We report the discovery of giant (50−100 kpc) [O ii] emitting nebulae with MUSE in the field of TXS 0206−048, a luminous quasar at z = 1.13. “Down-the-barrel” UV spectra of the quasar show absorption at velocities coincident with those of the extended nebulae, enabling new insights into inflows and outflows around the quasar host. One nebula exhibits a filamentary morphology extending over 120 kpc from the halo toward the quasar and intersecting with another nebula surrounding the quasar host with a radius of 50 kpc. This is the longest cool filament observed to date and arises at higher redshift and in a less massive system than those in cool-core clusters. The filamentary nebula has line-of-sight velocities >300 km s−1 from nearby galaxies but matches that of the nebula surrounding the quasar host where they intersect, consistent with accretion of cool intergalactic or circumgalactic medium or cooling hot halo gas. The kinematics of the nebulae surrounding the quasar host are unusual and complex, with redshifted and blueshifted spiral-like structures. The emission velocities at 5−10 kpc from the quasar match those of inflowing absorbing gas observed in UV spectra of the quasar. Together, the extended nebulae and associated redshifted absorption represent a compelling case of cool, filamentary gas accretion from halo scales into the extended interstellar medium and toward the nucleus of a massive quasar host. The inflow rate implied by the combined emission and absorption constraints is well below levels required to sustain the quasar’s radiative luminosity, suggesting anisotropic or variable accretion.

Johnson, S., Schaye, J., Walth, G., Li, J., Rudie, G., Chen, H., et al. (2022). Directly Tracing Cool Filamentary Accretion over >100 kpc into the Interstellar Medium of a Quasar Host at z = 1. THE ASTROPHYSICAL JOURNAL LETTERS, 940(2) [10.3847/2041-8213/aca28e].

Directly Tracing Cool Filamentary Accretion over >100 kpc into the Interstellar Medium of a Quasar Host at z = 1

Cantalupo, S;
2022

Abstract

We report the discovery of giant (50−100 kpc) [O ii] emitting nebulae with MUSE in the field of TXS 0206−048, a luminous quasar at z = 1.13. “Down-the-barrel” UV spectra of the quasar show absorption at velocities coincident with those of the extended nebulae, enabling new insights into inflows and outflows around the quasar host. One nebula exhibits a filamentary morphology extending over 120 kpc from the halo toward the quasar and intersecting with another nebula surrounding the quasar host with a radius of 50 kpc. This is the longest cool filament observed to date and arises at higher redshift and in a less massive system than those in cool-core clusters. The filamentary nebula has line-of-sight velocities >300 km s−1 from nearby galaxies but matches that of the nebula surrounding the quasar host where they intersect, consistent with accretion of cool intergalactic or circumgalactic medium or cooling hot halo gas. The kinematics of the nebulae surrounding the quasar host are unusual and complex, with redshifted and blueshifted spiral-like structures. The emission velocities at 5−10 kpc from the quasar match those of inflowing absorbing gas observed in UV spectra of the quasar. Together, the extended nebulae and associated redshifted absorption represent a compelling case of cool, filamentary gas accretion from halo scales into the extended interstellar medium and toward the nucleus of a massive quasar host. The inflow rate implied by the combined emission and absorption constraints is well below levels required to sustain the quasar’s radiative luminosity, suggesting anisotropic or variable accretion.
Articolo in rivista - Articolo scientifico
galaxies: evolution; galaxies: high-redshift; galaxies: intergalactic medium
English
2022
940
2
L40
open
Johnson, S., Schaye, J., Walth, G., Li, J., Rudie, G., Chen, H., et al. (2022). Directly Tracing Cool Filamentary Accretion over >100 kpc into the Interstellar Medium of a Quasar Host at z = 1. THE ASTROPHYSICAL JOURNAL LETTERS, 940(2) [10.3847/2041-8213/aca28e].
File in questo prodotto:
File Dimensione Formato  
10281-468848_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 4.94 MB
Formato Adobe PDF
4.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/468848
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
Social impact