This paper proposes a method to compute a regional Economic Sentiment Index (ESI) using Google Trends (GT) data. The ESI is a leading indicator of macroeconomic magnitudes, and GT offers a high-frequency and real-time measure of information demand. The proposed method consists of retrieving the search volumes for terms potentially correlated with the ESI, selecting those highly correlated, conducting a principal component analysis (PCA), and estimating a linear regression model. The method was applied to the ESI in Spain, and the results showed that it is possible to estimate the ESI at a regional level using the PCA factor loadings of the national data.
Domenech, J., Marletta, A. (2023). Increasing the Geographical Granularity of Economic Indicators with Google Trends [Aumentare la Granularita Geografica degli Indicatori `Economici con Google Trends]. In A. Bucci, A. Cartone, A. Evangelista, A. Marletta (a cura di), Book of Short papers 11th International Conference IES 2023 Statistical Methods for Evaluation and Quality: Techniques, Technologies and Trends (T3) (pp. 147-152). IlViandante [10.60984/978-88-94593-36-5-IES2023].
Increasing the Geographical Granularity of Economic Indicators with Google Trends [Aumentare la Granularita Geografica degli Indicatori `Economici con Google Trends]
Marletta, A
2023
Abstract
This paper proposes a method to compute a regional Economic Sentiment Index (ESI) using Google Trends (GT) data. The ESI is a leading indicator of macroeconomic magnitudes, and GT offers a high-frequency and real-time measure of information demand. The proposed method consists of retrieving the search volumes for terms potentially correlated with the ESI, selecting those highly correlated, conducting a principal component analysis (PCA), and estimating a linear regression model. The method was applied to the ESI in Spain, and the results showed that it is possible to estimate the ESI at a regional level using the PCA factor loadings of the national data.File | Dimensione | Formato | |
---|---|---|---|
Domenech-2023-Book of Short papers IES 2023-VoR.pdf
Solo gestori archivio
Descrizione: Contributo in libro
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
142.54 kB
Formato
Adobe PDF
|
142.54 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.