In the present note, we study the focusing NLS equation in dimension two with a point interaction in the supercritical regime, showing two results. After obtaining the (nonstandard) virial formula, we exhibit a set of initial data that shows blow-up. Moreover, we show that the standing waves eiωtφω corresponding to ground states φω of the action functional are strongly unstable, at least for sufficiently high ω .

Finco, D., Noja, D. (2023). Blow-up and instability of standing waves for the NLS with a point interaction in dimension two. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 74(4), 1-17 [10.1007/s00033-023-02056-z].

Blow-up and instability of standing waves for the NLS with a point interaction in dimension two

Noja D.
2023

Abstract

In the present note, we study the focusing NLS equation in dimension two with a point interaction in the supercritical regime, showing two results. After obtaining the (nonstandard) virial formula, we exhibit a set of initial data that shows blow-up. Moreover, we show that the standing waves eiωtφω corresponding to ground states φω of the action functional are strongly unstable, at least for sufficiently high ω .
Articolo in rivista - Articolo scientifico
Blow-up; Instability of standing waves; Nonlinear Schrödinger equation; Point interactions;
English
12-lug-2023
2023
74
4
1
17
162
partially_open
Finco, D., Noja, D. (2023). Blow-up and instability of standing waves for the NLS with a point interaction in dimension two. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 74(4), 1-17 [10.1007/s00033-023-02056-z].
File in questo prodotto:
File Dimensione Formato  
Finco-2023-Z Angew Math Phys-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 395.43 kB
Formato Adobe PDF
395.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Finco-2023-Z Angew Math Phys-AAM.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Licenza open access specifica dell’editore
Dimensione 350.47 kB
Formato Adobe PDF
350.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/449082
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact