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Protein Corona Sensor Array Nanosystem for Detection of
Coronary Artery Disease

Gha Young Lee, Andrew A. Li, Intae Moon, Demos Katritsis, Yoannis Pantos,
Francesco Stingo, Davide Fabbrico, Roberto Molinaro, Francesca Taraballi, Wei Tao,
and Claudia Corbo*

Coronary artery disease (CAD) is the most common type of heart disease and
represents the leading cause of death in both men and women worldwide.
Early detection of CAD is crucial for decreasing mortality, prolonging survival,
and improving patient quality of life. Herein, a non-invasive is described,
nanoparticle-based diagnostic technology which takes advantages of
proteomic changes in the nano-bio interface for CAD detection. Nanoparticles
(NPs) exposed to biological fluids adsorb on their surface a layer of proteins,
the “protein corona” (PC). Pathological changes that alter the plasma
proteome can directly result in changes in the PC. By forming disease-specific
PCs on six NPs with varying physicochemical properties, a PC-based sensor
array is developed for detection of CAD using specific PC pattern recognition.
While the PC of a single NP may not provide the required specificity, it is
reasoned that multivariate PCs across NPs with different surface chemistries,
can provide the desirable information to selectively discriminate the condition
under investigation. The results suggest that such an approach can detect
CAD with an accuracy of 92.84%, a sensitivity of 87.5%, and a specificity of
82.5%. These new findings demonstrate the potential of PC-based sensor
array detection systems for clinical use.
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1. Introduction

Cardiovascular disease (CVD) encompasses
a group of diseases involving dysfunctions
of the heart and/or blood vessels, represent-
ing the leading global cause of mortality.[1]

In 2019, CVDs were a leading cause of
death globally with the number of CVD
death steadily increasing every year and
amounting to nearly 18.6 million.[2] Coro-
nary Artery Disease (CAD), which may lead
to chronic and acute myocardial infarc-
tion, is the most common type of CVD.
In 2017, ≈9 million deaths globally were
attributed to CAD alone.[3] The projection
for the next two decades estimated that
the number of people with CAD will in-
crease by more than 40% and that CAD
will cause a total of ≈11 million deaths
globally.[4] Management of CAD requires
heavy economic costs, representing a major
economic burden on public health. Over-
all, medical management of CAD in the
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USA is estimated to cost $100 billion annually including thera-
peutics, medical management, and the cost from the loss of pro-
ductivity from a sicker population.[5]

CAD, characterized by the presence of atherosclerotic plaques
in the coronary arteries,[6] is a chronic condition that starts dur-
ing adolescence and progresses gradually over one’s lifetime.
Atherosclerosis, the pathogenic process driving CAD, is insti-
gated by endothelial dysfunction triggered by stress stimuli and
inflammatory factors (e.g., oxidative stress and hemodynamic
forces). Endothelial cells respond to these factors by expressing
surface adhesion molecules, which, in turn, recruit circulating
leukocytes and low-density lipoproteins containing cholesterol.[6]

These events lead to the formation of atherosclerotic plaques, ca-
pable of narrowing parts of the coronary artery and impairing
the blood flow to the myocardium. Depending on the speed of
the plaque formation and the severity of the arterial obstruction,
CAD can eventually culminate in myocardial infarction.[6]

Prompt and accurate diagnosis of CAD in at-risk subjects is
vital to initiate an ad hoc therapy and avoid potential complica-
tions. Currently, coronary angiography stands as the most precise
and widely accepted gold standard method for CAD diagnosis.
However, this invasive procedure involves threading a catheter
through an artery in the arm, neck, or upper thigh to reach the
heart, accompanied by substantial costs and numerous potential
side effects, including infections, catheterized artery damage, al-
lergic reactions, and excessive bleeding. While computed tomo-
graphic coronary angiography offers a valid non-invasive alterna-
tive for exclusion of CAD in low- to intermediate-risk patients and
for identification of severe stenosis in symptomatic patients, it is
limited by a sensitivity of 50–70% with specificity of 83%.[7] An
ideal test for CAD should be non-invasive, easy to perform, re-
producible and sensitive. Blood tests fulfill these conditions and
can readily be used to identify patients at risk for a specific dis-
ease. As such, considerable efforts have been invested in identi-
fying biomarkers to aid in CAD risk prediction and diagnosis.[8,9]

Despite the identification of several inflammatory biomarkers[10]

with potential diagnostic utility,[11] none have yet been integrated
into routine clinical practice. Therefore, there exists a pressing
need for the development of novel, timely, and accurate CAD de-
tection platforms. Herein, we tested our hypothesis that a nano-
based blood test can act as an innovative and effective tool for
CAD diagnosis.

In this approach, we take advantage of the formation of the
protein corona (PC), a layer of biomolecules primarily composed
of proteins that adsorb onto the surface of nanoparticles (NPs)
when exposed to biological fluids. PCs have been widely inves-
tigated, often in a negative light, due to its role in altering the
targeting efficacy and toxicity of therapeutic NPs.[12–17]
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Instead, in this study we harness the formation of PC around
NPs for CAD diagnosis. A series of chemically diverse NPs is
each used to capture different chemical subset of the plasma
proteome, which has been shown to have specific alterations
associated with various diseases.[18] When a particular NP is
incubated with plasma from patients with various diseases, it
yields disease-specific PCs.[19–21] The physical and chemical prop-
erties of NPs specifically render them ideal for biosensing[22]

plasma proteins, including those present at low-concentration
ones–a challenge for conventional detection methods. Such
ability to detect low-abundance proteins has proven especially
valuable in conditions like Alzheimer’s Disease where relevant
neurodegeneration-associated proteins circulate in extremely low
concentrations. Indeed, PC-based analysis of plasma allowed dis-
covery of protein markers associated with both asymptomatic
stage of Alzheimer’s Disease and its progression.[23] Such proper-
ties of PC have also been utilized recently to distinguish between
sepsis and non-infectious systemic inflammation[24] and discover
low-molecular weight and low-abundance cancer biomarkers.[25]

1D gel electrophoreses and densitometry analyses have also
facilitated the detection of diseases such as pancreatic ductal
adenocarcinoma[26] and glioblastoma multiforme.[27]

Profiling diseases by using multiple NPs has recently gained
recognition as a means to gain deeper insight into diseased
plasma[28] and achieve more precise proteomic profiling.[29]

Building upon this multi-NP platform, several pilot studies have
successfully differentiated plasma of breast and prostate cancer
patients from that of healthy individuals.[30] In this context, we
have recently expanded on this methodology to develop a PC-
based sensor array nanosystem for early detection, discrimina-
tion, and prediction of Alzheimer’s Disease.[31] We further refine
these techniques to accurately detect the presence of atheroscle-
rotic plaques by capturing the plasma proteomic changes result-
ing from its downstream biochemical signaling.[32,33] To the best
of our knowledge, herein we present for the first time the ap-
plication of the protein corona sensor array for the detection of
CAD.[34]

2. Results and Discussion

The profile of adsorbed proteins in the PC is influenced by the
type of material and the surface chemistry of NPs.[35] To detect a
wider spectrum of plasma proteins, we designed a sensor array
system employing six NPs with diverse chemical and physical
features. We hypothesized that the incubation of the six distinct
NPs in plasma would generate differential PC patterns that al-
low the computational discrimination between healthy individu-
als and those with CAD.

To this end, PCs were formed on various NP types with
plasma obtained from three groups: i) CAD-diagnosed patients
following coronary angiography (referred to as the CAD group),
comprising ncohort = 15 and nnoncohort = 11 individuals, ii) symp-
tomatic patients without CAD following coronary angiography
(the NO CAD group), consisting of nnoncohort = 11 individuals,
and iii) healthy volunteers with no known cardiovascular
disease risk factors (the CONTROL group), comprising
ncohort = 15, nnoncohort = 10 individuals. The cohort patients
were included for longitudinal assessment.
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Figure 1. Physicochemical properties of the six NPs before and after incubation with three different plasmas (CAD, NO CAD, CONTROL). Silica (S) or
polystyrene (P) NPs with either plain (P and S), amino-conjugated (P-NH2 and S-NH2), or carboxyl-conjugated (P-COOH and S-COOH) surfaces are
reported. A) The size and polydispersity index (PDI) of the NPs in its bare form and PC-coated forms. PC-coated NPs exhibit an anticipated increase in
both size (≈30-80 nm) and PDI (≈0.01-0.3), as expected. B) The surface charge (𝜁 -potential) before and after plasma incubation consistently increase
for all NPs upon PC formation which is also expected. The increase in surface charge is most pronounced in S NPs and least pronounced in P-NH2
NPs. C) Morphological characterization of NPs before and after incubation with various CAD plasma samples, as analyzed by transmission electron
microscopy (TEM). All NPs showed an increase in size upon PC formation and a thin layer of irregular edges can be observed in PC-coated NPs.
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Figure 2. Protein characterization of PC profiles. A,B) PC profiles analyzed and compared via SDS-PAGE. Four representative gels of CAD, NO CAD, and
CONTROL PCs are shown. Loading order: Polystyrene – B (Bare), Polystyrene – N (NH2), Polystyrene – C (COOH), Silica -B (Bare), Silica – N (NH2),
Silica – C (COOH). C) Densitometric analysis was performed using ImageJ to quantify the band intensity for the SDS-PAGE gels for each PC. The y axis
represents band intensity, while the x-axis displays molecular weight from high to low. Notable peaks have been highlighted as a visual confirmation of
the variation in PC composition for each NP based on the type of plasma.

As mentioned above, we utilized six types of NPs: polystyrene
(P) and silica (S), each with three surface modifications: none,
amine (NH2) and carboxyl (COOH) (P, S, P-NH2, S-NH2, P-
COOH, and S-COOH),[34] as depicted in Figure 1. The size, zeta
potential, and morphology of NPs were measured before and af-
ter incubation in plasma to compare the synthetic identity of bare
NPs to their corresponding biological counterparts (PC-coated
NPs). Dynamic light scattering analysis revealed that bare NPs
were all highly monodispersed, as demonstrated by polydisper-
sity index ≤ 0.02 and a homogeneous size of ≈100 nm, rang-
ing from 93 nm up to 120 nm (Figure 1A). After a 1-hour in-
cubation with plasma of patients, all the NPs’ sizes increased
due to the adsorbed protein layer, the PC, whose thickness and
composition depend on protein concentration, surface proper-
ties and NP size.[35] All bare NPs carried a negative surface
charge (Figure 1B), with those amine-functionalized slightly less
negative than others due to positive amine groups. These re-

sults aligned with supplier specifications and previous studies[36]:
amine modification did not change net charge of both silica and
polystyrene NPs, which remained negatively charged at physio-
logical pH.

Upon exposure to plasma, owing to the charge characteris-
tics of most plasma proteins at physiological pH,[37] the surface
charges of all NPs became less negative with values ranging from
−5 mV to −25 mV for chemically modified NPs and ≈−45 mV
for bare NPs. Overall, all NPs increased in size and showed a
less negative charge, regardless of the type of plasma and surface
modification, upon formation of PC. Notably, however, P and S
NPs exhibited a larger size increase (≈85 nm) when incubated
with NO CAD plasma compared to when incubated with plasma
from other conditions (40-50 nm). Conversely, the PC thickness
of S-NH2 NPs incubated with CAD plasma was larger (≈40 nm)
than those from other plasma types (≈15 nm). Transmission elec-
tron microscopy (TEM) confirmed that NPs retained their overall
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Figure 3. Differences in the percentage contribution of the top 20 most abundant proteins comprising the PCs for plasma, grouped by each NP. This is
a visual representation of how different NP types attract different plasma proteins. The most abundant protein in the protein corona for polystyrene NPs
is fibrinogen beta chain, while for silica-COOH NPs, it is the Ig kappa chain C region. For all other NPs, apolipoprotein A-1 is the most abundant. The
figure also depicts how various plasma pathologies can influence the relative protein composition, even with the same NP, evident from the non-flat
lines connecting the proteins for a given NP, underscoring the dynamic nature of the PC composition in different plasma conditions.

morphology and structure after plasma incubation (Figure 1C).
Furthermore, an increase in the size after PC formation was ob-
served directly via TEM, consistent with dynamic light scatter-
ing. We quantified protein concentrations in different PCs using
Bradford assay, revealing that silica NPs adsorbed fewer proteins
in the PC than polystyrene NPs (Figure 2A). This observation
was consistent with Coomassie-stained 1D SDS-PAGE analyses
of PCs (Figure 2B). Densitometry analysis of the SDS-PAGE gels
revealed differences in protein amounts in the CAD, NO CAD,
and CONTROL PCs of the same NP (Figure 2C, green and red ar-

rows). In some cases, variations in the presence or absence of spe-
cific proteins were also observed (Figure 2C, blue arrows). Sub-
sequently, we investigated the proteomic composition of the PCs
by liquid chromatography with tandem mass spectrometry (LC-
MS/MS) analysis, identifying more than 150 proteins in each PC-
coated NP sample. From the LC-MS/MS analysis, spectral counts,
which represent the total number of fragmentation spectra for
all peptides attributed to a specific protein, were used to assess
protein abundance and the percentage contribution of each iden-
tified proteins in the PCs (Figure S1, Supporting Information.
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Table 1. Non-cohort sensitivity, specificity, and area under ROC curvet.

Array size Sensitivity [%] Specificity [%] AUC [%]

One 80.0 77.8 86.23

[53,94] [38,95]

Two 80.9 77.3 87.48

[54,94] [38,95]

Three 81.3 79.5 88.71

[55,94] [40,95]

Four 81.8 81.1 89.90

[55,95] [42,96]

Five 82.1 82.0 90.58

[56,95] [43,96]

Six 87.5 82.5 92.84

[62,97] [44,96]

Classification accuracy for protein corona nanosystem with array size increasing from
one to six nanoparticles (Column 1). Sensitivity and specificity, along with associated
confidence intervals, improve with additional nanoparticles (Columns 2–3). Area un-
der the receiver operating characteristic (ROC) curve also increases with array size
(Column 4). Experimental results are averaged over 1000 independent draws of a
training set comprising 16 plasmas, with evaluation on the remaining 16 plasmas.
Mean values, along with 95% confidence intervals, are displayed.

Differences in the percentage contribution of the top 20 abun-
dant proteins in the PCs are reported in Figure 3. The results
highlighted correlations between PC composition, plasma con-
dition, NP type, and surface modification.

We collected, analyzed, and classified data from all PC sam-
ples, creating a unique key for each measurement by combin-
ing NP, surface modification, plasma type, and label. Proteins
identified with less than 2 peptides were excluded from analysis.
TIBCO Spotfire Analyst 7.6.1 was used to pivot the data such that
rows represented protein accession, columns were sorted by the
key, and individual cell values contained the percentage contribu-
tion (Figure S2, Supporting Information).

We investigated whether the PC fingerprint of various NPs
could be used to recognize signature proteomic patterns associ-
ated with different physiologic conditions (i.e., biosensors). To ro-
bustly test this hypothesis, we classified the entire protein dataset
using a random forest classification base package from SKlearn.
We tested the accuracy of our classifier in discriminating between
patients by analyzing 16 blind plasma samples. For each plasma
sample PCs were formed around the six NPs in our PC sensor
array nanosystem. Proteins within the PCs were identified by LC-
MS/MS, and the results were analyzed using the previously men-
tioned classification and clustering methods.

We first measured the sensitivity (87.5%) and specificity
(82.5%) for the random forest classifier’s ability to distinguish
between blind non-cohort (no longitudinal aspect) samples of
CAD and NO CAD (Table 1). Results were averaged over 1000
independent training sets consisting of 16 plasma samples, with
evaluations on the remaining 16 samples, and are reported with
95% confidence intervals. The corresponding receiver operating
characteristic (ROC) curve is shown in Figure 4, illustrating the
achievable range of sensitivity and specificity with the red indi-
cating the point of maximum benefit. The area under the curve
(AUC) of the ROC plot served as a proxy for accuracy in the clas-

Figure 4. Performance of the full nanoparticle array on non-cohort dis-
tinguishing between CAD and NO CAD. Receiver operating characteristic
(ROC) curve for full protein corona nanosystem with six nanoparticles on
non-cohort samples is shown. Area under this curve is equal to 92.84%.
The red point indicates the reported sensitivity and specificity, and the rest
of the curve represents potential tradeoffs between sensitivity and speci-
ficity. Experimental results are averaged over 1000 independent draws of a
training set comprising 16 plasmas, with evaluation on the remaining 16
plasmas.

sification task (92.84%). We also demonstrated that with more
sensor array elements (NPs), sensitivity, specificity, and AUC all
increased (Table 1). To further characterize the model with vary-
ing sensor array elements, the p-values for sensitivity and speci-
ficity in comparison to the null hypotheses were generated us-
ing a one-sided Wilcoxon signed-ranked test (Table 2). We find
that the p-values for the sensitivity and specificity increased or
remained the same with a sensor array n < 6.

We then measured the sensitivity (80.3%), specificity (70.4%),
and AUC (84.17%) for the classifier’s ability to distinguish
between blind cohort samples of CAD and CONTROL (Figure 5).
We also demonstrated that the model’s sensitivity and specificity

Table 2. Non-cohort statistical comparison of sensitivity and specificity be-
tween arrays with different numbers of nanoparticles. P-values for the null
hypotheses that arrays with fewer than six nanoparticles achieve the same,
or greater, sensitivity (Column 1) and specificity (Column 2) as the ar-
ray with all six nanoparticles. Testing was performed using a one-sided
Wilcoxon signed-rank test. Each null hypothesis individually can be re-
jected at a 99% significance level, and moreover the entire set of 10 null hy-
potheses can be rejected via a Benjamini-Hochberg procedure, with false
discovery rate controlled at 1%.

Array size Sensitivity Specificity

One 6.8 × 10−93 1.2 × 10−23

Two 2.0 × 10−96 2.0 × 10−32

Three 5.0 × 10−100 1.3 × 10−15

Four 5.2 × 10−88 4.7 × 10−06

Five 3.8 × 10−69 3.0 × 10−03
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Figure 5. Performance of the full nanoparticle array on cohort distinguish-
ing between CAD and CONTROL. The receiver operating characteristic
(ROC) curve for full protein corona nanosystem with six nanoparticles on
cohort samples is shown. Area under this curve is equal to 84.17%. The red
point indicates the reported sensitivity and specificity, and the rest of the
curve represents potential tradeoffs between sensitivity and specificity. Ex-
perimental results are averaged over 1000 independent draws of a training
set comprising 16 non-cohort (CAD and NO CAD) plasmas, with evalua-
tion on all 30 cohort (CAD and CONTROL) plasmas.

for distinguishing CAD from CONTROL increased proportion-
ally with the number of elements in the sensor array (Table 3),
mirroring the analysis conducted for CAD versus NO CAD as de-
scribed earlier. The results were averaged over 1000 independent
draws with a training set of 16 non-cohort plasmas with evalu-
ation on all 30 cohort plasmas. Remarkably, the cohort analysis
achieved a substantial accuracy even when trained on non-cohort
plasma samples.

The random forest classifier model generated an importance
score for each protein-NP pair, indicating the contribution of the
pair to the decision tree branch. The importance score for the top
30 highest scoring proteins was plotted, revealing distinct con-
tribution from each NP for each protein (Figure 6), demonstrat-
ing the robustness of the model in distinguishing proteins based
on the unique physicochemical properties of the NPs variably
contributing to the classification task. The top 30 highest scoring
proteins that were detected on all six NPs in the non-cohort plas-
mas and are listed in Figure 6. These proteins that contributed
most to the classification task interestingly include Apolipopro-
tein (a) and the complement components which are directly and
indirectly related to CAD pathogenesis. For instance, comple-
ment activation has been associated with atherosclerosis devel-
opment, plaque rupture, and thrombosis.[38] Apolipoprotein (a),
known to be an attractive biomarker candidate for use into clin-
ical practice for CAD, is the main component of lipoprotein (a),
it undergoes proteolytic cleavage, and its fragments accumulate
in atherosclerotic plaques.[39] These results confirm the capabil-
ity of our sensor array technology to perform the classification
task on pathologically and biologically relevant grounds. Inter-

estingly, beyond several known CAD-related biomarkers, our top
30 list includes potential novel biomarkers warranting further
investigation.

3. Conclusion

In this work, by combining a sensor array-based diagnostic
approach with personalized PCs, we designed a novel di-
agnostic CAD test to be used as a non-invasive alternative
screening option for high-risk patients. Sensor array tech-
nologies involve a range of sensor elements used to create
a unique identifier for each analyte, facilitating precise an-
alyte recognition through pattern recognition. The use of
sensor arrays has been reported for the detection of differ-
ent analytes such as foods, beverages, gases, biomolecules,
and NPs.[40–45] NP-based sensor arrays provide an attrac-
tive alternative approach to current research efforts in
searching for specific biomarkers for disease detection.[46]

Herein, we harnessed this approach, incorporating six NPs
as sensor elements to exploit disease-specific PCs for CAD
diagnostics.

Our results indeed demonstrate that this approach can dis-
criminate between plasma of CAD patients and healthy individ-
uals, as well as distinguish between cohort and non-cohort pa-
tients. This positions this sensor array platform as a promising
diagnostic tool for non-invasive, blood-based CAD detection with
accuracy and precision.

In conclusion, in this work we showcase the capability of a six-
NP PC sensor array in CAD detection with a sensitivity of 87.5%,
specificity of 82.5%, and accuracy of 92.84%, which outperforms
CT coronary angiography, the current best alternative to invasive
coronary angiogram. Moreover, the PC sensor array nanosystem
demonstrates the ability to discriminate both CAD patients from
symptomatic patients at risk for CAD, as well as CAD patients

Table 3. Cohort sensitivity, specificity, and area under ROC curve. Classifi-
cation accuracy for protein corona nanosystem with array size increasing
from one to six nanoparticles (Column 1). Sensitivity and specificity, along
with associated confidence intervals, improve with additional nanopar-
ticles (Columns 2–3). Area under the receiver operating characteristic
(ROC) curve also increases with array size (Column 4). Experimental re-
sults are averaged over 1000 independent draws of a training set com-
prising 16 non-cohort plasmas, with evaluation on all 30 cohort plasmas.
Mean values, along with 95% confidence intervals, are displayed.

Array size Sensitivity [%] Specificity [%] AUC [%]

One 47.3 71.1 63.79

[31,64] [51,84]

Two 64.9 67.4 72.98

[46,79] [48,81]

Three 70.6 69.5 77.23

[51,84] [50,83]

Four 74.7 70.5 80.17

[55,87] [50,84]

Five 78.1 69.9 82.20

[58,90] [49,85]

Six 80.3 70.4 84.17

[59,92] [49,86]
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Figure 6. Protein importance for classification (non-cohort). Each column indicates the classification importance of a specific protein. The six colored
stacks within a column for a given protein correspond to the importance of the observed interaction of that protein with each of the three nanoparticles.
Information on the most important overall proteins, detected on combinations of all six nanoparticles in the non-cohort plasmas is reported in the table.

from healthy CONTROL cohort patients, further highlighting its
potential in clinical settings. The ease of a blood-based test with
no side effect has immense potential to reduce CAD complica-
tion via early detection and more frequent testing. Interestingly,
our group has already successfully tested the approach presented
here on Alzheimer’s disease (30) and, due to its versatility, we
envision that may be utilized also for the detection of other
various human diseases in need of more biomarkers, early de-
tection methods, or less invasive diagnostic procedures. Potential
applications include, but are not limited to, musculoskeletal dis-
orders (e.g., prediction of bone metastasis, therapeutic evaluation
of osteosarcoma).

4. Experimental Section
Nanoparticles: Three differently functionalized silica particles were

purchased by Kisker-Products (https://www.kisker-biotech.com/); three
differently functionalized polystyrene particles were purchased by Poly-
science, Inc. (http://www.polysciences.com/). All the particles had the
same size (100 nm). Their morphology, average size, polydispersity in-

dex (PDI), and zeta potential were characterized by TEM, DLS and zeta
potential measurements.

Protein Corona Formation: Human plasma was collected from healthy
subjects, CAD+ and CAD- patients at the Dept Cardiology, Athens, Eu-
roclinic, Athens, Greece. IRB approval and informed consent were pro-
vided. The PCs were created by incubating 0.5 mg of NPs in 200 μL deion-
ized H2O diluted with the 200 μL of thawed aliquoted human plasma.
Incubation was performed in 37 °C under agitation for 1 h. Immedi-
ately after incubation, centrifugation was executed at 14000 rpm and
10 °C for 30 min to form a pellet. Next, the pellet was washed and sus-
pended in 200 μl of phosphate-buffered saline (PBS) at 4 °C. The cen-
trifugation was repeated three times, again at 14000 rpm and 10 °C
for 30 min. The pellet of the PC-coated NPs was either resuspended
in a solution of 8 M Urea 50 mM ammonium bicarbonate for SDS-
PAGE gels and liquid chromatography with tandem mass spectrome-
try analysis, or in deionized H2O for size and 𝜁 -potential nanoparticle
characterization.

Nanoparticles Characterization: Size and 𝜁 -potential of bare and pro-
tein corona-coated nanoparticles have been characterized by diluting 10 μl
of each sample in 1 ml total of distilled water. Measurements have been
performed using a Zetasizer Nano ZS90 (Malvern, UK). Size and sur-
face charge values were given as mean ± S.D. of three independent
measurements.
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Protein Concentration Assay: The amount of proteins within the corona
was determined by Bradford assay (Bio-rad) using bovine serum albumin
at a known concentration as the standard to build a 5-point standard curve
(R2 = 0.99). Protein concentrations were recorded as an average of three
experiments ± S.D.

1D-SDS PAGE Gels: Proteins in the corona were dissolved in in 8 M
Urea, 50 mM ammonium bicarbonate. An equal amount of Laemmli buffer
2X was added to the pellet and heated for 5 min at 90 ˚C before be-
ing loaded and resolved onto a 4–20% Mini-PROTEAN® TGX™ Pre-
cast Gels (Bio-Rad Laboratories, Hercules, CA) for 1 h at 120 V. Pro-
teins were stained with Coomassie Brilliant Blue (Fisher Scientific, Fair
Lawn, NJ, USA) overnight followed by extensive washing in ultra-pure
water.

Mass Spectrometry–Reduction, Alkylation, and Tryptic Digestion: Pro-
teins were reduced with 10 mM dithiothreitol (Sigma) for 1 h at 56 °C
and then alkylated with 55 mM iodoacetamide (Sigma) for 1 h at 25 °C in
the dark. Proteins were then digested with modified trypsin (Promega) at
an enzyme/substrate ratio of 1:50 in 100 mM ammonium acetate, pH 8.9
at 25 °C overnight. Trypsin activity was halted by addition of acetic acid
(99.9%, Sigma) to a final concentration of 5%. Peptides were desalted us-
ing C18 SpinTips (Protea, Morgantown, WV) then vacuum centrifuged and
stored at −80 °C.

Mass Spectrometry–LC-MS/MS: Peptides were separated by reverse
phase HPLC (Thermo Easy nLC1000) using a pre-column (made in-house,
6 cm of 10 μm C18) and a self-pack 5 μm tip analytical column (12 cm of
5 μm C18, New Objective) over a 140-minute gradient before nanoelectro-
spray using a QExactive mass spectrometer (Thermo). Solvent A was 0.1%
formic acid and solvent B was 80% MeCN/0.1% formic acid. The gradi-
ent conditions were 2–10% B (0-3 min), 10–30% B (3-107 min), 30–40%
B (107-121 min), 40–60% B (121-126 min), 60–100% B (126-127 min),
100% B (127-137 min), 100-0% B (137-138 min), 0% B (138-140 min),
and the mass spectrometer was operated in a data-dependent mode. The
parameters for the full scan MS were: resolution of 70000 across 350–
2000 m/z, AGC 3e6, and maximum IT 50 ms. The full MS scan was fol-
lowed by MS/MS for the top 10 precursor ions in each cycle with a normal-
ized collision energy of 28 and dynamic exclusion of 30 s. Raw mass spec-
tral data files (.raw) were searched using Proteome Discoverer (Thermo)
and Mascot version 2.4.1 (Matrix Science). Mascot search parameters
were: 10 ppm mass tolerance for precursor ions; 15 mmu for fragment
ion mass tolerance; 2 missed cleavages of trypsin; fixed modification was
carbamidomethylation of cysteine; variable modification was methionine
oxidation. Only peptides with a Mascot score greater than or equal to 25
were included in the data analysis. Spectral counting was performed by
summing the total number of peptides selected for fragmentation of each
protein.

Statistics: All statistical analyses were performed in Python, and
figures and graphs were created using the bokeh package in Python, along
with Microsoft Excel, XLSTAT, and MATLAB. For all plasma samples, a data
matrix X_i was generated such that each row of the matrix corresponded
to the protein abundances of a single nanoparticle, as obtained from the
protein corona nanoplatform. As a preprocessing step, the protein abun-
dances were converted to relative protein abundances by normalizing the
rows of all of the matrices.
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