350 nm. However, we infer that the chemical structure of PVC, which differs from that of PE of the same range size, concurs to explain the observed effects. Consequently, as PS seems not to be the most hazardous polymer, we suggest that the use of data on PS toxicity alone can lead to an underestimation of NP hazards.
Masseroni, A., Fossati, M., Ponti, J., Schirinzi, G., Becchi, A., Saliu, F., et al. (2024). Sublethal effects induced by different plastic nano-sized particles in Daphnia magna at environmentally relevant concentrations. ENVIRONMENTAL POLLUTION, 343(15 February 2024) [10.1016/j.envpol.2023.123107].
Sublethal effects induced by different plastic nano-sized particles in Daphnia magna at environmentally relevant concentrations
Masseroni, Andrea;Becchi, Alessandro;Saliu, Francesco;Soler, Valentina;Collini, Maddalena;Villa, Sara
2024
Abstract
A growing number of studies have reported the toxic effects of nanoplastics (NPs) on organisms. However, the focus of these studies has almost exclusively been on the use of polystyrene (PS) nanospheres. Herein, we aim to evaluate the sublethal effects on Daphnia magna juveniles of three different NP polymers: PS-NPs with an average size of 200 nm, polyethylene [PE] NPs and polyvinyl chloride [PVC] NPs with a size distribution between 50 and 350 nm and a comparable mean size. For each polymer, five environmentally relevant concentrations were tested (from 2.5 to 250 μg/L) for an exposure time of 48 h. NP effects were assessed at the biochemical level by investigating the amount of reactive oxygen species (ROS) and the activity of the antioxidant enzyme catalase (CAT) and at the behavioral level by evaluating the swimming behavior (distance moved). Our results highlight that exposure to PVC-NPs can have sublethal effects on Daphnia magna at the biochemical and behavioral levels. The potential role of particle size on the measured effects cannot be excluded as PVC and PE showed a wider size range distribution than PS, with particles displaying sizes from 50 to 350 nm. However, we infer that the chemical structure of PVC, which differs from that of PE of the same range size, concurs to explain the observed effects. Consequently, as PS seems not to be the most hazardous polymer, we suggest that the use of data on PS toxicity alone can lead to an underestimation of NP hazards.File | Dimensione | Formato | |
---|---|---|---|
Masseroni-2024-Environ Pollut-VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
10.73 MB
Formato
Adobe PDF
|
10.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.