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The Artin-Hasse series and Laguerre polynomials modulo a prime

Marina Avitabile and Sandro Mattarei

Abstract. For an odd prime p, let Ep(X) =
∑∞

n=0 anXn ∈ Fp[[X]] denote the reduction
modulo p of the Artin-Hasse exponential series. It is known that there exists a series G(Xp) ∈
Fp[[X]], such that L

(−T (X))
p−1 (X) = Ep(X) · G(Xp), where T (X) =

∑∞
i=1 X

pi
and L

(α)
p−1(X)

denotes the (generalized) Laguerre polynomial of degree p − 1. We prove that G(Xp) =∑∞
n=0(−1)nanpXnp, and show that it satisfies G(Xp)G(−Xp)T (X) = Xp.
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1. Introduction

Let p be a prime. The Artin-Hasse exponential series is the formal power series
in Q[[X]] defined as

AH(X) = exp
( ∞∑

i=0

Xpi

/pi

)

=
∞∏

i=0

exp
(
Xpi

/pi
)

.

As an immediate application of the Dieudonné-Dwork criterion, its coef-
ficients are p-integral, hence they can be evaluated modulo p. Let Ep(X) =∑

anXn denote the reduction modulo p of the Artin-Hasse exponential series,
hence viewed as a series in Fp[[X]].

The series Ep(X) satisfies a weak version of the functional equation
exp(X) exp(Y ) = exp(X + Y ) of the classical exponential series exp(X) =∑

Xk/k! in characteristic zero. In fact, it was shown in [7, Theorem 2.2] that
each term of the series (Ep(X + Y ))−1 Ep(X) Ep(Y ) has degree a multiple of
p. This weak functional equation satisfied by Ep(X) is the crucial property
needed for a grading switching technique developed in [7], whose goal is pro-
ducing a new grading of a non-associative algebra A in characteristic p from
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a given grading. Roughly speaking, the new grading of A is obtained by ap-
plying Ep(D) to each homogeneous components of the given grading, where D
is a nilpotent derivation of A satisfying a certain compatibility condition with
the grading. In full generality, that is for arbitrary derivations, the grading
switching was developed in [3]. The toral switching (see [10], [5] and [9]), a
fundamental tool in the classification theory of simple modular Lie algebras,
can be recovered as a special case of it.

In this Introduction we limit ourselves to a brief survey of the definitions
and the results which are essential for the purposes of this paper, referring
the reader to Sect. 2 for further details, and the interested reader to [3] and
[2] for full details. In the general case of the grading switching, the role of the
Artin-Hasse exponential is played by the (generalized) Laguerre polynomials
of degree p − 1,

L
(α)
p−1(X) =

p−1∑

k=0

(
α − 1

p − 1 − k

)
(−X)k

k!
, (1)

regarded as polynomials in Fp[α,X]. These polynomials satisfy a congruence
which can be interpreted as a further generalization of the weak functional
equation satisfied by Ep(X). The main result of [8] then implies that the power
series

S(X) = L
(− ∑∞

i=1 Xpi )
p−1 (X),

in 1 + XFp[[X]], satisfies S(X) = Ep(X) · G(Xp) for some series G(X) ∈
1 + XFp[[X]]. Our main result is to determine the coefficients of the series
G(X) in terms of those of Ep(X). We separately deal with the case p = 2 in
Remark 7. When p is an odd prime we have the following.

Theorem 1. Let p be an odd prime, and let Ep(X) =
∑∞

n=0 anXn in Fp[[X]]
be the reduction modulo p of the Artin-Hasse exponential series. Then

L
(− ∑∞

i=1 Xpi )
p−1 (X) = Ep(X) ·

∞∑

n=0

(−1)nanpX
np, (2)

and

L
(− ∑∞

i=1 Xpi )
p−1 (X) ·

( ∞∑

i=1

Xpi

)

·
∞∑

n=0

anpX
np = Xp Ep(X) (3)

in Fp[[X]].

As an immediate consequence of Theorem 1 we have the following result.
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Proposition 2. Let p be an odd prime and Ep(X) =
∑∞

i=0 aiX
i in Fp[[X]] the

reduction modulo p of the Artin-Hasse exponential series. Then in Fp[[X]] we
have the identity

∞∑

s=0

aspX
sp ·

∞∑

r=0

arp(−X)rp ·
∞∑

i=1

Xpi

= Xp. (4)

Proposition 2 can equivalently be phrased in the following form involving
the series

∑
p|k Xk/k! in place of the Artin-Hasse series.

Proposition 3. For any odd prime p, in Q[[X]] we have
∞∑

s=0

Xsp

(sp)!
·

∞∑

r=0

(−X)rp

(rp)!
·

∞∑

i=1

Xpi ≡ Xp (mod p).

Despite its appearance, the left-hand side of the congruence of Proposition 3
has p-integral coefficients, which justifies viewing it modulo p. This variant does
not seem to offer any more direct proof than deducing it from Proposition 2,
which we will do in Sect. 3.

As a final application of Theorem 1, we use properties of the Laguerre
polynomials to produce explicit expressions for the coefficients an, with 0 ≤
n < p2, in terms of coefficients in the same range but with n multiple of p. We
denote by

[
n
i

]
the (unsigned) Stirling numbers of the first kind.

Proposition 4. For 0 ≤ k < p and 0 ≤ r < p we have

arp+k = (−1)k+1
r∑

j=0

[
p − k

j + 1

]

c(r−j)p,

where cjp = ajp for 0 ≤ j < p − 1 and c(p−1)p = a(p−1)p + 1.

We present proofs of our results in Sect. 3.

2. Preliminaries

Let Zp denote the ring of p-adic integers, where p is any prime, and write

AH(X) =
∞∑

n=0

unXn ∈ Zp[[X]]. (5)

The coefficients un satisfy the recursive formula (see [6, Lemma 1])

un =
1
n

∞∑

i=0

un−pi , (6)

where u0 = 1 and we naturally read um = 0 for m < 0, which easily follows
from differentiating Eq. (5).
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Our interest lies exclusively in prime characteristic p. Denote by Ep(X) =∑
anXn ∈ Fp[[X]] the reduction modulo p of the Artin-Hasse exponential

series, hence an ≡ un modulo p. As mentioned in the Introduction, Ep(X)
satisfies a functional equation which is a weak version of the fundamental
equation exp(X) exp(Y ) = exp(X + Y ) for the classical exponential series
exp(X) =

∑
Xk/k! in characteristic zero. Namely, as shown in the proof of

[7, Theorem 2.2], we have

Ep(X) Ep(Y ) = Ep(X + Y )

⎛

⎝1 +
∑

i,j

ai,jX
iY j

⎞

⎠ (7)

in Fp[[X,Y ], for some coefficients ai,j ∈ Fp which vanish unless p | i + j. The
functional Eq. (7) actually characterizes the series Ep(X) in Fp[[X]], up to
some natural variations. Precisely, we quote from [8] the following

Theorem 5. ([8]) For a series S(X) ∈ 1 + XFp[[X]], the series

(S(X + Y ))−1 S(X)S(Y ) ∈ Fp[[X,Y ]]

has only terms of total degree a multiple of p if and only if

S(X) = Ep(cX) · G(Xp),

for some c ∈ Fp and G(X) ∈ 1 + XFp[[X]].

The classical (generalized) Laguerre polynomial of degree n ≥ 0 is defined
as

L(α)
n (X) =

n∑

k=0

(
α + n

n − k

)
(−X)k

k!
,

where α is a parameter, usually in the complex field. However, we may also view
L
(α)
n (X) as a polynomial with rational coefficients in the two indeterminates

α and X, hence in the polynomial ring Q[α,X]. We are only interested in the
Laguerre polynomials of degree n = p−1. Their coefficients are p-integral, and
hence can be evaluated modulo p. In particular, L

(α)
p−1(X) will be viewed as

a polynomial in Fp[α, x], and as such will be given by Eq. (1). Note that, for
α = 0, L

(0)
p−1(X) equals the truncated exponential E(X) =

∑p−1
k=0 Xk/k!, which

in turns is congruent to Ep(X) modulo Xp.
The Laguerre polynomials L

(α)
p−1(X) satisfy a congruence which can be in-

terpreted as a further generalization of Eq. (7). Indeed, it follows from [3,
Proposition 2] (but see also [4, Theorem 1] for a streamlined statement) that
there exist rational expressions ci(α, β) ∈ Fp(α, β) such that

L
(α)
p−1(X)L(β)

p−1(Y ) ≡ L
(α+β)
p−1 (X + Y )

(

c0(α, β) +
p−1∑

i=1

ci(α, β)XiY p−i

)

, (8)
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in Fp(α, β)[X,Y ], modulo the ideal generated by Xp −(αp −α) and Y p −(βp −
β). This congruence actually characterizes the polynomials L

(α)
p−1(X) among

those in Fp[α][X], up to some natural variations, as proved in [4, Theorem 3].
In the rest of the paper we let S(X) denote the power series in 1+XFp[[X]]

defined as

S(X) = L
(− ∑∞

i=1 Xpi )
p−1 (X).

According to [2, Proposition 6] to which we refer for details, Eq. (8) implies
that (S(X+Y ))−1S(X)S(Y ) has only terms of degree divisible by p. According
to Theorem 5, since S(X) ≡ L

(0)
p−1(X) = E(X) ≡ Ep(X) modulo Xp, we have

S(X) = Ep(X) · G(Xp) (9)

for some G(X) in 1 + XFp[[X]]. Equivalently, we have

S(X) · F (Xp) = Ep(X), (10)

for some F (X) = 1/G(X) in 1 + XFp[[X]]. Our Theorem 1 produces explicit
expressions for G(Xp) and F (Xp).

3. Proofs

In this section we prove Theorem 1, Proposition 2 and Proposition 4. We will
need the following special instance of Eq. (8).

Lemma 6. ([1, Lemma 10]) In the polynomial ring Fp[α,X] we have

L
(α)
p−1(X) · L

(−α)
p−1 (−X) ≡ 1 − αp−1 (mod Xp − (αp − α)).

Note that L
(α)
p−1(0) =

(
α−1
p−1

)
= 1 − αp−1 = L

(−α)
p−1 (0).

Proof of Theorem 1. From Eq. (9) and the fact that Ep(X) Ep(−X) = 1 (for
p odd) we deduce

T (X) · S(X) · S(−X) · Ep(−X) = T (X) · S(−X) · G(Xp),

where T (X) =
∑∞

i=1 Xpi

. To fix notation we set G(Xp) =
∑∞

n=0 bnpX
np.

Setting α = −T (X) in Lemma 6 we find S(X) · S(−X) = 1 − T (X)p−1. In
more formal terms we have applied to the congruence the ring homomorphism
of Fp[α,X] to Fp[[X]] which maps α to −T (X), noting that the modulus
X − (αp − α) belongs to its kernel. Consequently, T (X) · S(X) · S(−X) = Xp,
because T (X) − T (X)p = Xp, and hence

Xp ·
∞∑

n=0

(−1)nanXn = T (X) · S(−X) ·
∞∑

n=0

bnpX
np.
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Now we are only interested in the terms of this equation where the exponent
of X is a multiple of p. In the case of S(−X) = L

(T (X))
p−1 (−X) the collection of

such terms equals
(

T (X) − 1
p − 1

)

= 1 − T (X)p−1

in Fp(X). Because T (X) − T (X)p = Xp we conclude

Xp
∞∑

n=0

(−1)nanpX
np = Xp

∞∑

n=0

bnpX
np,

which is equivalent to Eq. (2).
To prove Eq. (3) we proceed in a similar way, starting from S(X) ·F (Xp) =

Ep(X) in Fp[[X]]. Setting F (Xp) =
∑∞

n=0 cnpX
np we have

T (X) · S(X) ·
∞∑

n=0

cnpX
np = T (X) ·

∞∑

n=0

anXn.

Restricting to powers of X with exponent a multiple of p in each side we
obtain

Xp ·
∞∑

n=0

cnpX
np = T (X) ·

∞∑

n=0

anpX
np,

which is equivalent to Eq. (3). �

Remark 7. Although Theorem 1 does not extend to p = 2 as stated, a replace-
ment for Eq. (3) is easily found directly. Indeed, L

(α)
1 (X) = 1 + α + X and

the recursive formula Eq. (6) implies a2n = a2n+1 +
∑∞

i=1 a2n+1−2i for every
integer n, where an = 0 for n < 0. Hence,

E2(X) =
∞∑

n=0

a2nX2n +
∞∑

n=0

a2n+1X
2n+1

= (1 + X)
∞∑

n=0

a2n+1X
2n +

∞∑

n=0

( ∞∑

i=1

a2n+1−2i

)

X2n

= (1 + X +
∞∑

i=1

X2i)
∞∑

n=0

a2n+1X
2n = S(X)

∞∑

n=0

a2n+1X
2n.

Thus, when p = 2 Eq. (10) holds with F (X2) =
∑∞

n=0 a2n+1X
2n.

Theorem 1 immediately implies Proposition 2.

Proof of Proposition2. Our goal can be restated as

G(Xp)G(−Xp)T (X) = Xp.
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Now G(Xp)G(−Xp) = S(X)S(−X) = 1 − T (X)p−1, as we deduced from
Lemma 6 at the beginning of the proof of Theorem 1. The conclusion follows
because G(Xp) =

∑∞
r=0(−1)rarpX

rp according to Theorem 1. �

Deducing Proposition 3 from Proposition 2 requires the technique of series
multisection.

Proof of Proposition 3. In terms of ep(X) =
∑

p|k Xk/k!, our goal becomes
the congruence

ep(X) ep(−X)
∞∑

i=1

Xpi ≡ Xp (mod p)

from the equation

G(Xp)G(−Xp)T (X) = Xp

in Fp[[X]]. We have ep(X) = (1/p)
∑

ωp=1 exp(ωX), where the sum is over all
complex pth roots of unity ω.

Because of the equation

AH(X) =
∞∏

i=0

exp
(
Xpi

/pi
)

= exp(X)AH(Xp)1/p,

our series G(−Xp) equals the reduction modulo p of ep(X)AH(Xp)1/p. Con-
sequently, for p odd, the product G(Xp)G(−Xp) equals the reduction modulo
p of

ep(X)AH(Xp)1/p · ep(−X)AH(−Xp)1/p,

which simplifies to ep(X) ep(−X). Note that ep(X)AH(Xp)1/p belongs to
Zp[[X]] because AH(X) does. Hence so does ep(X) ep(−X). �

Denote by yn = y(y + 1) · · · (y + n − 1) the rising factorial. The (unsigned)
Stirling number of the first kind

[
n
i

]
, for 0 ≤ i ≤ n, may be defined by the

polynomial identity yn =
∑n

i=0

[
n
i

]
yi in Z[y].

Proof of Proposition 4. In view of working modulo Xp2
, because S(X) is con-

gruent with L
(−Xp)
p−1 (X), we expand the latter as

L
(−Xp)
p−1 (X) =

p−1∑

k=0

(
Xp − (k + 1)

p − 1 − k

)
Xk

k!
=

p−1∑

k=0

(−1)k+1(Xp + 1)p−1−kXk

=
p−1∑

k=0

p−1−k∑

i=0

[
p − 1 − k

i

]

(Xp + 1)i(−1)k+1Xk
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=
p−1∑

k=0

∞∑

j=0

(−1)k+1

⎛

⎝
p−1−k∑

i=j

[
p − 1 − k

i

](
i

j

)
⎞

⎠ Xpj+k

=
p−1∑

k=0

∞∑

j=0

(−1)k+1

[
p − k

j + 1

]

Xpj+k,

where we have used the standard identity
∑n

t=m

[
n
t

](
t
m

)
=

[
n+1
m+1

]
.

Because of Eq. (10) we have L
(−Xp)
p−1 (X)F (Xp) ≡ Ep(X) (mod Xp2

), where
F (Xp) =

∑∞
r=0 crpX

rp for some cnp ∈ Fp. Comparing this with

L
(−Xp)
p−1 (X)F (Xp) ≡

p−1∑

k=0

p−1∑

r=0

r∑

j=0

(−1)k+1

[
p − k

j + 1

]

c(r−j)pX
rp+k (mod Xp2

)

completes the proof. Note that the equation in the statement implicitly in-
cludes a definition of the coefficients cjp when k = 0. �
Remark 8. The coefficients un ∈ Q of the Artin-Hasse series may be computed
recursively from Eq. (6). When n is not a multiple of p, the recursive equa-
tion may be read modulo p, and hence applied directly to the coefficients an.
Writing n = rp + k, with 0 ≤ k < p, a recursive application of Eq. (6) shows
that arp+k may eventually be computed from the coefficients aip for i < r.
Proposition 4 provides an explicit form for the final result of that process.
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