Pesticides, synthetic fragrances and polycyclic aromatic hydrocarbons contaminated two glacier-fed streams (Amola, Mandrone) and one spring (Grostè) in the Italian Alps. Ten compounds (chlorpyrifos (CPY), chlorpyrifos-methyl (CPY-m), galaxolide (HHCB), tonalide (AHTN), fluorene (Flu), phenanthrene (Phen), anthracene (Ant), fluoranthene (Fl), pyrene (Pyr), benzo[a]anthracene (BaA)) accumulated in aquatic larvae of chironomids (Diamesa steinboecki, D. latitarsis, D. bertrami, D. tonsa, D. zernyi, Pseudokiefferiella parva, Orthocladiinae) and tipulids. Their tissue concentrations (detected by gas chromatography coupled with mass spectrometry) ranged from 1.1 ± 0.1 ng/g d.w. (= dry weight) (CPY-m in D. tonsa from Amola) to 68.0 ± 9.1 ng/g d.w. (Pyr in D. steinboecki from Mandrone). HHCB, AHTN, and CPY, with one exception, were accumulated by all aquatic insects. Six compounds (CPY, CPY-m, HHCB, AHTN, Fl, Pyr) also contaminated carabids (Nebria germarii, N. castanea, N. jockischii) predating adults of merolimnic insects. Their tissue concentrations ranged from 1.1 ± 0.3 ng/g d.w. (CPY-m in N. germarii from Mandrone) to 84.6 ± 0.3 ng/g d.w. (HHCB in N. castanea from Grostè). HHCB and AHTN were accumulated by all Nebria species. Intersite and interspecies differences were observed, which might be attributed to different environmental contamination levels. There was a stronger similarity between species from the same site than among the same species from different sites, suggesting that uptake is not species specific. At all sites, the concentration of xenobiotics was higher in larvae than in water and comparable or higher in carabids than in larvae from the same site, suggesting trophic transfer by emerging aquatic insects to their riparian predators.

Lencioni, V., Rizzi, C., Gobbi, M., Mustoni, A., Villa, S. (2023). Glacier foreland insect uptake synthetic compounds: an emerging environmental concern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL, 30(53), 113859-113873 [10.1007/s11356-023-30387-x].

Glacier foreland insect uptake synthetic compounds: an emerging environmental concern

Cristiana Rizzi;Sara Villa
2023

Abstract

Pesticides, synthetic fragrances and polycyclic aromatic hydrocarbons contaminated two glacier-fed streams (Amola, Mandrone) and one spring (Grostè) in the Italian Alps. Ten compounds (chlorpyrifos (CPY), chlorpyrifos-methyl (CPY-m), galaxolide (HHCB), tonalide (AHTN), fluorene (Flu), phenanthrene (Phen), anthracene (Ant), fluoranthene (Fl), pyrene (Pyr), benzo[a]anthracene (BaA)) accumulated in aquatic larvae of chironomids (Diamesa steinboecki, D. latitarsis, D. bertrami, D. tonsa, D. zernyi, Pseudokiefferiella parva, Orthocladiinae) and tipulids. Their tissue concentrations (detected by gas chromatography coupled with mass spectrometry) ranged from 1.1 ± 0.1 ng/g d.w. (= dry weight) (CPY-m in D. tonsa from Amola) to 68.0 ± 9.1 ng/g d.w. (Pyr in D. steinboecki from Mandrone). HHCB, AHTN, and CPY, with one exception, were accumulated by all aquatic insects. Six compounds (CPY, CPY-m, HHCB, AHTN, Fl, Pyr) also contaminated carabids (Nebria germarii, N. castanea, N. jockischii) predating adults of merolimnic insects. Their tissue concentrations ranged from 1.1 ± 0.3 ng/g d.w. (CPY-m in N. germarii from Mandrone) to 84.6 ± 0.3 ng/g d.w. (HHCB in N. castanea from Grostè). HHCB and AHTN were accumulated by all Nebria species. Intersite and interspecies differences were observed, which might be attributed to different environmental contamination levels. There was a stronger similarity between species from the same site than among the same species from different sites, suggesting that uptake is not species specific. At all sites, the concentration of xenobiotics was higher in larvae than in water and comparable or higher in carabids than in larvae from the same site, suggesting trophic transfer by emerging aquatic insects to their riparian predators.
Articolo in rivista - Articolo scientifico
Carabidae (Nebria); Chironomidae (Diamesa); Insect conservation; Italian Alps; Melting glaciers; Pesticides; Polycyclic aromatic hydrocarbons; Synthetic fragrances;
English
19-ott-2023
2023
30
53
113859
113873
partially_open
Lencioni, V., Rizzi, C., Gobbi, M., Mustoni, A., Villa, S. (2023). Glacier foreland insect uptake synthetic compounds: an emerging environmental concern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL, 30(53), 113859-113873 [10.1007/s11356-023-30387-x].
File in questo prodotto:
File Dimensione Formato  
Lencioni-2023-Environ Sci Pollut Res Internat-VoR.pdf

Solo gestori archivio

Descrizione: Research Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Lencioni-2023-Environ Sci Pollut Res Internat-AAM.pdf

Accesso Aperto

Descrizione: Research Article
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Altro
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/444419
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact