Coronary artery disease (CAD) is the most common type of heart disease and represents the leading cause of death in both men and women worldwide. Early detection of CAD is crucial for decreasing mortality, prolonging survival, and improving patient quality of life. Herein, a non-invasive is described, nanoparticle-based diagnostic technology which takes advantages of proteomic changes in the nano-bio interface for CAD detection. Nanoparticles (NPs) exposed to biological fluids adsorb on their surface a layer of proteins, the “protein corona” (PC). Pathological changes that alter the plasma proteome can directly result in changes in the PC. By forming disease-specific PCs on six NPs with varying physicochemical properties, a PC-based sensor array is developed for detection of CAD using specific PC pattern recognition. While the PC of a single NP may not provide the required specificity, it is reasoned that multivariate PCs across NPs with different surface chemistries, can provide the desirable information to selectively discriminate the condition under investigation. The results suggest that such an approach can detect CAD with an accuracy of 92.84%, a sensitivity of 87.5%, and a specificity of 82.5%. These new findings demonstrate the potential of PC-based sensor array detection systems for clinical use.

Lee, G., Li, A., Moon, I., Katritsis, D., Pantos, Y., Stingo, F., et al. (2023). Protein Corona Sensor Array Nanosystem for Detection of Coronary Artery Disease. SMALL [10.1002/smll.202306168].

Protein Corona Sensor Array Nanosystem for Detection of Coronary Artery Disease

Corbo C.
Ultimo
2023

Abstract

Coronary artery disease (CAD) is the most common type of heart disease and represents the leading cause of death in both men and women worldwide. Early detection of CAD is crucial for decreasing mortality, prolonging survival, and improving patient quality of life. Herein, a non-invasive is described, nanoparticle-based diagnostic technology which takes advantages of proteomic changes in the nano-bio interface for CAD detection. Nanoparticles (NPs) exposed to biological fluids adsorb on their surface a layer of proteins, the “protein corona” (PC). Pathological changes that alter the plasma proteome can directly result in changes in the PC. By forming disease-specific PCs on six NPs with varying physicochemical properties, a PC-based sensor array is developed for detection of CAD using specific PC pattern recognition. While the PC of a single NP may not provide the required specificity, it is reasoned that multivariate PCs across NPs with different surface chemistries, can provide the desirable information to selectively discriminate the condition under investigation. The results suggest that such an approach can detect CAD with an accuracy of 92.84%, a sensitivity of 87.5%, and a specificity of 82.5%. These new findings demonstrate the potential of PC-based sensor array detection systems for clinical use.
Articolo in rivista - Articolo scientifico
cardiovascular disease detection; nano-assay; nanomedicine; protein corona; sensor arrays;
English
25-ott-2023
2023
2306168
open
Lee, G., Li, A., Moon, I., Katritsis, D., Pantos, Y., Stingo, F., et al. (2023). Protein Corona Sensor Array Nanosystem for Detection of Coronary Artery Disease. SMALL [10.1002/smll.202306168].
File in questo prodotto:
File Dimensione Formato  
Lee-2023-Small-VoR.pdf

accesso aperto

Descrizione: Research Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/446258
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact