The increasing statistical power of cosmic microwave background (CMB) datasets requires a commensurate effort in understanding their noise properties. The noise in maps from ground-based instruments is dominated by large-scale correlations, which poses a modeling challenge. This paper develops novel models of the complex noise covariance structure in the Atacama Cosmology Telescope Data Release 6 (ACT DR6) maps. We first enumerate the noise properties that arise from the combination of the atmosphere and the ACT scan strategy. We then prescribe a class of Gaussian, map-based noise models, including a new wavelet-based approach that uses directional wavelet kernels for modeling correlated instrumental noise. The models are empirical, whose only inputs are a small number of independent realizations of the same region of sky. We evaluate the performance of these models against the ACT DR6 data by drawing ensembles of noise realizations. Applying these simulations to the ACT DR6 power spectrum pipeline reveals a ∼ 20% excess in the covariance matrix diagonal when compared to an analytic expression that assumes noise properties are uniquely described by their power spectrum. Along with our public code, mnms, this work establishes a necessary element in the science pipelines of both ACT DR6 and future ground-based CMB experiments such as the Simons Observatory (SO).
Atkins, Z., Duivenvoorden, A., Coulton, W., Qu, F., Aiola, S., Calabrese, E., et al. (2023). The Atacama Cosmology Telescope: map-based noise simulations for DR6. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023(11) [10.1088/1475-7516/2023/11/073].
The Atacama Cosmology Telescope: map-based noise simulations for DR6
Nati F.;
2023
Abstract
The increasing statistical power of cosmic microwave background (CMB) datasets requires a commensurate effort in understanding their noise properties. The noise in maps from ground-based instruments is dominated by large-scale correlations, which poses a modeling challenge. This paper develops novel models of the complex noise covariance structure in the Atacama Cosmology Telescope Data Release 6 (ACT DR6) maps. We first enumerate the noise properties that arise from the combination of the atmosphere and the ACT scan strategy. We then prescribe a class of Gaussian, map-based noise models, including a new wavelet-based approach that uses directional wavelet kernels for modeling correlated instrumental noise. The models are empirical, whose only inputs are a small number of independent realizations of the same region of sky. We evaluate the performance of these models against the ACT DR6 data by drawing ensembles of noise realizations. Applying these simulations to the ACT DR6 power spectrum pipeline reveals a ∼ 20% excess in the covariance matrix diagonal when compared to an analytic expression that assumes noise properties are uniquely described by their power spectrum. Along with our public code, mnms, this work establishes a necessary element in the science pipelines of both ACT DR6 and future ground-based CMB experiments such as the Simons Observatory (SO).File | Dimensione | Formato | |
---|---|---|---|
10281-468484_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
9.96 MB
Formato
Adobe PDF
|
9.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.