For an odd prime p, let Ep(X)=∑n=0∞anXn∈Fp[[X]] denote the reduction modulo p of the Artin-Hasse exponential series. It is known that there exists a series G(Xp) ∈ Fp[ [ X] ] , such that Lp-1(-T(X))(X)=Ep(X)·G(Xp) , where T(X)=∑i=1∞Xpi and Lp-1(α)(X) denotes the (generalized) Laguerre polynomial of degree p- 1 . We prove that G(Xp)=∑n=0∞(-1)nanpXnp , and show that it satisfies G(Xp)G(-Xp)T(X)=Xp.

Avitabile, M., Mattarei, S. (2023). The Artin-Hasse series and Laguerre polynomials modulo a prime. AEQUATIONES MATHEMATICAE [10.1007/s00010-023-00996-5].

The Artin-Hasse series and Laguerre polynomials modulo a prime

Avitabile, Marina
;
Mattarei, Sandro
2023

Abstract

For an odd prime p, let Ep(X)=∑n=0∞anXn∈Fp[[X]] denote the reduction modulo p of the Artin-Hasse exponential series. It is known that there exists a series G(Xp) ∈ Fp[ [ X] ] , such that Lp-1(-T(X))(X)=Ep(X)·G(Xp) , where T(X)=∑i=1∞Xpi and Lp-1(α)(X) denotes the (generalized) Laguerre polynomial of degree p- 1 . We prove that G(Xp)=∑n=0∞(-1)nanpXnp , and show that it satisfies G(Xp)G(-Xp)T(X)=Xp.
Articolo in rivista - Articolo scientifico
Artin-Hasse series; Laguerre polynomials;
English
10-ott-2023
2023
open
Avitabile, M., Mattarei, S. (2023). The Artin-Hasse series and Laguerre polynomials modulo a prime. AEQUATIONES MATHEMATICAE [10.1007/s00010-023-00996-5].
File in questo prodotto:
File Dimensione Formato  
10281-442922_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 268.78 kB
Formato Adobe PDF
268.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/442922
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact