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Abstract. In the present note we study the focusing NLS equation in dimension two with a point
interaction and in the supercritical regime, showing two results. After obtaining the (nonstandard)
virial formula, we exhibit a set of initial data that blow-up. Moreover we show that the standing
waves eiωtϕω corresponding to ground states ϕω of the Action functional are strongly unstable, at
least for sufficiently high ω.
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1. Introduction

In the present paper, we study the blow-up of solutions of a focusing Nonlinear Schrödinger
equation (NLS) with a power nonlinearity in two dimensions and in the L2 supercritical regime,
perturbed by a point defect. The point defect is represented as a point interaction, sometimes
improperly called delta potential. Namely, we consider the model

(1.1)

{
iψ̇(t) = Hαψ(t)− |ψ|p−1ψ
ψ(0) = ψ0

where Hα is defined as a self-adjoint extension of the symmetric operator −∆ starting from the
domain C∞(R2 \ {0}), and α is a parameter classifying the self-adjoint extension. A typical feature

of the point interactions Hα is that its operator domain Dα or its energy domain D
1
2
α (see Section 2.1

for details) are larger than the corresponding domains for the Laplacian, respectively, the Sobolev
spaces H2 and H1. This is the reason why they have to be considered as singular perturbations of
the Laplacian operator (see Section 2.1 for details or the treatise [4]). The operator Hα, that can
be defined only in dimension n 6 3, describes a zero range interaction, meaning that the interaction
is concentrated at a point. In Quantum Mechanics, this fact is exploited to describe situations in
which the details of the interactions are irrelevant, and the effective behavior of the system is well
described by the Hamiltonian Hα, where a single physical parameter characterizes the behavior of
the system. This occurs for example, in a system of non-relativistic particles at low temperature,
where the thermal wavelength is much larger than the range of the two body interactions so that the
only effective parameter is the scattering length, directly related to α (see [4] for extensive treatment
and bibliography). In the case of Nonlinear Schrödinger equation 1.1 in which a nonlinear continuous
medium is considered, for example, a Kerr medium in fiber optics or also a Bose-Einstein condensate,
both described in suitable approximation by the NLS equation, the singular perturbation of the
Laplacian given by Hα is typically interpreted as the presence in the medium of a defect perturbing
the wave propagation. This model has been studied extensively in one dimension, where a wealth of
results have been obtained as regards well posedness, blow-up, existence of standing waves, and their
orbital and asymptotic stability, with several variations on the theme (see [14, 12, 15, 19, 8, 13, 16]
and references therein for a sample of the literature).
The model in dimensions two and three has been tackled only recently. The well posedness of the two
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dimensional model has been given first in the strong setting, i.e., for solutions in the operator domain
Dα in [6] (where also the three dimensional case is treated). Then the problem as been settled in the

energy space, i.e. for solutions in D
1
2
α in [9] (see Section 2.2.1 below for the state-of-the-art of well-

posedness results). The critical nonlinearity power in dimension two, namely the power nonlinearity
above which global well posedness is not anymore granted, as in the unperturbed model, is p = 3
(notice in this respect the rather different behavior of the model studied in [3]). In this paper, we
want to give information about the blow-up of solutions for p > 3. We will firstly show that for
definite and large classes of initial data ψ0, one has a finite existence time T ∗(ψ0). Then we will show
strong instability behavior around ground states of the action, i.e. existence of blowing-up states in
any neighborhood of such ground states. The starting point is the formula for the second derivative
of the variance, or virial identity, obtained in Section 3 (see Lemma 3.2). Such a formula contains
an anomalous term with respect to the standard unperturbed model, which is positive definite and
not conserved by the evolution, and that prevents a simple identification of an invariant set of initial
data that blow-up. To overcome the issue, we adopt a strategy originally developed in the classical
paper [5] for the unperturbed model (see for more details Section 8.2 in [7]). However, one has to
suitably modify the analysis, exploiting the variational properties of the action functional Sω on the
Nehari manifold (see Section 2.2.2 for definitions and further details). Existence and properties of
the ground state ϕω of the action have been studied in [2] and [9]. In particular, ϕω exists for any
α and for any ω > −Eα where −Eα is the always existing eigenvalue of Hα. Our first main result
gives a class of initial data (containing an open set in the phase space) that undergoes blow-up. In
the statement below, E is the total energy (2.4), Q is the functional defined in (3.4)) and Σα is the

subset of finite energy states D
1
2
α with ‖xψ‖2 <∞ (see formula (2.8)).

Theorem 1.1. Let p > 3 and ψ0 ∈ Σα. Suppose that S(ψ0) < Sω(φω) , E(ψ0) > 0 , and Q(ψ0) < 0 .
Then T ∗(ψ0) < +∞ .

We notice that analogous results with a similar strategy have already been obtained in different
models, including the already mentioned one dimensional delta interaction (see in particular [10, 18]);
in this case, however the delta term is a form perturbation of the Laplacian, and in this sense it can
be considered a standard potential, allowing for an easier treatment in comparison to the present
model. Notice also that the virial identity (see (3.3)) needs a somewhat different treatment than
the standard formula; in particular, we analyze the transformation properties of the mass preserving
map T σ given by dilatations (see Proposition 3.6). The second result concerns the strong instability
of the standing waves, i.e. the fact that in the vicinity of any standing waves, there are solutions
that blow-up (see Definition 2.3). This fact, again following the ideas contained in [5] and in the
cited papers related to more standard potential perturbation of the Laplacian, is contained in the
second main result.

Theorem 1.2. Let p > 3, ω > |Eα| and ϕω a ground state of the action Sω with E(ϕω) > 0 . Then
the standing wave eiωtϕω is strongly unstable.

It is well known that in the unperturbed NLS equation, the ground states with p > 3 have positive
energy, while in the present case one expects positive energy only for sufficiently big ω in analogy
with the known case of the presence of external potentials (See Remark 3.10).
In the last Section we consider a different condition for the strong instability of standing waves,
replacing the positivity of the total energy with the more general condition d2

dσ2Sω(T σϕω)|σ=1 6 0.
It is known that this requirement is sufficient to guarantee strong instability in the case of NLS
with a delta potential in one dimension and with the generalized Coulomb potential with arbitrary
dimension (see [10, 18]). We show first that an invariant set of blowing-up initial data exist (see
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Theorem 4.3), and then that the Action ground states with d2

dσ2Sω(T σϕω)|σ=1 6 0 belong to the norm
closure of this set and so they are strongly unstable (see Theorem 4.4).
We end the introduction noticing that the above results and their proofs actually do not depend on
the α parameter. For this reason and to ease formulae and reading we will omit the subscript α from
Section 3 and Section 4 in which proof of the main results are given.

2. Preliminaries

2.1. Point interaction in 2d. In the following we shall denote with boldface, points in R2. Let us
recall, see for example, chapter II.4 of [4], that for n = 2 the operator Hα has the domain:

D(Hα) =
{
ψ ∈ L2(Rn)| ψ = φλ + q Gλ, φλ ∈ H2(R2), q = (Γλα)−1 φλ(0)

}
with Gλ fundamental solution of the laplacian and Γλα a certain fixed constant. Explicitly (indicating
from now on by the symbol F the Fourier transform)

Gλ := (−∆ + λ)−1δ0 =
1

2π
F−1

[
1

|k|2 + λ

]
=

1

2π
K0(
√
λ|x|)(2.1)

Γλα := α +
1

2π
γ +

1

2π
ln(
√
λ/2) α ∈ R ∪ {+∞}.

Here K0 is the MacDonald function of order zero and γ is the Euler-Mascheroni constant. The
constant α is real (nontrivial interaction) or +∞ (q = 0, corresponding to the standard Laplacian).
It enters in the relation φλ(0) = Γλα q, playing the role of a boundary condition at the singularity, and
more concretely, it is related to the s-wave scattering length a0 through the relation a0 = (−2πα)−1.
The number λ can be any number in R+ \{−Eα}, where Eα is the negative eigenvalue of Hα, always
existing when α ∈ R (see later). The action of the operator is given by

(Hα + λ)ψ = (−∆ + λ)φλ (⇐⇒ Hαψ = −∆φλ − λqGλ) ∀ψ ∈ D(Hα)

It is easily seen and well known that while the decomposition in regular part φλ and singular part
qGλ of any element ψ ∈ D(Hα) depends on the choice of λ, the definition of Hα does not. We often
use the short notation Dα := D(Hα) . One has σc(Hα) = σac(Hα) = [0,∞); Hα has a simple negative
eigenvalue {Eα} for any α ∈ R and ψα is the corresponding eigenvector. Explicitly

Eα = −4e−2(2πα+γ) , ψα(x) =
1

2π
K0(2 e

−(2πα+γ)x) .

Let us also introduce the quadratic form Fα on L2(Rn) with domain and action

D(Fα) = {ψ ∈ L2(R2) | ∃q ∈ C, φλ ∈ H1(R2) : ψ = φλ + qGλ}
Fα(ψ) = Fλ(ψ) + Γλα|q|2 and Fλ(ψ) = ‖∇φλ‖2 + λ(‖φλ‖2 − ‖ψ‖2)

It does not depend on λ, it is symmetric, closed and bounded from below. The map ψ 7→ Fα(ψ) +
λ‖ψ‖2 is positive for every λ > −Eα and it coincides with 〈ψ, (Hα + λ)ψ〉 ∀ψ ∈ D(Hα). This allows
to interpret the form domain D(Fα) as the domain of the square root of the positive self-adjoint
operator Hα + λ, so that we make use of the notation

D(Fα) = D
(
(Hα + λ)

1
2

)
=: D

1
2
α , λ > −Eα .

Notice that algebraically and topologically, one has D(Fα) ∼= H1(R2)⊕C and the form domain is in
a natural way a Hilbert space. By functional calculus, we can introduce the scale of Hilbert spaces

Dsα := D
(
(Hα + λ)s

)
, s ∈ R, λ > −Eα .
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Dsα is equipped with the norm ‖ψ‖Dsα := ‖(Hα +λ)sψ‖, equivalent to the graph norm of the operator
(Hα + λ)s. In particular, the spaces Dsα and D−sα are in duality and

Dsα ↪→ L2(R2) ↪→ D−sα
is a Hilbert triplet. We denote the duality product by 〈·, ·〉−s,s . In the following, we will only consider
the case s = 1

2
and we stress that ‖ψ‖

D
1
2
α

∼= ‖φ‖H1+|q|. Finally, we recall that the fundamental solution

Gλ is positive, radial, strictly decreasing, and moreover it has the following asymptotic behavior (see
[1], formulae 9.6.12 and 9.6.13 for the first asymptotic and 9.7.2 for the second)

Gλ = − 1

2π
ln(

√
λ

2
|x|)− γ

2π
+ o(1) x→ 0 , Gλ ∼

1√
8π
√
λ|x|

e−
√
λ|x| x→∞ .

(2.2)

2.2. The NLS equation with a point interaction.

2.2.1. Well posedness. We are interested in solutions of the Cauchy problem for the NLS equation

(2.3)

{
i∂tψ(t) = Hαψ(t) + f(ψ)(t)

ψ(0) = ψ0 ∈ Dα or D
1
2
α

where f(ψ) = g|ψ|p−1ψ, and g = ±1.
The following theorem collects the known results about well posedness in the energy domain (mild
solution) and operator domain (strong solution) for the equation (2.3) (see [6] where a detailed
analysis of the well posedness of strong solutions is given, also for the three dimensional case, and
[9] where treatment of the solutions in the energy domain is given).

Theorem 2.1 (Well-Posedness in D
1
2
α and Dα). Assume p > 1 and ψ0 ∈ D

1
2
α . Then the following

properties hold true.

1) There exists T > 0 and a unique weak solution of (2.3) in C([0, T ];D
1
2
α ) ∩ C1([0, T ];D−

1
2

α ).
2) The following blow-up alternative holds. Let the maximal existence time be defined as

T ∗ = sup
T>0

{
ψ ∈ C([0, T ],D

1
2
α )) ∩ C1([0, T ],D−

1
2

α ) solves mildly (2.3)
}

;

then

lim
t→T ∗

‖ψ(t)‖
D

1
2
α

<∞ =⇒ T ∗ =∞.

3) L2- mass is conserved along the evolution: ‖ψ(t)‖2 = ‖ψ0‖2 ∀t ∈ [0, T ∗) .
4) Energy is conserved along the evolution: E(ψ(t)) = E(ψ0) ∀t ∈ [0, T ∗)
where

(2.4) E(ψ) =
1

2
Fα(ψ) +

g

p+ 1
‖ψ‖p+1

p+1 ∀ψ ∈ D
1
2
α .

5) Let ψ0 ∈ Dα. Then there exists T > 0 and a unique strong solution ψ of (2.3) in C([0, T ];Dα) ∩
C1([0, T ];L2(R2)).
6) Let ψ0 ∈ Dα and the maximal existence time be defined as

T̃ ∗ = sup
T>0

{
ψ ∈ C([0, T ],D(Hα)) ∩ C1([0, T ], L2) solves strongly (2.3)

}
;

then limt→T̃ ∗ ‖ψ(t)‖Dα <∞ =⇒ T̃ ∗ =∞.
7) T̃ ∗ = T ∗ .
8) T ∗ = +∞ if g = +1 and p > 1 or if g = −1 and 1 < p < 3 .
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In the following, we will denote as T ∗(ψ0) the maximal existence time of the solution of (2.3).
When T ∗(ψ0) < +∞ we say that the solution ψ(t) corresponding to the initial datum ψ0 blows-up
in a finite time (in the future; analogous definition holds for blow-up in the past). We will omit the
dependence of T ∗ on ψ0 when it is clear from the contest.

2.2.2. Standing waves. Recall that a standing wave of (2.3) is a solution of the form ψ(t) = eiωtϕ .
The profile ϕ is a solution of the stationary equation

(2.5) Hαϕ+ ωϕ+ f(ϕ) = 0

equivalent to S ′ω(ϕ) = 0 , where the action functional Sω is defined as

Sω(ϕ) = E(ϕ) +
ω

2
‖ϕ‖2 ∀ϕ ∈ D

1
2
α .(2.6)

The set of ground states of the action Sω is defined as

G =
{
ϕω ∈ D

1
2
α s.t. Sω(ϕω) 6 Sω(ϕ) ∀ϕ ∈ D

1
2
α satisfying S ′ω(ϕ) = 0

}
(2.7)

Recently in [9] and [2] existence and properties of ground states of the action Sω for the case of
attractive nonlinearity (i.e.g = −1) in (2.3) have been proved by variational methods. In particular,
a ground state exists for every ω > −Eα and if ϕω ∈ G is a ground state, then it coincides with the
infimum of the action constrained on the Nehari manifold:

d(ω) = inf
{
Sω(ϕ) s.t. ϕ ∈ D

1
2
α , ϕ 6= 0, Nω(ϕ) = 0

}
= Sω(ϕω)

where Nω is the Nehari functional

Nω(ϕ) = Fα(ϕ) + ω‖ϕ‖2 − ‖ϕ‖p+1
p+1 .

The following fact is an immediate consequence of the results in [9] and [2] and it will be useful later
(see also the analogous Lemma in [10]).

Proposition 2.2. Let ϕω ∈ G a ground state of the action Sω and ψ ∈ D
1
2
α s.t. ‖ψ‖p+1

p+1 = ‖ϕω‖p+1
p+1 .

Then

a) Nω(ψ) > 0
b) Sω(ψ) > Sω(ϕω).

Proof. From Lemma 3.3 in [9] and d(ω) = inf{ p−1
2(p+1)

‖ψ‖p+1
p+1, ψ ∈ Nω} = p−1

2(p+1)
‖ϕω‖p+1

p+1 = Sω(ϕω)

property a) follows. Taking into account a) one has Sω(ϕω) = p−1
2(p+1)

‖ϕω‖p+1
p+1 = p−1

2(p+1)
‖ϕω‖p+1

p+1 +
1
2
Nω(ϕω) 6 p−1

2(p+1)
‖ψ‖p+1

p+1 + 1
2
Nω(ψ) = Sω(ψ) . �

Finally, we recall the definition of strong instability of a standing wave.

Definition 2.3. The standing wave ψ(t) = eiωtϕω is said to be strongly unstable if for every ε > 0

there exist ψ0 ∈ D
1
2
α such that ‖ψ0 − ϕω‖

D
1
2
α

< ε with T ∗(ψ0) < +∞ .

As a last preliminary definition, we adapt a classic tool needed in the treatment of the virial
functional to the point interaction framework. We put

Σα := {ψ ∈ D
1
2
α (R2) | xψ ∈ L2(R2)}.(2.8)

3. Blow-up and strong instability.

In the following the value and sign of α will be irrelevant, so we will omit the corresponding pedices

in the symbol Hα, Fα, Dα , D
1
2
α and Σα, with the sole exception of Remark 3.5.
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3.1. Virial identity.

Lemma 3.1. Let ψ0 ∈ Σ and ψ ∈ C([0, T ∗) ;D 1
2 (R2)) the corresponding weak maximal solution of

(2.3). Then ψ ∈ C([0, T ∗) ; Σ). Moreover for any fixed ψ ∈ D 1
2 (R2) the variance

I(t) :=

∫
R2

|x|2 |ψ(t,x)|2 dx

defines a C1([0, T ∗) ;R) function and

d

dt
I(t) = 4 Im

∫
R2

ψ̄(t,x)x · ∇xψ(t,x) dx.(3.1)

Proof. We firstly show that t 7→ xψ(t,x) ∈ C0([0, T ∗) ;L2(R2)). Let χε ∈ S(R2) , χε(x) = e−ε|x|
2

and define a regularized variance

Iε(t) :=

∫
R2

|xχεψ(t,x)|2 dx.

Let ψ0 ∈ Σ and ψ ∈ C([0, T ∗),D 1
2 ) ∩ C1([0, T ∗) ;D− 1

2 (R2)) the weak solution of the (2.3). One has

xχεψ ∈ C([0, T ∗),D 1
2 ) and for any t ∈ [0, T ∗) we have

d

dt

∫
R2

|xχεψ(t,x)|2 dx = 2 Re 〈|x|2χ2
εψ, ∂tψ〉− 1

2
, 1
2

= 2 Re 〈|x|2χ2
εψ,−iHαψ − ig|ψ|p−1ψ〉− 1

2
, 1
2

= 2 Im 〈H(|x|2χ2
εψ), ψ〉− 1

2
, 1
2

= 2 Im 〈−∆(|x|2χ2
εψ), ψ〉− 1

2
, 1
2

= −2 Im

∫
R2

ψ∇ · ∇(|x|2χ2
εψ) dx

= −2 Im

∫
R2

ψ∇ ·
[
χ2
ε(|x|2∇ψ + 2xψ − 2εx|x|2ψ)

]
dx .

Now we can integrate by parts noticing that x∇ψ ∈ L2
loc(R2) and after suppressing a real term in

the integrand we obtain

d

dt

∫
R2

|xχεψ(t,x)|2 dx = 4 Im

∫
χ2
ε(1− ε|x|2)ψ x · ∇ψ dx

and integrating in time

Iε(t) = Iε(0) + 4 Im

∫ t

0

∫
χ2
ε(1− ε|x|2)ψ x · ∇ψ dx ds(3.2)

Notice now that x · ∇ψ = x · ∇φλ + qx · ∇Gλ and taking into account that ‖∇φλ‖ 6 c‖ψ‖
D

1
2
,

‖x · q∇Gλ‖ 6 c‖ψ‖
D

1
2

one gets

Iε(t) 6 Iε(0) + c(m)

∫ t

0

‖ψ(s)‖ 1
2
ds+ c

∫ t

0

‖ψ(s)‖ 1
2
I

1
2
ε (s) ds

where c(m) is a constant depending on the mass. From Grönwall inequality it follows that there
exists a constant c independent on ε such that

Iε(t) 6 c t ∈ [0, T ∗]
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From Fatou’s lemma one finally concludes that

I(t) =

∫
lim inf

ε
χ2
ε|x|2|ψ(t,x)|2 dx 6 lim inf

ε

∫
χ2
ε|x|2|ψ(t,x)|2 dx 6 c t ∈ [0, T ∗]

which gives I(t) ∈ L∞ ∀t ∈ [0, T ∗] , the map t 7→ ‖| · |u(t, ·)‖ is bounded on any (0, T ) with
T < T ∗ and consequently weakly continuous as a map (0, T ∗) → L2(R2). From (3.2), the fact that
ψx · ∇ψ ∈ CtL1

x and the dominated convergence theorem, we also obtain

I(t) = I(0) + 4 Im

∫ t

0

∫
ψ x · ∇ψ dx ds ∀t ∈ [0, T ∗]

which gives at once that the ψ ∈ C0([0, T ∗) ; Σ) and validity of (3.1). �

The crucial information is contained in the following lemma

Lemma 3.2. [Virial identity] Let ψ0 ∈ Σ and ψ ∈ C([0, T ∗) ;D 1
2 ) the corresponding maximal weak

solution of (2.3). Then the function

t 7→ I(t) =

∫
R2

|x|2 |ψ(t, x)|2 dx

is in C2([0, T ∗) ;R) and the following identity holds

d2

dt2
I(t) = 16E(ψ) + 8g

(p− 3)

p+ 1
‖ψ(t)‖p+1

p+1 +
2

π
|q|2

= 8F(ψ) + 8g
(p− 1)

p+ 1
‖ψ(t)‖p+1

p+1 +
2

π
|q|2 = 8Q(ψ)(3.3)

where

(3.4) Q(ψ) := F(ψ) + g
(p− 1)

p+ 1
‖ψ(t)‖p+1

p+1 +
1

4π
|q|2 .

Proof. Let us show the result first assuming that ψ0 ∈ Σ ∩ D and considering the corresponding
strong solution ψ ∈ C([0, T ∗) ;D)∩C1([0, T ∗) ;L2(R2)). We need to derive in time the r.h.s. of (3.1).
We regularize it writing

hε(t) := Im

∫
R2

e−ε|x|
2

ψ x · ∇ψ dx .(3.5)

Admitting that ψ ∈ C1([0, T ∗),D 1
2 ) one can safely derive in time (3.5), obtaining

ḣε(t) := Im

∫
R2

e−ε|x|
2

ψ̇ x · ∇ψ dx + Im

∫
R2

e−ε|x|
2

ψ x · ∇ψ̇ dx .

Both addenda are well defined, and more precisely the map t 7→ e−ε|x|
2

x ·∇ψ is in C1([0, T ∗), L2(R2))
because

‖e−ε|x|2 x · ∇ψ‖ = ‖e−ε|x|2x · ∇φ+ e−ε|x|
2

q(t)x · ∇Gλ‖ 6 cε (‖∇φ‖+ |q(t)|) 6 ‖ψ‖
D

1
2
,

Now, integrating by part the second addendum one has

ḣε(t) := Im

{∫
R2

e−ε|x|
2
(
ψ̇ x · ∇ψ − ψ̇ x · ∇ψ

)
dx − 2

∫
R2

e−ε|x|
2
(
ψ ψ̇ − ε|x|2ψψ̇

)
dx

}
(3.6)

and the r.h.s. is well defined and continuous in time only assuming ψ ∈ C1([0, T ∗),D 1
2 ). By density

of C1([0, T ∗),D 1
2 ) in C([0, T ∗),D 1

2 ) ∩ C1([0, T ∗), L2) (which is proven as in the case of standard
Sobolev case), formula (3.6) still holds in these hypotheses. Now we perform a second regularization
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considering ψ ∈ C0([0, T ∗),D) ∩ C1([0, T ∗), L2), so that we can apply the equation in strong form.
From (3.6), by using Im z = − Im z and then the equation in (2.3) one obtains

ḣε(t) = 2 Im

∫
R2

e−ε|x|
2

ψ̇ (x · ∇ψ + ψ) dx + 2 Im ε

∫
R2

e−ε|x|
2|x|2ψψ̇ dx

= 2 Im

∫
R2

e−ε|x|
2

i
(
Hψ + f(ψ)

)
(x · ∇ψ + ψ) dx + 2ε Im (−i)

∫
R2

e−ε|x|
2|x|2ψ (Hψ + f(ψ)) dx

= 2 Re

∫
R2

e−ε|x|
2
(
Hψ + f(ψ)

)
ψ dx− 2εRe

∫
R2

e−ε|x|
2|x|2ψ (Hψ + f(ψ)) dx +

2 Re

∫
R2

e−ε|x|
2Hψ (x · ∇ψ) dx + 2 Re

∫
R2

e−ε|x|
2

f(ψ) (x · ∇ψ) dx = I + II + III + IV

Thanks to the dominated convergence theorem the term I converges to

2
(
〈Hψ, ψ〉+ g‖ψ‖p+1

p+1

)
=4E(ψ)− 4

∫
R2

F (ψ) dx + 2(p+ 1)

∫
R2

F (ψ) dx

=4E(ψ) + 2(p− 1)

∫
R2

F (ψ) dx(3.7)

where we have denoted

F (ψ) =
g

p+ 1
|ψ|p+1 .

The term II is vanishing and now let us consider III and IV . To treat IV we make use of the
identity

2 Re e−ε|x|
2

f(ψ) x · ∇ψ = ∇ · (2xe−ε|x|
2

F (ψ)) + 4ε|x|2e−ε|x|2F (ψ)− 4e−ε|x|
2

F (ψ)

and it follows by the divergence theorem and dominated convergence that

2 Re

∫
R2

e−ε|x|
2

f(ψ)x · ∇ψ dx =

∫
R2

(
4ε|x|2e−ε|x|2F (ψ)− 4e−ε|x|

2

F (ψ)
)
dx −→ −4

∫
R2

F (ψ) dx

(3.8)

For III we preliminarily decompose the domain element in regular and singular part, obtaining

2 Re

∫
R2

e−ε|x|
2Hψ x · ∇ψ dx =

2 Re

∫
R2

e−ε|x|
2
(
−∆φλ x · ∇φλ − λ qGλx · ∇φλ − q∆φλx · ∇Gλ − λ|q|2Gλx · ∇Gλ

)
dx =

IIIa + IIIb + IIIc + IIId

Now we treat the various addenda separately. Integrating by parts IIIa one has

IIIa =2 Re

∫
R2

(−∆φλ) e−ε|x|
2

x · ∇φλ dx = 2 Re

∫
R2

∇φλ · ∇(e−ε|x|
2

x · ∇φλ) dx =

2 Re

∫
R2

∇φλ · ∇(x · ∇φλ)e−ε|x|2 dx− 4εRe

∫
R2

e−ε|x|
2|x · ∇φλ|2 dx

The second term vanishes by dominated convergence and the first term vanishes as well exploiting
the following identity, which holds true in the two dimensional case,

2 Re e−ε|x|
2∇φλ · ∇(x · ∇φλ) = 2ε|x|2e−ε|x|2|∇φλ|2 +∇ · (xe−ε|x|2|∇φλ|2) ,
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and then integrating and applying the divergence theorem and dominated convergence again.
To proceed, let us note preliminarily the following identities easily obtained by Fourier transform
(where formula (2.1) is used and it is essential the dimension 2 in the first):

F (x · ∇Gλ) =− 1

2π
∇ · k

(|k|2 + λ)
= − 1

2π

2λ

(|k|2 + λ)2
(3.9)

F (∇ · xGλ) =− 1

2π
k · ∇ 1

|k|2 + λ
=

1

2π

2|k|2

(|k|2 + λ)2
(3.10)

In particular one sees that x · ∇Gλ ∈ H2(R2) and xGλ ∈ H1(R2), and we can integrate by parts in

IIIb + IIIc =2 Re

∫
R2

e−ε|x|
2
(
−λ qGλx · ∇φλ − q∆φλx · ∇Gλ

)
dx

=2 Re

∫
R2

(
λGλqφλx · ∇e−ε|x|2 − qφλx · ∇Gλ(∆e−ε|x|

2

)− 2qφ
λ∇(x · ∇Gλ) · ∇e−ε|x|2

)
dx

+2 Re

∫
R2

e−ε|x|
2

(λqφλ∇ · (xGλ)− qφλ∆(x · ∇Gλ)) dx

The last integral identically vanishes and from anyone of the terms in the first integral can be
extracted a factor ε; one concludes that IIIb + IIIc −→ 0 by dominated convergence.
It remains to consider the limit for ε → 0 of IIId, which can be computed explicitly thanks to the
Plancherel theorem and identities (2.1) and (3.9):

IIId =2 Re

∫
R2

e−ε|x|
2 (−λ|q|2Gλx · ∇Gλ

)
dx −→ −2λ|q|2 Re

∫
R2

Gλx · ∇Gλdx

=
2λ2|q|2

π

∫ ∞
0

r

(r2 + λ)3
dr =

1

2π
|q|2.(3.11)

Finally, collecting (3.7),(3.8), (3.11) and taking into account that the other terms involved vanish,
we obtain

Ï(t) =4 lim
ε→0

ḣε(t) = 16E(ψ) + (8p− 24)

∫
R2

F (ψ) dx +
4

π
|q|2

=16E(ψ) + 8g
p− 3

p+ 1

∫
R2

|ψ|p+1 dx +
2

π
|q|2

=8F(ψ) + 8g
(p− 1)

p+ 1
‖ψ(t)‖p+1

p+1 +
2

π
|q|2

Having proved the identity (3.3) for strong solutions, the same identity follows for weak solutions
exploiting continuous dependence and density, and this ends the proof of the Lemma. �

3.2. Mass preserving scaling and its properties. From now on, we will only consider the at-
tractive nonlinearity, i.e. the case g = −1.

Definition 3.3. Let us introduce the mass preserving scaling map T σ : L2(R2)→ L2(R2), σ ∈ R σ >
0

T σ(ψ) ≡ ψσ(x) = σψ(σx) ∀ψ ∈ L2(R2)

Remark 3.4. By using Gλ(σx) = 1
2π
K0(
√
λσ|x|) = 1

2π
K0(
√
λσ2|x|) = Gλσ2

(x) := Gλσ(x) one
obtains

ψσ(x) = σφ(σx) + qσGλ(σx) = σφ(σx) + σqGλσ2

(x) = φσ(x) + qσGλσ(x)

and the map ψ → ψσ leaves invariant D 1
2 (with the same α). It also follows that qσ = σq .
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Remark 3.5. One has Gλ − Gλσ2 ∈ H3−ε ∀ε > 0 and exploiting the first asymptotic relation in
(2.2), one obtains (Gλσ2 − Gλ)(0) = − 1

2π
log σ. From this one concludes that T σ does not preserve

Dα . Instead, T σ : Dα → Dα− 1
2π

log σ. In fact, from ψ = φλ + q Gλ, φλ(0) = Γλαq, it follows

ψσ(x) = σφλ(σx) + σq Gλ(σx) = σφλ(σx) + σq(Gλσ2 −Gλ)(σx) + σqGλ(x)

= (φλ)σ(x) + qσGλ(x)

and (φλ)σ(0) = σφλ(0)− σq 1
2π

log σ = σq(Γλα − 1
2π

log σ) = qσΓλ
α− 1

2π
log σ

, hence ψσ ∈ Dα− 1
2π

log σ .

Proposition 3.6. Let ψ ∈ D 1
2 . Then

F(ψσ) = σ2F(ψ) +
|q|2

2π
σ2 log σ

‖ψσ‖p+1
p+1 = σp−1‖ψ‖p+1

p+1

d

dσ
F(ψσ)|σ=1 = 2F(ψ) +

1

2π
|q|2

d

dσ
‖ψσ‖p+1

p+1|σ=1 = (p− 1)‖ψ‖p+1
p+1

d

dσ
E(ψσ)|σ=1 =

d

dσ
S(ψσ)|σ=1 = Q(ψ) .

Proof. From ψσ = σφ(σx) + σqGλσ2
and the identity Γλσ

2
= Γλ + 1

2π
log σ one obtains immediately

F(ψσ) = σ2‖∇φ‖2 + σ2Γλσ
2

α |q|2 + λσ2(‖φ‖2 − ‖ψ‖2) = σ2F(ψ) + |q|2
2π
σ2 log σ . The other identities

are obtained by direct computation without difficulty. �

For fixed ϕω ∈ G let us define the functions σ 7→ Sω(ϕσω) and σ 7→ Qω(ϕσω) given by

Sω(ϕσω) =
σ2

2
F(ϕω) +

ω

2
‖ϕω‖2 +

σ2

4π
log σ|qω|2 −

1

p+ 1
σp−1‖ϕω‖p+1

p+1(3.12)

Q(ϕσω) = σ2F(ϕω) +
σ2

2π
log σ|qω|2 −

p− 1

p+ 1
σp−1‖ϕω‖p+1

p+1 +
σ2

4π
|qω|2(3.13)

It is immediate that the functions σ 7→ Sω(ϕσω) and σ 7→ Q(ϕσω) belong to ∈ C∞(R+).
Let us now denote, again for fixed ϕω ∈ G,

(3.14) A = F(ϕω) +
1

4π
|qω|2, B =

1

2π
|qω|2, C =

p− 1

p+ 1
‖ϕω‖p+1

p+1 .

Then we have
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Proposition 3.7. Let ϕω ∈ G. Then the following identities hold:

d

dσ
Sω(ϕσω) =Aσ +Bσ log σ − Cσp−2(3.15)

d2

dσ2
Sω(ϕσω) =(A+B) +B log σ − C(p− 2)σp−3(3.16)

d3

dσ3
Sω(ϕσω) =

B

σ
− C(p− 2)(p− 3)σp−4(3.17)

d

dσ
Sω(ϕσω)|σ=1 =0 or equivalently A = C(3.18)

Q(ϕω) =0(3.19)

Q(ϕσω) =σ
d

dσ
Sω(ϕσω)(3.20)

d

dσ
Q(ϕσω) =

d

dσ
Sω(ϕσω) + σ

d2

dσ2
Sω(ϕσω) .(3.21)

Proof. The proof of (3.15), (3.16), (3.17)) is obtained by direct computation of the derivatives taking
into account (3.12) and (3.14). Property (3.18) is obtained just exploiting ϕω ∈ G i.e. S ′ω(ϕω) = 0 .
Property (3.19) is a reformulation of (3.18). Properties (3.20) and (3.21) are based on the previously
proven identities. For (3.20),

σ
d

dσ
Sω(ϕσω) = σ2F(ϕω) +

σ2

2π
log σ|qϕω |2 +

σ2

4π
|qϕω |2 −

p− 1

p+ 1
σp−1‖ϕω‖p+1

p+1 = Q(ϕσω) .

Identity (3.21) is obtained by deriving (3.20). �

Remark 3.8. In the previous proposition, properties (3.15), (3.16), (3.17), (3.20), (3.21) do not

depend on ϕω being a stationary state and they hold for every ϕ ∈ D 1
2 .

3.3. Blow-up and strong instability. The next result is crucial for the analysis.

Lemma 3.9. Let p > 3, ϕ ∈ D 1
2 , ϕ 6= 0, E(ϕ) > 0 , Q(ϕ) 6 0 and ϕω ∈ G; then

Sω(ϕω) < Sω(ϕ)− 1

2
Q(ϕ) .

Proof. Let

σ0 =

(
‖ϕω‖p+1

p+1

‖ϕ‖p+1
p+1

) 1
p−1

.

Then ‖ϕσ0‖p+1 = ‖ϕω‖p+1 and thanks to Lemma 2.2 it follows Sω(ϕω) 6 Sω(ϕσ0) . Now consider the
real function

g(σ) := Sω(ϕσ)− σ2

2
Q(ϕ) =

ω

2
‖ϕ‖2 +

σ2

4π
(log σ − 1

2
)|qϕ|2 −

σ2

p+ 1

(
σp−3 − p− 1

2

)
‖ϕ‖p+1

p+1

Suppose that g(σ0) 6 g(1); then, from the variational characterization 2.2 of ϕω and Q(ϕ) 6 0 it
follows

Sω(ϕω) 6 Sω(ϕσ0) 6 Sω(ϕσ0)− σ2
0

2
Q(ϕ) 6 Sω(ϕ)− 1

2
Q(ϕ)

which is the thesis. So it is enough to show that g(σ0) 6 g(1) . Actually, we will show that σ = 1 is
the unique point of absolute maximum of g. One has

g′(σ) = Bσ log σ − Aσ(σp−3 − 1) .
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It is immediate that σ = 1 is a root. An elementary analysis shows that a second root σ∗ exists in
(0, 1]. It is an easy check that in σ = 1 there is a maximum, and in σ∗ ∈ (0, 1) there is a minimum,
whatever are A and B. Moreover, being Q(ϕ) 6 0 and E(ϕ) > 0, one has that

g(1) = Sω(ϕ)− 1

2
Q(ϕ) > Sω(ϕ) >

ω

2
‖ϕ‖2 = g(0+) .

Finally, thanks to p > 3 one has limσ→+∞ g(σ) = −∞ and this ends the proof. �

Proof of Theorem 1.1. Let us set

Uω =
{
ϕ ∈ D

1
2 (R2) s.t. Sω(ϕ) < Sω(ϕω), E(ϕ) > 0, Q(ϕ) < 0

}
.

We firstly show that the set Uω is invariant for the flow of (2.3). Let ψ0 ∈ Uω and ψ(t) be the
corresponding weak solution of (2.3). Thanks to the conservation law of mass and energy, one has
that Sω(ψ(t)) < Sω(ϕω) and E(ψ(t)) > 0 ∀t ∈ (0, T ∗). It remains to show that Q(ψ(t)) < 0 .
Suppose, by absurd, that there exist a time t ∈ (0, T ∗) such that Q(ψ(t)) = 0. Being necessarily
ψ(t) 6= 0, applying Lemma 3.9 one obtains

Sω(ϕω) < Sω(ψ(t))− 1

2
Q(ψ(t)) = Sω(ψ(t))

against the hypotheses. So Q(ψ(t)) < 0 ∀t ∈ (0, T ∗) . Now let ψ0 ∈ Uω ∩ Σ, it follows from Lemma
3.1 and the invariance of Uω that the solution ψ(t) ∈ Uω ∩ Σ ∀t ∈ (0, T ∗) . From Lemma 3.2 and in
particular 3.3, exploiting conservation laws of mass and energy, it follows that

1

8

d2

dt2
Iψ(t) = Q(ψ(t)) < 2(Sω(ψ(t))− Sω(ϕω)) = 2(Sω(ψ0)− Sω(ϕω)) < 0 ∀t ∈ (0, T ∗(ψ0))

and this implies T ∗(ψ0) < +∞ by the classical elementary concavity estimate. �

Proof of Theorem 1.2. By elliptic regularity, it follows that ϕω ∈ Σ .Now consider ϕσω(x) = σϕω(σx) ∈
Σ . Notice that from formula (3.14) and formula (3.18)

E(ϕω) > 0 ⇐⇒ 1

2
(A− B

2
)− 1

p− 1
C > 0 ⇐⇒ 1

2π
|qω|2 < 2

p− 3

p+ 1
‖ϕω‖p+1

p+1

As already known, σ = 1 is a stationary point of σ 7→ Sω(ϕσω), Moreover, d2

dσ2Sω(ϕσω)|σ=1 = {(A +
B) +B log σ − A(p− 2)σp−3}|σ=1 = A(3− p) +B so that

d2

dσ2
Sω(ϕσω)|σ=1 < 0 ⇐⇒ B < (p− 3)A ⇐⇒ 1

2π
|qω|2 <

(p− 1)(p− 3)

p+ 1
‖ϕω‖p+1

p+1

This means that p > 3 and E(ϕω) > 0 imply that σ = 1 is a local maximum for σ 7→ Sω(ϕσω) and
actually the absolute maximum, thanks to S(ϕω) > ω‖ϕω‖2 = S(ϕσω)|0+ . Consequently Sω(ϕσω) <
Sω(ϕω) ∀σ > 1 . Finally, from formula (3.20) and σ > 1 one has

Q(ϕσω) = σ
d

dσ
Sω(ϕσω) < 0 .

To summarize, ϕσω ∈ Uω ∩ Σ ∀σ > 1. Being ‖ϕσω − ϕω‖D 1
2
→ 0 as σ → 1 the proof is complete. �

Remark 3.10. The condition E(ϕω) > 0 is expected to be true for ω > ω∗ great enough. That this

should be true can be understood by means of the scaling ϕω(x)→ ϕ̂ω(x) = ω−
1
p−1ϕω( x√

ω
) . One has

(3.22) Hα̂ϕ̂ω + ϕ̂ω − |ϕ̂ω|p−1|ϕ̂ω| = 0

with the modified parameter α̂ = α + 1
4π

logω. Formally, α̂ → +∞ as ω → ∞ and the operator
Hα̂ → −∆ so that (3.22) reduces to the standard NLS, for which it is well known that the ground
state has positive energy if p > 3 (see for example Corollary 8.1.3 in [7]). The previous formal
argument works rigorously for fairly general Schrödinger operators −∆ + V (see [11]).
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4. Strong instability with d2

dσ2Sω(ϕσω)|σ=1 6 0.

It appears from the proof of the previous result that the condition E(ϕω) > 0 is, in general,

stronger than the condition d2

dσ2Sω(ϕσω)|σ=1 6 0. So is a natural generalization of the result given in

the previous section consists in assuming d2

dσ2Sω(ϕσω)|σ=1 6 0 as the condition selecting the frequencies
of the ground waves the instability of which we want to prove. This more general condition has been
advocated by M. Ohta in several papers with various collaborators ([11, 13], see also [18]).

Definition 4.1. Let ϕω ∈ G and set

Vω =
{
ϕ ∈ D

1
2 (R2) s.t. Sω(ϕ) < Sω(ϕω), Q(ϕ) < 0, ‖ϕ‖ 6 ‖ϕω‖, ‖ϕ‖p+1 > ‖ϕω‖p+1

}
.

Lemma 4.2. Let p > 3, ϕω ∈ G with ω s.t. d2

dσ2Sω(ϕω) 6 0, and let ϕ ∈ D 1
2 such that ϕ 6= 0,

Q(ϕ) 6 0, ‖ϕ‖ 6 ‖ϕω‖, ‖ϕ‖p+1 > ‖ϕω‖p+1 ; then

Sω(ϕω) < Sω(ϕ)− 1

2
Q(ϕ) .

Proof. Let

σ0 =

(
‖ϕω‖p+1

p+1

‖ϕ‖p+1
p+1

) 1
p−1

.

Then σ0 ∈ (0, 1], ‖ϕσ0‖p+1 = ‖ϕω‖p+1 = σ
p−1
p+1

0 ‖ϕ‖p+1. Now consider the real function

g(σ) := Sω(ϕσ)− σ2

2
Q(ϕ) =

ω

2
‖ϕ‖2 +

σ2

4π
(log σ − 1

2
)|qϕ|2 −

σ2

p+ 1
(σp−3 − p− 1

2
)‖ϕ‖p+1

p+1

Suppose that g(σ0) 6 g(1) ; then, thanks to lemma 2.2 it follows Sω(ϕω) 6 Sω(ϕσ0) and being
Q(ϕ) 6 0 one has

Sω(ϕω) 6 Sω(ϕσ0) 6 Sω(ϕσ0)− σ2
0

2
Q(ϕ) 6 Sω(ϕ)− 1

2
Q(ϕ)

which is the thesis. So it is enough to show that g(σ0) 6 g(1) . This inequality is equivalent to

σ2
0

4π
(log σ0 −

1

2
)|qϕ|2 −

σ2
0

p+ 1

(
σp−30 − p− 1

2

)
‖ϕ‖p+1

p+1 6 −
1

8π
|qϕ|2 +

p− 3

2(p+ 1)
‖ϕ‖p+1

p+1

(
σ2
0 log σ0

4π
− σ2

0

8π
+

1

8π
)|qϕ|2 6

1

p+ 1

(
σp−10 − (p− 1)

2
σ2
0 +

p− 3

2

)
‖ϕ‖p+1

p+1

or also

|qϕ|2 6
4π

p+ 1

2σp−10 − (p− 1)σ2
0 + (p− 3)

2σ2
0 log σ0 − σ2

0 + 1
‖ϕ‖p+1

p+1 .

The idea is to find an estimate of the type |qϕ|2 6 h(σ0)‖ϕ‖p+1
p+1 by making use of the hypotheses on

ϕ, and then verify that

h(σ0) 6
4π

p+ 1

2σp−10 − (p− 1)σ2
0 + (p− 3)

2σ2
0 log σ0 − σ2

0 + 1
∀σ ∈ (0, 1)



14

that would prove g(σ0) 6 g(1) .
Notice that from (3.16) and (3.18),

d2

dσ2
Sω(ϕσω)|σ=1 6 0 ⇐⇒ F(ϕω) +

3

4π
|qω|2 6

(p− 1)(p− 2)

p+ 1
‖ϕω‖p+1

p+1

⇐⇒ 1

2π
|qω|2 6

(p− 3)(p− 1)

p+ 1
‖ϕω‖p+1

p+1(4.1)

The following Pohozaev identity is obtained applying the computations done in Lemma 3.2 to the
stationary equation (2.5), or equivalently combining the constraints Nω(ϕω) = 0 and Q(ϕω) = 0:

ω‖ϕω‖2 =
|qω|2

4π
+

2

p+ 1
‖ϕω‖p+1

p+1

and making use of inequality (4.1) one gets

ω‖ϕω‖2 =
|qω|2

4π
+

2

p+ 1
‖ϕω‖p+1

p+1 6

(
2

p+ 1
+

1

2

(p− 3)(p− 1)

p+ 1

)
‖ϕω‖p+1

p+1 =
p2 − 4p+ 7

2(p+ 1)
‖ϕω‖p+1

p+1

Now, from ‖ϕ‖ 6 ‖ϕω‖, σp−10 ‖ϕ‖p+1 = ‖ϕω‖p+1 one obtains

ω‖ϕ‖2 6 p2 − 4p+ 7

2(p+ 1)
σp−10 ‖ϕ‖p+1

p+1 .(4.2)

The condition N(ϕσ0) > 0 which holds thanks to proposition 2.2 is equivalent to

σ2
0F(ϕ) +

1

2π
σ2
0 log σ0|qϕ|2 + ω|ϕ|2 − σp−10 ‖ϕ‖p+1

p−1 > 0

and exploiting Q(ϕ) < 0 one arrives to

− 1

2π
σ2
0 log σ0|qϕ|2 < σ2

0

p− 1

p+ 1
‖ϕ‖p+1

p−1 −
σ2
0

4π
|qϕ|2 + ω|ϕ|2 − σp−10 ‖ϕ‖p+1

p−1

that combined with (4.2) yields

1

4π
σ2
0(1− 2 log σ0)|qϕ|2 <

(
σ2
0

p− 1

p+ 1
+
p2 − 4p+ 7

2(p+ 1)
σp−10 − σp−10

)
‖ϕ‖p+1

p−1

or also

|qϕ|2 <
4π

p+ 1

(
2(p− 1) + (p2 − 4p+ 7)σp−30 − 2(p+ 1)σp−30

)
2(1− 2 log σ0)

‖ϕ‖p+1
p−1

so that the inequality that has to be checked is

2(p− 1) + (p2 − 4p+ 7)σp−30 − 2(p+ 1)σp−30

2(1− 2 log σ0)
6

2σp−10 − (p− 1)σ2
0 + (p− 3)

2σ2
0 log σ0 − σ2

0 + 1
.

The previous inequality is equivalent to f(σ0) > 0 where

f(σ) = (p− 3)2
(
σp−1 − 2σp−1 log σ

)
− 4(p− 3) log σ − 4− (p2 − 6p+ 5)σp−3

Notice that f(0+) = +∞, f(1) = 0, so that to prove the inequality it is sufficient to prove that f
is decreasing. That this is indeed the case is a lengthy but elementary check based on the analysis
of the derivatives of the function f up to the third one. We omit the details. �

Theorem 4.3. Let g = −1, p > 3 and ψ0 ∈ Σ ∩ Vω . Then T ∗(ψ0) < +∞ .
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Proof. It is already known that ψ(t) ∈ Σ and by the conservation laws that Sω(ψ(t)) < Sω(ϕω)
and ‖ψ(t)‖ 6 ‖ϕω‖. Thanks to Proposition 2.2 and Sω(ψ(t)) < Sω(ϕω) necessarily ‖ψ(t)‖p+1 6=
‖ϕω‖p+1 ∀t ∈ (0, T ∗(ψ0)) ; being ‖ψ0‖p+1 > ‖ϕω‖p+1, by continuity ‖ψ(t)‖p+1 > ‖ϕω‖p+1 ∀t ∈
(0, T ∗(ψ0)) . Finally, Q(ψ(t)) < 0 is a consequence of Lemma 4.2. Now, from 4.2 and the virial
identity 3.3, one gets

1

8

d2

dt2
Iψ(t) = Q(ψ(t)) < 2(Sω(ψ(t))− Sω(ϕω)) = 2(Sω(ψ0)− Sω(ϕω)) < 0 ∀t ∈ (0, T ∗) .

This gives the thesis by the classical concavity argument. �

Now we will consider the standing waves, and we will show that they are strongly unstable.

Theorem 4.4. Let g = −1 and p > 3. Let ω > −Eα and ϕω ∈ G such that d2S(ϕσω)
dσ2 |σ=1 6 0 . Then

the standing wave ϕωe
iωt is strongly unstable.

Proof. One has ‖ϕσω‖ = ‖ϕω‖, ‖ϕσω‖p+1 = σ
p−1
p+1‖ϕω‖p+1 > ‖ϕω‖p+1 ∀σ > 1 . Now consider the function

S(ϕσω) given in 3.12. We want to show that Sω(ϕσω) < Sω(ϕω) ∀σ > 1 . Thanks to (3.17) in Proposition

3.7 we have d3

dσ3Sω(ϕσω) < 0 ∀σ > 1 from which we deduce that d2

dσ2Sω(ϕσω) is decreasing for σ > 1.

Exploiting the hypothesis d2S(ϕσω)
dσ2 |σ=1 6 0 we obtain d2S(ϕσω)

dσ2 < 0 ∀σ > 1 and consequently dS(ϕσω)
dσ

decreasing. Being dS(ϕσω)
dσ
|σ=1 = 0 we finally obtain that Sω(ϕσω) < Sω(ϕω) ∀σ > 1 as claimed. Finally,

using properties 3.19 and 3.21 of Proposition 3.7 we get d
dσ
Q(ϕσω) = d

dσ
Sω(ϕσω) + σ d2

dσ2Sω(ϕσω) < 0 by
using the monotonicity properties just proved. By 3.19, one finally gets Q(ϕσω) < Q(ϕω) = 0. The
proof is completed thanks to limσ→1 ‖ϕσω − ϕω‖D 1

2
= 0 . �
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