The comparison of the theoretical and experimental determinations of the anomalous magnetic moment of the muon (g-2)μ constitutes one of the strongest tests of the Standard Model at low energies. We compute the leading hadronic contribution to (g-2)μ using lattice QCD simulations employing Wilson quarks. Gauge field ensembles at four different lattice spacings and several values of the pion mass down to its physical value are used. We apply the O(a) improvement program with two discretizations of the vector current to better constrain the approach to the continuum limit. The electromagnetic current correlators are computed in the time-momentum representation. In addition, we perform auxiliary calculations of the pion form factor at timelike momenta in order to better constrain the tail of the isovector correlator and to correct its dominant finite-size effect. For the numerically dominant light-quark contribution, we rescale the lepton mass by the pion decay constant computed on each lattice ensemble. We perform a combined chiral and continuum extrapolation to the physical point, and our final result is aμhvp=(720.0±12.4stat±9.9syst)×10-10. It contains the contributions of quark-disconnected diagrams, and the systematic error has been enlarged to account for the missing isospin-breaking effects.

Gerardin, A., Cè, M., von Hippel, G., Horz, B., Meyer, H., Mohler, D., et al. (2019). Leading hadronic contribution to (g-2)(mu) from lattice QCD with N-f=2+1 flavors of O(a) improved Wilson quarks. PHYSICAL REVIEW D, 100(1) [10.1103/PhysRevD.100.014510].

Leading hadronic contribution to (g-2)(mu) from lattice QCD with N-f=2+1 flavors of O(a) improved Wilson quarks

Cè Marco;
2019

Abstract

The comparison of the theoretical and experimental determinations of the anomalous magnetic moment of the muon (g-2)μ constitutes one of the strongest tests of the Standard Model at low energies. We compute the leading hadronic contribution to (g-2)μ using lattice QCD simulations employing Wilson quarks. Gauge field ensembles at four different lattice spacings and several values of the pion mass down to its physical value are used. We apply the O(a) improvement program with two discretizations of the vector current to better constrain the approach to the continuum limit. The electromagnetic current correlators are computed in the time-momentum representation. In addition, we perform auxiliary calculations of the pion form factor at timelike momenta in order to better constrain the tail of the isovector correlator and to correct its dominant finite-size effect. For the numerically dominant light-quark contribution, we rescale the lepton mass by the pion decay constant computed on each lattice ensemble. We perform a combined chiral and continuum extrapolation to the physical point, and our final result is aμhvp=(720.0±12.4stat±9.9syst)×10-10. It contains the contributions of quark-disconnected diagrams, and the systematic error has been enlarged to account for the missing isospin-breaking effects.
Articolo in rivista - Articolo scientifico
Lattice QCD; Muons; Magnetic Moment
English
2019
100
1
014510
open
Gerardin, A., Cè, M., von Hippel, G., Horz, B., Meyer, H., Mohler, D., et al. (2019). Leading hadronic contribution to (g-2)(mu) from lattice QCD with N-f=2+1 flavors of O(a) improved Wilson quarks. PHYSICAL REVIEW D, 100(1) [10.1103/PhysRevD.100.014510].
File in questo prodotto:
File Dimensione Formato  
Gérardin-2019-PhysRevD-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/422778
Citazioni
  • Scopus 120
  • ???jsp.display-item.citation.isi??? 94
Social impact