This paper proposes a method to compute a regional Economic Sentiment Index (ESI) using Google Trends (GT) data. The ESI is a leading indicator of macroeconomic magnitudes, and GT offers a high-frequency and real-time measure of information demand. The proposed method consists of retrieving the search volumes for terms potentially correlated with the ESI, selecting those highly correlated, conducting a principal component analysis (PCA), and estimating a linear regression model. The method was applied to the ESI in Spain, and the results showed that it is possible to estimate the ESI at a regional level using the PCA factor loadings of the national data.

Domenech, J., Marletta, A. (2023). Increasing the Geographical Granularity of Economic Indicators with Google Trends [Aumentare la Granularita Geografica degli Indicatori `Economici con Google Trends]. In A. Bucci, A. Cartone, A. Evangelista, A. Marletta (a cura di), Book of Short papers 11th International Conference IES 2023 Statistical Methods for Evaluation and Quality: Techniques, Technologies and Trends (T3) (pp. 147-152). IlViandante [10.60984/978-88-94593-36-5-IES2023].

Increasing the Geographical Granularity of Economic Indicators with Google Trends [Aumentare la Granularita Geografica degli Indicatori `Economici con Google Trends]

Marletta, A
2023

Abstract

This paper proposes a method to compute a regional Economic Sentiment Index (ESI) using Google Trends (GT) data. The ESI is a leading indicator of macroeconomic magnitudes, and GT offers a high-frequency and real-time measure of information demand. The proposed method consists of retrieving the search volumes for terms potentially correlated with the ESI, selecting those highly correlated, conducting a principal component analysis (PCA), and estimating a linear regression model. The method was applied to the ESI in Spain, and the results showed that it is possible to estimate the ESI at a regional level using the PCA factor loadings of the national data.
Capitolo o saggio
Economic sentiment, Google Trends, Non-traditional data sources
English
Book of Short papers 11th International Conference IES 2023 Statistical Methods for Evaluation and Quality: Techniques, Technologies and Trends (T3)
Bucci, A; Cartone, A; Evangelista, A; Marletta, A
2023
9791280333698
IlViandante
147
152
Domenech, J., Marletta, A. (2023). Increasing the Geographical Granularity of Economic Indicators with Google Trends [Aumentare la Granularita Geografica degli Indicatori `Economici con Google Trends]. In A. Bucci, A. Cartone, A. Evangelista, A. Marletta (a cura di), Book of Short papers 11th International Conference IES 2023 Statistical Methods for Evaluation and Quality: Techniques, Technologies and Trends (T3) (pp. 147-152). IlViandante [10.60984/978-88-94593-36-5-IES2023].
reserved
File in questo prodotto:
File Dimensione Formato  
Domenech-2023-Book of Short papers IES 2023-VoR.pdf

Solo gestori archivio

Descrizione: Contributo in libro
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 142.54 kB
Formato Adobe PDF
142.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/439218
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact