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The comparison of the theoretical and experimental determinations of the anomalous magnetic moment
of the muon ðg − 2Þμ constitutes one of the strongest tests of the Standard Model at low energies. We
compute the leading hadronic contribution to ðg − 2Þμ using lattice QCD simulations employing
Wilson quarks. Gauge field ensembles at four different lattice spacings and several values of the pion
mass down to its physical value are used. We apply the OðaÞ improvement program with two
discretizations of the vector current to better constrain the approach to the continuum limit. The
electromagnetic current correlators are computed in the time-momentum representation. In addition,
we perform auxiliary calculations of the pion form factor at timelike momenta in order to better constrain
the tail of the isovector correlator and to correct its dominant finite-size effect. For the numerically
dominant light-quark contribution, we rescale the lepton mass by the pion decay constant computed on
each lattice ensemble. We perform a combined chiral and continuum extrapolation to the physical point,

and our final result is ahvpμ ¼ ð720.0� 12:4stat � 9.9systÞ × 10−10. It contains the contributions of quark-
disconnected diagrams, and the systematic error has been enlarged to account for the missing isospin-
breaking effects.
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I. INTRODUCTION

Electrons and muons carry a magnetic moment, which is
correctly predicted by Dirac’s original theory of the
electron to within a per mille of precision. The proportion-
ality factor between the spin and the magnetic moment of
the lepton l is parametrized by the gyromagnetic ratio g. In
Dirac’s theory, g ¼ 2, and one characterizes the deviation
of g from this reference value by al ¼ ðg − 2Þl=2. Testing
the ability of quantum electrodynamics (QED) to correctly
predict this precision observable has played a crucial
role in the development of quantum field theory in general.
Presently, the achieved experimental precision of 540 ppb
on the measurement of the anomalous magnetic moment of
the muon [1], aμ, requires the effects of all three inter-
actions of the Standard Model (SM) of particle physics to
be included in the theory prediction. In fact, a tension of

about 3.5 standard deviations exists between the SM
prediction and the experimental measurement. For reviews
on the subject, we refer the reader to [2–4].
Presently, the E989 experiment at Fermilab is perform-

ing a new direct measurement of aμ [5], and a further
experiment using a different experimental technique is
planned at J-PARC [6]. The final goal of these experiments
is to reduce the uncertainty on aμ by a factor of 4. A
reduction of the theory error is thus of paramount impor-
tance, as the first results from the Fermilab experiment are
expected soon. These will likely reach the same precision
as the current world average.
On the theory side, the precision of the SM prediction for

aμ is completely dominated by hadronic uncertainties. The
leading hadronic contribution enters at second order in the
fine-structure constant α via the vacuum polarization and
must be determined at the few-per-mille level in order to
match the upcoming precision of the direct measurements
of aμ. In this paper we undertake a first-principles lattice
QCD calculation of this hadronic contribution (see [7] for a
recent review of previous lattice results). A further hadronic
effect, the light-by-light scattering contribution which
enters at third order in the fine-structure constant, currently
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contributes at a comparable level to the theory uncertainty
budget and is being addressed by both dispersive and lattice
methods (see [8–10] and references therein).
Our calculation of the hadronic vacuum polarization to

the anomalous magnetic moment of the muon, ahvpμ , fully
includes the effects of the up, down and strange quarks,
while the charm quark (whose contribution to ahvpμ is small)
is treated only at the valence level. We use ensembles of
SU(3) gauge field configurations generated with an OðaÞ
improved Wilson quark action as part of the Coordinated
Lattice Simulations (CLS) initiative [11,12]. In particular,
the generation of a physical-mass ensemble [13] (labeled
E250) was largely motivated by the goal of improving the
lattice determination of ahvpμ . We use four different lattice
spacings to control the continuum limit, and the ðu; d; sÞ
quark masses are varied at constant average quark mass in
order to perform a chiral interpolation to the physical values
of the quark masses [11]. Our calculation is performed at
equal up and down quark masses, and no QED effects are
included; however, in the future both of these isospin-
breaking effects will be taken into account as correc-
tions [14,15].
Lattice QCD, which is formulated in Euclidean space, is

well suited for computing ahvpμ , since the latter only involves
the two-point function of the hadronic component of the
electromagnetic current at spacelike momenta [16]. In this
work we employ the representation of ahvpμ as a Euclidean-
time integral over the two-point function in the time-
momentum representation (TMR) [17], i.e., projected to
vanishing spatial momentum. This representation does not
require a parametrization of the vacuum polarization func-
tion and has a clear spectral interpretation in terms of vector
hadronic states in the center-of-mass frame. The main
difficulty in obtaining ahvpμ with good statistical precision
is that it probes the TMR correlator at Euclidean times well
beyond 2 fm, where its relative precision deteriorates
rapidly. Therefore, a dedicated treatment of the tail of the
correlator which does not compromise the first-principles
nature of the calculation is needed. Here the spectral
representation of the correlator plays a central role.
An important source of systematic uncertainty is the

correction to ahvpμ due to the use of a finite spatial torus. On
our lattice ensembles, this finite-size effect (FSE) mostly
stems from the tail of the isovector component of the TMR
correlator. Thanks to precise relations [18,19] between the
properties of the discrete quantum states on the torus and
the pion form factor at timelike momenta, we are able to
correct for the dominant part of the FSE. Finally, the quark-
disconnected diagrams, while making only a few-percent
contribution to ahvpμ , require a dedicated set of calculations
for their evaluation, which demand a large computing-time
investment.
The rest of this paper is organized as follows. Section II

describes the methodology followed in our calculation,

including the renormalization and improvement of the
TMR correlator and the treatment of the charm contribu-
tion. Section III presents our lattice data and the extraction
of the observable ahvpμ on each individual lattice ensemble.
In Sec. IV, the lattice-spacing and quark-mass dependence
of these intermediate results is fitted in order to arrive at our
final result. Finally, we compare the latter with phenom-
enological as well as other recent lattice determinations
in Sec. V.

II. METHODOLOGY

A. Time-momentum correlators

We start by providing all relevant relations in the
continuum and infinite-volume Euclidean theory. In the
TMR, the leading-order hadronic vacuum polarization
contribution to ðg − 2Þμ is given by the convolution integral

ahvpμ ¼
�
α

π

�
2
Z

∞

0

dtK̃ðtÞGðtÞ; ð1Þ

where an analytic expression for the QED kernel function
K̃ðtÞ is given in the Appendix B of Ref. [20], and

GðtÞδkl ¼ −
Z

d3xhJkðt; xÞJlð0Þi ð2Þ

is the spatially summed QCD two-point function of the
electromagnetic current J ¼ 2

3
ūγu − 1

3
d̄γd − 1

3
s̄γsþ 2

3
c̄γc.

In isospin-symmetric QCD, we can write

GðtÞ ¼ 5

9
GlðtÞ þ

1

9
GsðtÞ þ

4

9
GcðtÞ þ GdiscðtÞ; ð3Þ

where GfðtÞ denotes a quark-connected contribution asso-
ciated with flavor f and GdiscðtÞ is the quark-disconnected
contribution. An alternative decomposition based on the
isospin quantum number I yields

GðtÞ ¼ GI¼1ðtÞ þ GI¼0ðtÞ; GI¼1ðtÞ ¼ 1

2
GlðtÞ: ð4Þ

Physically, the latter decomposition is more transparent.
In particular, at light pion masses the dominant
finite-size effects, as well as a logarithmic singularity as
mπ → 0, only concern the isovector contribution, ahvp;I¼1

μ .
Computationally however, the disconnected contributions
are obtained very differently from the connected ones: they
are costly and amount only to a few percent of the total.
Therefore, in our numerical analysis there is an interesting
interplay between the two choices of bases to compute ahvpμ .
With mμ the muon mass, the kernel behaves as K̃ðtÞ ∼

π2

9
m2

μt4 for t ≪ m−1
μ and as K̃ðtÞ ∼ 2π2t2 for t ≫ m−1

μ . Since
the lattice data for the correlator GðtÞ is in lattice units,
the muon mass must be known in those units, amμ.
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The knowledge of the lattice spacing in GeV−1 thus plays a
crucial role in a precision determination of ahvpμ [20,21].
There are then two ways to proceed. In lattice QCD, where
often the physical quark masses are reached only after an
extrapolation or interpolation, ahvpμ can either be calculated
using the fixed, physical value of mμ ¼ 105.66 MeV; or
the muon mass can be rescaled by a quantity with
dimension of mass known experimentally [22]. In our
calculation, we have explored both paths. In our final
results, we adopt the “rescaling strategy” for the connected
light contribution. As a rescaling quantity, we choose the
pion decay constant fπ , so that we set1

amμ ¼
�
mμ

fπ

�
pheno

· ðafπÞlattice ¼ 1.144 · ðafπÞlattice ð5Þ

on every lattice ensemble. Our choice is motivated, first, by
fπ being determined precisely and reliably, both in phe-
nomenology and on the lattice, and secondly, since fπ
increases with the pion mass, this choice has the effect of
making the mπ dependence of ahvpμ weaker. To intuitively
understand the effect of the rescaling, it is instructive to
consider the calculation of the anomalous magnetic
moment of the electron; in this case, obtaining ahvpe ¼
ð4α2=3Þm2

eΠ1 requires computing the time moment
Π1 ≡ ð1=12Þ R∞

0 dt t4GðtÞ. Thus the rescaling simply
amounts to computing the dimensionless quantity f2πΠ1,

and converting the result into ahvpe by using the phenom-
enological value of ðm2

e=f2πÞ.

B. Simulation parameters

Our work is based on a subset of the CLS ensembles with
Nf ¼ 2þ 1 dynamical quarks. They are generated [11]
using the open-QCD suite2 [23] and are based on the OðaÞ
improved Wilson-Clover action for fermions, with the
parameter csw determined nonperturbatively in Ref. [24],
and the tree-level Oða2Þ improved Lüscher-Weisz gauge
action. The ensembles used in this analysis were generated
at a constant value of the average bare quark mass such that
the improved bare coupling g̃0 is kept constant along the
chiral trajectory [11]. In particular, five of the ensembles are
at the SU(3)-symmetric point, mu ¼ md ¼ ms. The param-
eters of the simulations are summarized in Table I.
Results are obtained at four values of the lattice spacing

in the range a ¼ 0.050–0.086 fm. The scale setting was
performed in Ref. [25] using a linear combination of the
pion and kaon decay constants with a precision of 1%.
The pion masses used in our determination of ahvpμ lie in the
range mπ ≈ 130–420 MeV. All the ensembles included in
the final analysis satisfy mπL > 4. Furthermore, at two
values of the pion mass (mπ ¼ 280 and 420 MeV), two
ensembles with the same bare lattice parameters but
different volumes are used to study finite-size effects.
These ensembles with smaller volumes are not included

TABLE I. Parameters of the simulations: β ¼ 6=g20 is the bare gauge coupling, κl;s are the hopping parameters of the light and strange
quarks, a is the lattice spacing and ðL; TÞ are the lattice dimensions in space and time. Ensembles E250 and B450 have periodic
boundary conditions in time, all others have open boundary conditions. The last column contains the number of gauge configurations
used. Ensembles with an asterisk are not included in the final analysis but are used to control finite-size effects.

ID β L3 × T aðfmÞ κl κs mπðMeVÞ mKðMeVÞ mπL LðfmÞ Conf.

H101 3.40 323 × 96 0.08636 0.136760 0.136760 416(5) 416(5) 5.8 2.8 2000
H102 323 × 96 0.136865 0.13654934 354(5) 438(4) 5.0 2.8 1900
H105* 323 × 96 0.136970 0.13634079 284(4) 460(4) 3.9 2.8 2800
N101 483 × 128 0.136970 0.13634079 282(4) 460(4) 5.9 4.1 1500
C101 483 × 96 0.137030 0.13622204 221(2) 472(8) 4.7 4.1 2600

B450 3.46 323 × 64 0.07634 0.136890 0.136890 416(4) 416(4) 5.2 2.4 1500
S400 323 × 128 0.136984 0.13670239 351(4) 438(5) 4.3 2.4 2800
N401 483 × 128 0.137062 0.13654808 287(4) 462(5) 5.3 3.7 1100

H200* 3.55 323 × 96 0.06426 0.137000 0.137000 419(5) 419(5) 4.4 2.1 2000
N202 483 × 128 0.137000 0.137000 410(5) 410(5) 6.4 3.1 900
N203 483 × 128 0.137080 0.13684028 345(4) 441(5) 5.4 3.1 1500
N200 483 × 128 0.137140 0.13672086 282(3) 463(5) 4.4 3.1 1700
D200 643 × 128 0.137200 0.13660175 200(2) 480(5) 4.2 4.1 2000
E250 963 × 192 0.137233 0.13653663 130(1) 488(5) 4.1 6.2 500

N300 3.70 483 × 128 0.04981 0.137000 0.137000 421(4) 421(4) 5.1 2.4 1700
N302 483 × 128 0.137064 0.13687218 346(4) 458(5) 4.2 2.4 2200
J303 643 × 192 0.137123 0.13675466 257(3) 476(5) 4.2 3.2 600

1We use the normalization convention fπ ≃ 92 MeV. 2See http://luscher.web.cern.ch/luscher/openQCD/.
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in the final analysis and are marked by an asterisk in
Table I.
All ensembles have periodic boundary conditions (BCs)

in space. In the time direction, ensembles E250 and B450
have periodic BCs, while all others have open temporal
BCs. The choice of open boundary conditions was made in
order to address the issue of long autocorrelation times
associated with the topological charge at small lattice
spacing [26]. Our use of ensembles with open BCs
constitutes part of our motivation for employing correlators
in the time-momentum representation. The boundary cou-
ples to a tower of states with vacuum quantum numbers.
Therefore, in order to extract vacuum correlators, sources
and sinks of correlation functions should be placed at a
sufficient Euclidean-time separation away from the boun-
daries.3 On the ensembles with periodic temporal BCs on
the other hand, we exploit the translation invariance in time
to increase statistics.
For all ensembles, except E250, the TMR correlation

functions are computed using point sources, randomly
distributed in space and in the center of the lattice in the
time direction. As described in the next subsection, we use
the local vector current at the source and both the local and
the conserved vector currents at the sink. For the ensemble
E250, propagators are estimated using stochastic sources,
with noise partitioning in spin, color and time [27,28]. Each
source has support on a single, randomly chosen time slice.
To improve statistics, the TMR correlator in Eq. (2) is
averaged over the three spatial directions. Errors are
estimated throughout the calculation using the jackknife
procedure with blocking in order to take into account
autocorrelation effects.
In addition to the direct calculation of the TMR corre-

lators, the auxiliary calculation of the ππ I ¼ l ¼ 1
scattering phase plays an important role in our determi-
nation of ahvpμ . In Ref. [29], it has been determined on
ensembles C101, N401, N200, D200 and J303. On all these
ensembles except C101, the pion form factor at timelike
kinematics has also been determined in [29]. As compared
to the latter reference, the number of gauge configurations
used for our spectroscopy calculation on ensemble D200
has roughly been doubled. Additionally, we have per-
formed a spectroscopy calculation on ensemble N203 with
a statistics of about 200 gauge configurations.
We have computed the quark-disconnected contribution

to ahvpμ on ensembles N401, N203, N200, D200 and N302.
This selection provides uswith a handle on the discretization
effects atmπ ≃ 345 MeVandmπ ≃ 285 MeV, and allows us
to investigate the chiral behavior of the disconnected
contribution via the fixed lattice-spacing sequence of
ensembles N203, N200, D200. The disconnected quark
loops are computed using four-dimensional, hierarchically

probed noise sources [30]with 512Hadamard vectors.More
technical details on our implementation can be found in [31].

C. Lattice correlators, renormalization
and OðaÞ improvement

There are two commonly used discretizations of the
vector current in Wilson lattice QCD, the local and the
conserved current. For a single quark flavor q, their
expressions are

VL
μ ðxÞ ¼ q̄ðxÞγμqðxÞ; ð6Þ

VC
μ ðxÞ ¼

1

2
ðq̄ðxþ aμ̂Þð1þ γμÞU†

μðxÞqðxÞ
− q̄ðxÞð1 − γμÞUμðxÞqðxþ aμ̂ÞÞ: ð7Þ

In our calculation of correlation functions, we always place
the local vector current at the origin in Eq. (2); at point x,
we use either the local or the conserved vector current. This
provides us with two discretizations of the TMR correlator
which share the same continuum limit. The conserved
vector current has the advantage of not undergoing any
renormalization or flavor mixing.
As for the flavor structure, we note that the electromag-

netic current can be decomposed in the SU(3) Gell-Mann
basis as Jμ ¼ V3

μ þ 1ffiffi
3

p V8
μ, where Va

μ ¼ ψ̄γμ
λa

2
ψ , with

ψ̄ ¼ ðū; d̄; s̄Þ. Therefore, the local current only requires
the nonsinglet renormalization factor ZV. The charm-quark
contribution is treated separately, at the “partially
quenched” level; our treatment of this (small) contribution
is described in the next subsection.
We have implemented the Symanzik OðaÞ improvement

program as described in Ref. [32]. Since our lattice action is
OðaÞ improved, we now describe the improvement and
renormalization of the vector currents in order to consis-
tently carry out the Symanzik program. The first step is to
add to the local vector current an additive OðaÞ counterterm
with a tuned coefficient cLV (cCV for the conserved current)
compensating chiral-symmetry violating effects in on-shell
correlation functions,

ðVL;a
μ ÞIðxÞ ¼ VL;a

μ ðxÞ þ acLV∂̃νΣa
μνðxÞ; ð8Þ

where ∂̃ν denotes the symmetric lattice derivative4 and
Σa
μνðxÞ ¼ − 1

2
ψ̄ðxÞ½γμ; γν� λa2 ψðxÞ. The second step, which is

only required for the local current, is to take into account
the following renormalization pattern,

V̂L;3
μ ¼ Z3ðVL;3

μ ÞI; V̂L;8
μ ¼ Z8ðVL;8

μ ÞI þ Z80V
L;0
μ : ð9Þ

We denote by VL;0
μ ¼ 1

2
ψ̄γμψ the flavor-singlet current,

and the mass-dependent renormalization factors are given
by [33,34]

3In a large volume, the energy of the first excited state
emanating from the boundary is expected to be 2mπ .

4For the charm, we actually make a different choice described
at the end of this subsection.
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Z3 ¼ ZVðg̃0Þð1þ 3b̄Vamav
q þ bVamq;lÞ; ð10Þ

Z8 ¼ZVðg̃0Þ
�
1þ3b̄Vamav

q þbV
3
aðmq;lþ2mq;sÞ

�
; ð11Þ

Z80 ¼ ZVðg̃0Þ
�
1

3
bV þ fV

�
2ffiffiffi
3

p aðmq;l −mq;sÞ: ð12Þ

Here ðmq;l; mq;l; mq;sÞ are the bare subtracted quark masses,
mav

q is their average and g̃0 is the OðaÞ improved bare
coupling.We note that the mixing coefficient Z80 is of order
a and vanishes in the SU(3)-flavor-symmetric limit. We use
the values of the renormalization factor ZV, the critical
hopping parameter κcrit, as well as the improvement
coefficients bV, b̄V, cLV and cCV, which are functions of
the bare coupling g0, determined recently in [34]. There it
was shown that the obtained values of ZV differ by percent-
level Oða2Þ effects from an independent high-precision
determination [35]. The improvement coefficient fVðg0Þ,
which is of order g60 and only affects the isoscalar
contribution to ahvpμ , is neglected. We estimate that the
systematic error incurred by this approximation is at
present negligible. Strictly speaking, the connected strange
correlator taken in isolation requires an independent,
partially quenched improvement coefficient in the mass-
dependent part of the renormalization factor in order to be
consistent with OðaÞ improvement; however, we have
neglected this effect.
The desired quantity ahvpμ is obtained using Eq. (1),

where the integral is replaced by a sum over time slices.
Note that in the improvement terms entering the TMR
correlator, only the temporal derivative of the tensor current
contributes. For the connected light and strange contribu-
tions, we have compared the use of the symmetric lattice
derivative in Eq. (8) with an alternative implementation
where an integration by parts is used in order to apply the
temporal derivative on the QED kernel K̃ðtÞ, and found
the difference to be negligible; therefore, we have used the
symmetric lattice derivative throughout. For the charm
contribution, however, we have found it advantageous to
use the discrete derivative on the “away” side, i.e., in such a
way that the vector-tensor correlator is not evaluated at a
shorter time separation than the vector-vector correlator
itself [36]. Finally, we remark that we do not include the
Oða2Þ term consisting of the correlation of two tensor
currents.

D. Treatment of the charm contribution

We treat the charm quark at the partially quenched level:
it does not appear in the simulated action, nor do we include
the contribution of quark-disconnected diagrams contain-
ing charm loops. Given that the charm contribution is about
2% of the total, these approximations appear fully sufficient
at our present level of precision.

The first task is to tune the value of the bare charm-quark
mass on each lattice ensemble. The mass of the ground state
pseudoscalar cs̄meson is computed for several values of κc,
using stochastic sources with color, spin and time dilution.
The value of κc used in the calculation of ahvpμ is then
obtained from a linear interpolation of the squared mass of
the lightest cs̄ meson in 1=κc to the point where this mass
equals the experimental value of the Ds meson mass.
We perform a dedicated determination of the multipli-

cative, mass-dependent renormalization factor Zc
V for the

local charm current on every lattice ensemble. The deter-
mination is based on requiring the charm quantum number
of the pseudoscalar cs̄ meson to be exactly unity. It follows
the method used in [34] for the light isovector current, and a
similar method was already used in [20]. As for the
improvement coefficients cLV and cCV, we use the same
values as for the u, d, s quark flavors. The results for κc and
Zc
V are given in Table IV, while the individual pseudoscalar

cs̄ meson masses used for the determination of κc are
collected for reference in Table IX of Appendix B.

E. Infrared aspects of ahvpμ : Correlator tails,
finite-size effects and the chiral limit

There are a number of aspects of the calculation of ahvpμ

related to the long-distance physics of vector correlators
that are best discussed together. Here we summarize our
understanding of these issues before applying it to the
treatment of lattice data.
In preparation, recall that the TMR correlator can be

written, via the spectral decomposition in finite volume, as
the sum of the (positive) contributions of individual vector
states. In particular, only isovector vector states contribute
in the correlator

GI¼1ðtÞ ¼
X∞
n¼0

Z2
n

2En
e−Ent; ð13Þ

where the amplitudes Zn are real, and the discrete, ordered
energies En are real and positive. A similar expression
holds for the isoscalar correlator GI¼0ðtÞ.

1. Controlling the longtime tail of the TMR correlators

The contribution of the tail of the correlator to ahvpμ is
enhanced by the QED kernel. Yet the correlator is affected
by a growing statistical error, as well as a large relative
finite-size effect. We discuss these two issues in turn.
In order to handle the tail of the correlators, two types of

treatment have been proposed. Both are based on the fact
that at large Euclidean times, a few terms in the sum of
Eq. (13) saturate the correlator to a high degree of precision,
which was one of the motivations for introducing the time-
momentum representation [17]. In the first type of treatment,
one explicitly constructs an extension of the correlator
for t > tc, motivated by the spectral representation (13).
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The simplest incarnation of this method, partly used in our
earlier calculation [20], is to keep only the lightest of those
states and thus to perform a one-exponential fit to the
correlator for Euclidean times around tc. When a dedicated
spectroscopy calculation is available, several energy levels
En aswell as the overlapsZn can be used, so that the summed
contributions of these states already saturate the TMR
correlator at smaller Euclidean times.
A second type of treatment consists of bounding the

Euclidean correlator from above and below [37–39],
exploiting the positivity of the prefactors Z2

n=ð2EnÞ,

0≤GðtcÞe−EeffðtcÞðt−tcÞ≤GðtÞ≤GðtcÞe−ENðt−tcÞ; t≥ tc;

ð14Þ

where N ¼ 0 in the simplest variant, and EeffðtÞ≡
− d

dt logGðtÞ is the “effective mass” of the correlator. As
a refined variant of this method, a dedicated spectroscopy
calculation delivering the energies and matrix elements of
the N lowest-lying states allows one to improve the control
over the tail by applying the bound, Eq. (14), to the
subtracted correlator

G̃ðtÞ ¼ GðtÞ −
XN−1

n¼0

Z2
n

2En
e−Ent: ð15Þ

A challenge one eventually faces in exploiting lattice
spectroscopy information is that the number of states
required to saturate the TMR correlator at a given tc
increases with decreasing pion masses and (roughly pro-
portionally) with the volume. However, for the ensembles
used in this work, the number of states needed is at most 4.

2. Finite-size effects on ahvpμ in the
time-momentum representation

We now come to the closely related issue of the finite-
size effect on the observable ahvpμ calculated in the time-
momentum representation. At asymptotically large vol-
umes, the finite-size effect is of order e−mπL and can be
computed in chiral perturbation theory [40–42]. At low
pion masses, the leading finite-size effect is expected to
come from the ππ channel, and thus affects the isovector
channel only,GI¼1ðtÞ. Working in the flavor decomposition
of Eq. (3), we take this observation into account by
applying 10=9 of the isovector finite-size correction to
the connected light-quark contribution, and −1=9 of the
same correction to the disconnected contribution.
Looking at the finite-size effect on the correlator as a

function of Euclidean time, it has been pointed out [17,41]
that for a given spatial box size L, the tail of the correlator is
affected by an unsuppressed finite-size effect. One may
define a time ti beyond which the finite-size effect becomes
sizable. While ti grows with L, we find that the overall

finite-size effect on ahvpμ is dominated by the tail in our
present calculation.
For mπL ¼ 4 to 5, the tail of the finite-volume isovector

correlator is accurately described by the contribution of a
handful of energy eigenstates; this point will be discussed
in Sec. III B. On the other hand, the tail of the infinite-
volume correlator can be obtained from the timelike pion
factor. Thus knowledge of this form factor allows one to
correct the tail of the isovector correlator [17]. In this work,
we apply the same finite-size correction method as in our
previous calculation [20], parametrizing the pion form
factor with the Gounaris-Sakurai (GS) model [43].
While too simplistic a model for a study of the form factor
for its own sake [29,44], we expect it to be sufficient for the
purpose of reducing the residual finite-size effects to a level
that is small compared to our current statistical precision.
We emphasize that we only use the GS parametrization of
the pion form factor for the finite-size correction, and not
for the treatment of the tail of the correlators.

3. The chiral dependence of ahvpμ

The TMR correlator for noninteracting pions was
given in Ref. [41]. For massless pions, it is given by
GðtÞ ¼ 1=ð24π2jtj3Þ; combined with the asymptotic form
of the QED kernel for a finite muon mass, K̃ðtÞ ∼ 2π2t2,
this contribution generates a logarithmic divergence, which
is made finite by a small but finite pion mass and then
yields

ahvpμ ∼
α2

24π2
log

m2
μ

4m2
π
; mπ → 0; mμ fixed: ð16Þ

This result and further terms in the expansion have been
derived in [45], where the systematics of the chiral
extrapolation has been studied in detail. The asymptotic
form (16) only becomes a decent approximation formπ=mμ

well below 1=10. Thus this logarithmic divergence is
largely irrelevant when describing the pion-mass depend-
ence of ahvpμ in the range 130 < mπ=MeV < 300. On the
other hand, ifmμ ≪ mπ and both are small compared to the
ρ meson mass, one finds the leading behavior

ahvpμ ∼
α2

90π2
m2

μ

4m2
π
; mμ ≪ mπ ≪ mρ: ð17Þ

It turns out that this asymptotic form is rather robust,
holding down to fairly small values of mπ=mμ. In fact,
within the framework of chiral perturbation theory at next-
to-leading order5 underlying Eqs. (16) and (17), the

5The expression for the momentum-space vector correlators at
next-to-next-to-leading order can be found in [46,47].
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combination ð1þ 4m2
π

m2
μ
Þahvpμ only varies by 2% for mπ=mμ in

the interval [1.25, 3.0] relevant to our lattice calculations.
At physical quark masses, the overall magnitude of

expression (17) is enhanced by the (squared) pion form
factor at timelike kinematics. In addition, the contribution
of the ππ states with a center-of-mass energy well below the
ρ-meson mass is numerically subdominant compared to the
resonant contribution. The ρ-meson mass depends only
mildly on the light-quark mass, and thus the steep behavior
predicted by Eq. (17) as a function of mπ is superimposed
on a larger, more slowly varying contribution. In our chiral
extrapolations, presented in Sec. IV, we use these obser-
vations to construct suitable fit Ansätze for the chiral
extrapolation.
The singular chiral behavior comes from the isovector

channel, while we expect the isoscalar channel to have a
much milder dependence on the pion mass. Working in the
basis of Eq. (3), the singular chiral behavior is split between
the connected light-quark contribution and the discon-
nected contribution. Indeed, in the limit that mμ and mπ

are much smaller than the hadronic scale, we have
ahvp;discμ ¼ − 1

9
ahvpμ , and hence, from Eq. (17),

ahvp;discμ ∼ −
α2

810π2
m2

μ

4m2
π
; mμ ≪ mπ ≪ mρ: ð18Þ

For orientation, we note that if one inserts the
physical pion mass into this expression, one obtains
ahvp;discμ ¼−10×10−10, andwe expect this value to be further
enhanced by the pion form factor. The important point is that
the singular chiral behavior present in the connected light-
quark contribution to ahvpμ must be present in the discon-
nected contribution as well, with a relative factor of −1=10.

III. RESULTS

In this section we describe the main features of the TMR
correlators obtained on the different lattice ensembles with
a view to computing ahvpμ . Particular attention is devoted to
the correlators at Euclidean times in the range [1.5, 4.0] fm.
In the rescaling of the muon mass, we use the values of afπ
values given in Table VI, corrected for finite-size effects
[48] and interpolated via a global fit in the pion mass and
the lattice spacing.

A. The quark-connected contributions

The integrand of Eq. (1) for the connected light, strange
and charm contributions is displayed in Fig. 1 for our two
ensembles with quark masses closest to their physical
values. The left (right) panel corresponds to a pion mass
of about 200 MeV (131 MeV). The light contribution is
clearly very dominant; note that the charm and strange
contributions have been scaled by a factor of 6 for better
visibility. On a given ensemble, the integrand peaks at
increasingly longer distances as one goes from the charm to
the strange to the light quarks, and the tail becomes more
extended. At the same time, the statistical precision
deteriorates. Comparing the left to the right panel, it is
clear that the light contribution becomes harder to deter-
mine with the desired precision as the physical quark
masses are approached. Nevertheless, these plots by them-
selves do not fully reflect all the known constraints on the
TMR correlator, which is well known to be given by a sum
of decaying exponentials with positive coefficients, as
discussed in Sec. II E.
Having described the state-of-the-art methods to

handle the tail of the correlation function in Sec. II E,
we now describe how we applied these methods to our data.
For the strange- and charm-quark contributions, the TMR

FIG. 1. Integrand of Eq. (1) in the time-momentum representation for the connected light, strange and charm contributions.
(Left panel) Ensemble D200 with a pion mass of 200 MeV. (Right panel) Ensemble E250 at the physical pion mass. For better visibility,
the strange and charm contributions have been scaled by a factor of 6. The displayed discretization is the local-local one for the light and
strange contributions, and the local-conserved one for the charm. The muon mass is the fπ rescaled one for the light integrand and the
physical one for the strange and charm integrands.
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correlator is determined so accurately that practically no
particular treatment of the tail is needed. We apply the
bounding method, Eq. (14) with N ¼ 0, and obtain the
results given in Table IV.
As for the connected contribution of the light quarks, our

choice for the final analysis is again the boundingmethod on
all ensembles; the only exception is the physical-pion-mass
ensemble E250, to which we return below. In applying
Eq. (14), we employ the expression containing the effective
mass as a lower bound, and use as an estimate for the lowest-
lying energy level in the channel the energy obtained by a
one-exponential fit to the tail of the TMR correlator. On
ensembleD200, onwhich the ground state lies clearly below
the ρ mass and has a relatively weak coupling to the vector
current, we use the auxiliary spectroscopy calculation to
determine its energy. We find it to be close to, but slightly
below, the value corresponding to two noninteracting pions,
Efree
0 ≡ 2½ð2π=LÞ2 þm2

π�1=2. Table VI contains our results
for the connected contributions of the light quarks.
As discussed in detail in the next subsection, the

improved statistical precision gained by exploiting spectro-
scopic information can be quite significant for light pion
masses, mπ ≲ 200 MeV. Indeed, we find that on the
physical-mass ensemble E250, on which we do not have
direct spectroscopic information, we cannot achieve a
comparable control over the statistical and systematic error
with the simplest variant of the bounding method.
Therefore, we proceed as follows. The isovector vector
energy levels computed on ensembles N203, N200
and D200 allow us to determine the scattering phase in
the I ¼ l ¼ 1 ππ channel [29] for energies up to the four-
pion threshold via the Lüscher formalism [18].6

The scattering phase is well described by the effective
range formula,

k3

E
cot δ11 ¼

4k5ρ
m2

ρΓρ

�
1 −

k2

k2ρ

�
; ð19Þ

with k≡ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 4m2

π

p
and kρ being the value of k for

E ¼ mρ. The parameters mρ and Γρ correspond to the
ρ-meson mass and width. Furthermore, it has been observed
in lattice simulations that parametrizing the width by

Γρ ¼
g2ρππ
6π

k3ρ
m2

ρ
; ð20Þ

the coupling gρππ only has a weak pion-mass dependence.
Therefore, we extrapolate the parameters ðmρ; gρππÞ deter-
mined on the ensembles N203, N200 and D200 (see
Table VIII) to obtain their values for the pion mass
corresponding to ensemble E250. Using these values, we
can predict the low-lying energy levels En on ensemble
E250 by using the Lüscher correspondence between them
and the scattering phase in reverse. In order to obtain an
extension of the TMR correlator on E250, we then fit the
squared amplitudes Z2

n, given the energy levels. Note that
this can be formulated as a linear fit.
In our final choice of parameters, we fit the TMR

correlator on E250 in the interval 26 < t=a < 37. Then
the TMR is summed from t ¼ 0 to t ¼ 28a and the
multiexponential extension is used beyond that time. The
numbers given for E250 in Table VI are the results from this
procedure.

B. Comparing different methods of extracting
ahvp;lμ on ensemble D200

On ensemble D200 at mπ ¼ 200 MeV, we have detailed
information on the scattering phase and the timelike pion
form factor; Fig. 2 illustrates the quality of the reconstruction
of the TMR correlator at long distances based on this
information.We can thus test on ensemble D200 the validity
of the procedure we applied on the physical pion-mass
ensemble E250, described in the previous subsection.
Thus on D200 we apply and compare four different

methods to handle the tail of the light-connected correlator:
(1) the bounding method without subtractions (N ¼ 0);
(2) the bounding method after subtracting the contribu-

tion of N ¼ 2 states;
(3) the extension of the correlator using the auxiliary

information on the first two energy levels En and
their amplitudes Zn;

(4) the extension of the correlator using the auxiliary
information on the first two energy levels En, but
fitting the amplitudes to the TMR correlator.

One motivation for comparing these particular methods is
that on E250, we cannot apply the second or third method,

FIG. 2. Reconstruction of the TMR correlator at long distances
using a dedicated spectroscopy analysis on ensemble D200. The
same gauge configurations are used for the spectroscopy and for
the TMR correlator calculation.

6See [49–53] for other recent calculations of the scattering
phase in the ρ channel.
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while the first methodwould result in a large statistical error.
Therefore, we apply the last method on E250, and presently
test whether it gives consistent results on ensemble D200.
Figure 3 compares the results for ahvpμ from methods (1)

and (2), as a function of the time tc at which the upper and
lower bounds start to be used instead of the TMR correlator
itself. The values are consistent with each other, however,
method (2) yields a significantly reduced statistical uncer-
tainty. This outcome is not surprising, since important
auxiliary information is used in method (2).
A comparison of methods (3) and (4) is shown in Fig. 4,

showing the resulting ahvpμ as a function of the time tc at
which the TMR correlator is replaced by the multiexpo-
nential extension. The result of method (4) is consistent
with that of method (3), albeit with an enlarged statistical
uncertainty. In addition, we have checked that the values of
the amplitudes of the first two states as extracted from the

fit in method (4) are very consistent with their direct
spectroscopic determination. Table II presents the results
obtained on D200 with the four different methods, as well
as the corresponding matrices of correlated differences. The
latter show that methods (2) and (3), which yield the most
accurate results, are consistent with each other and sta-
tistically very tightly correlated. The difference between
method (4) and method (3) is consistent with zero within
one standard deviation.

C. Finite-volume effects

As explained in Sec. II E, in the isospin basis, we would
correct the I ¼ 1 correlator for finite-size effects stemming
from the ππ states, and neglect such effects on the I ¼ 0
correlator. However, we work in the basis of Eq. (3). In this
basis, such a correction corresponds to applying an additive

FIG. 3. (Left panel) Bounding method with the contribution of N ¼ 0 [method (1)] and (right panel) N ¼ 2 [method (2)] states
subtracted on ensemble D200 for the local-local correlator and the fπ-rescaled muon mass. Results are based on 1100 gauge
configurations.

FIG. 4. Determination of ahvp;lμ with the fπ-rescaled muon mass using the extension of the connected light (local-local) correlator using
N ¼ 2 energy levels on ensemble D200. On the left [method (3)], the amplitudes corresponding to energy levels were predetermined in a
spectroscopy calculation, while on the right [method (4)], they are fitted to the TMR correlator. Results are based on 1100 gauge
configurations.
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finite-size correction to the connected light contribution
[5
9
GlðtÞ], weighted by a factor of 10=9 relative to the

correction of the I ¼ 1 correlator. At the same time, the
disconnected contribution Gdisc must be corrected by −1=9
of the I ¼ 1 correction. It is indeed well known that the tail
of GdiscðtÞ is given by ð−1=9ÞGI¼1ðtÞ [41].
The I ¼ 1 finite-size corrections are given in Table VII

for every ensemble. They are computed as in [20], assum-
ing a GS parametrization of the pion form factor. However,
in contrast to [20], the parameters of the GS parametriza-
tion are obtained either by fitting the tail of the TMR
correlator using the relations between the ðEn; ZnÞ and the
pion form factor [18,19], or by using the results for mρ and
gρππ from a dedicated pion form factor calculation, when
available. This concerns ensembles C101, N401, N203,
N200, D200 and J303.
We have neglected finite-size effects for the connected

strange contribution, except for the SU(3) symmetric ensem-
bles, where finite-size effects are the same as for the
light-connected contribution.7 Similarly, no finite-volume
correction is applied to the charm-quark contribution.

We have performed a direct lattice calculation of
the FSE on two ensembles, N101 and H105, with different
volumes, L ¼ 2.8 and 4.1 fm, at a common pion mass
of 280 MeV. Figure 5 shows that a finite-size effect is
clearly visible and statistically significant. After the
finite-size correction obtained via the GS model for the
pion form factor, the two correlators are in excellent
agreement. This test gives us confidence that the finite-
size correction we apply is reliable at our level of statistical
precision.

D. The quark-disconnected contribution

We have computed the quark-disconnected contribution
on a number of lattice ensembles, namely H105,
N401, N203, N200, D200, N302. A typical integrand is
shown in Fig. 6. The signal for the quark-disconnected
contribution is lost around t ¼ 1.5 fm. Given that
the absolute error of the integrand for ahvpμ grows asymp-
totically, it is clear that additional information con-
straining the tail of the disconnected TMR correlator is
mandatory.
We have therefore adopted the following strategy. In our

Nf ¼ 2þ 1 simulations, the isoscalar correlator GI¼0;cðtÞ
of the ðu; d; sÞ quarks8 admits a positive spectral repre-
sentation analogous to Eq. (13), with positive prefactors
multiplying the exponentials. We expect that on the
ensembles on which we have computed the disconnected
diagrams, the dominant exponential in a large window of

FIG. 5. Testing the finite-size correcting procedure
described in the main text on the ensembles N101 and H105
at a pion mass of 280 MeV. The scale-setting uncertainty
is not displayed, since both ensembles have the same lattice
spacing.

TABLE II. Dependence of the D200 result for 1010 × ahvp;lμ on
the methods described in the text, using the local-local TMR
correlator. The 4 × 4 antisymmetric matrix given below the
results indicates the differences between them, taking into
account their statistical correlation.

Method No rescaling

(1) 605.9(6.3)
(2) 599.0(4.0)
(3) 599.4(3.9)
(4) 607.7(11.8)

(1) (2) (3) (4)

þ0.0ð0.0Þ þ6.9ð4.2Þ þ6.5ð4.8Þ −1.8ð9.1Þ
−6.9ð4.2Þ þ0.0ð0.0Þ −0.4ð0.7Þ −8.7ð10.8Þ
−6.5ð4.8Þ þ0.4ð0.7Þ þ0.0ð0.0Þ −8.3ð11.1Þ
þ1.8ð9.1Þ þ8.7ð10.8Þ þ8.3ð11.1Þ þ0.0ð0.0Þ

Method With fπ rescaling

(1) 604.2(7.4)
(2) 597.1(5.2)
(3) 597.7(5.0)
(4) 605.7(11.8)

(1) (2) (3) (4)

þ0.0ð0.0Þ −7.1ð4.3Þ −6.5ð5.2Þ þ1.5ð9.7Þ
þ7.1ð4.3Þ þ0.0ð0.0Þ þ0.6ð1.1Þ þ8.6ð11.2Þ
þ6.5ð5.2Þ −0.6ð1.1Þ þ0.0ð0.0Þ þ8.0ð11.6Þ
−1.5ð9.7Þ −8.6ð11.2Þ −8.0ð11.6Þ þ0.0ð0.0Þ

7At the SU(3) symmetric point, the isovector correlator
receives an additional finite-size correction due to kaon loops,
which amounts to half the correction due to the pion loop.

8The notation GI¼0;c is introduced to distinguish this correlator
from the full isoscalar contribution GI¼0, which also contains the
charm contribution.
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Euclidean times corresponds to the ω meson mass. As we
did not perform a dedicated calculation of the ω mass, we
use our determination of the ρ resonance mass. Since the
latter is slightly lower than theωmass, this is a conservative
choice. We can therefore apply the bounding method in the
following form,

0 ≤ GI¼0;cðtÞ ≤ GI¼0;cðtcÞe−mρðt−tcÞ; t ≥ tc: ð21Þ

In order to quote a value ahvp;discμ for the quark-disconnected
contribution to ahvpμ , we subtract the connected light and
strange contributions from the isoscalar contribution
ahvp;I¼0;c
μ ,

ahvp;discμ ¼ ahvp;I¼0;c
μ −

1

10
ahvp;lμ − ahvp;sμ : ð22Þ

Our results for ahvp;discμ are listed in Table V in Appendix A.

IV. RESULTS AT THE PHYSICAL POINT

Having determined the various contributions to ahvpμ on a
number of gauge ensembles, we proceed to extrapolate
these results to the continuum and to the physical pion
mass, mπ ¼ 134.97 MeV. We use as chiral expansion
variable the dimensionless ratio

ỹ ¼ m2
π

16π2f2π
; ð23Þ

where mπ and fπ have been determined on each
ensemble.

The variable ỹ can be viewed as a proxy for the light-
quark mass, while the independent variable

x̃ ¼ m2
K þ 1

2
m2

π

16π2ðfphysπ Þ2 ð24Þ

is in leading approximation proportional to the trace of
the quark-mass matrix. In principle, lattice results
must be extrapolated to the continuum at a point in
parameter space where both x̃ and ỹ acquire their
physical value. Since our target observable ðg − 2Þμ is
far more sensitive to ỹ than to x̃, in the following
analysis we perform a one-variable interpolation to the
physical value of ỹ, and rely on the tuning of the trace
of the quark-mass matrix performed when the CLS
ensembles were generated, which ideally should ensure
that x̃ automatically acquires its physical value at the
point where ỹ does.9

In order to validate this procedure,we have investigated to
what extent the variable x̃ reaches its physical value in the
continuum limit, at the point where ỹ ¼ ỹphys. We find
through a fit linear in both a2 and ỹ that it reaches a value
ð2.2� 1.1Þ% lower than its physical value. The next
question is the sensitivity of ðg − 2Þμ to a slight mistuning
of x̃. We have addressed this question by Taylor expanding
ahvpμ in x̃ at fixed ỹ ¼ ỹphys. Considering the isovector
contribution, one finds that there are two sea-quark effects
that enter, one via the kaon-mass dependence of the pion
decay constant, and the other via the direct kaon-mass
dependence of ahvp;I¼1

μ , both dependences being taken at
fixed pion mass. We estimate jx̃ · ∂ahvp;I¼1

μ =∂x̃j≲ 50 ×
10−10 at the physical point. As for the isoscalar contribution,
its contribution is less than one sixth of the total
ahvpμ , on the other hand, it is affected by the mistuning
of x̃ via a (strange) valence-quark effect. We estimate
x̃ · ∂ahvp;I¼0

μ =∂x̃ ≈ −25 × 10−10. Our estimates of the deriv-
atives are based on phenomenological considerations,
lattice data on the ρ-meson mass and width, as well as
the current status of our knowledge [54] of the low-energy
constant L4, which describes the sensitivity of the pion
decay constant to the kaon mass. In summary, for the
ensembles we have used Δx̃=x̃ ¼ −0.022ð11Þ, and we
expect the impact of the slight mistuning of x̃ on our
evaluation of ahvpμ to be safely below 2.0 × 10−10. In
comparison to our statistical errors, this effect is very
small, and we have neglected it in the following. In the
future, however, with increasing statistical precision, this

FIG. 6. Integrand of Eq. (1) in the time-momentum represen-
tation for the disconnected contribution on ensemble N200, using
the local-local discretization and the physical muon mass.

9The precise condition used for the tuning of TrMq was that the
dimensionless combination 8t0ðm2

K þ 1
2
m2

πÞ take the value 1.15 at
the SU(3) symmetric point [25], where t0 is the gradient-flow
scale.
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type of effect will have to be an integral part of the error
budget.

A. The connected strange and charm contributions

For the strange-quark contribution, the statistical error
(excluding the lattice-spacing uncertainty) is below 1% for
all the ensembles, and in many cases below 0.5%, typically
for those ensembles with close-to-physical quark masses.
See Table IV. The error is therefore dominated by the scale-
setting uncertainty, which enters through the combination
tmμ in the integrand (1). We extrapolate the results of the
individual ensembles to the physical point using the fit
Ansatz

ahvp;sμ ða; ỹ; dÞ ¼ ahvp;sμ ð0; ỹexpÞ þ δda2 þ γ1ðỹ − ỹexpÞ
þ γ2ðỹ log ỹ − ỹexp log ỹexpÞ: ð25Þ

The index d labels the discretization, local local or local
conserved. We observe a rather mild continuum extrapo-
lation and both discretizations are in very good agreement.
The fit goes perfectly through our physical-mass ensemble
and our final result for the connected strange-quark con-
tribution is

ahvp;sμ ¼ ð54.5� 2.4� 0.6Þ × 10−10; ð26Þ

where the first error is statistical and the second is
the systematic error from the chiral extrapolation. The
latter is estimated from the difference between the results
obtained if one includes or excludes ensembles with
mπ > 300 MeV. The chiral and continuum extrapolation
is illustrated in the left panel of Fig. 7.
For the charm-quark contribution, the statistical error

is below 0.3% for all the ensembles, and the error on the
tuning of the charm hopping parameter is of similar

magnitude. The error is again dominated by the scale-
setting uncertainty. As can be seen in the right panel of
Fig. 7, the lattice discretization of the correlator using
two local vector currents leads to large cutoff effects: we
observe a discretization effect of almost 70% at our
coarsest lattice spacing. By contrast, for the local-
conserved discretization the discretization effect is only
8%. Thus we prefer not to use the local-local discre-
tization in our continuum extrapolation of the connected
charm contribution. Furthermore, the data also suggest a
very flat chiral behavior, and we therefore use the fit
Ansatz

ahvp;cμ ða; ỹÞ ¼ ahvp;cμ ð0; ỹexpÞ þ δa2 þ γ1ðỹ − ỹexpÞ: ð27Þ

At the physical point, we obtain

ahvp;cμ ¼ ð14.66� 0.45� 0.06Þ × 10−10; ð28Þ

where the first error is statistical and the second is the
systematic error induced by the chiral extrapolation. The
chiral and continuum extrapolation is illustrated in
Fig. 7 (right panel).
A comparison of the strange and charm contributions to

ahvpμ with recent publications is shown in Fig. 10.

B. The connected light-quark contribution

We have achieved a statistical error of just over 2% on
ahvp;lμ on the physical-mass ensemble E250, and of 1.0%–
1.2% on all other ensembles. An important role of the
other ensembles is to constrain the continuum limit, which
would be very costly to achieve directly at the physical
pion mass. Our lattice data points are displayed as a
function of ỹ in Fig. 8, with and without the rescaling of

FIG. 7. Extrapolation of the connected strange and charm contributions to ahvpμ with a muon mass fixed to its physical value. The black
curve represents the chiral dependence in the continuum, and the black point the final result at the physical pion mass.
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the muon mass with fπ. We observe that the rescaled data
in the right panel has a reduced dependence on ỹ, as well
as on the lattice spacing. We therefore decide to use the
rescaled data for our primary analysis, but also perform
the analysis of the unrescaled data in parallel for
comparison.
The expected chiral behavior of the light-connected

contribution is reviewed in Sec. II E. Taking into account
these considerations, we have used the following Ansätze to
simultaneously extrapolate our results to the continuum and
to physical quark masses:

ahvp;lμ ða; ỹ; dÞ ¼ ahvp;lμ ð0; ỹexpÞ þ δda2 þ γ1ðỹ − ỹexpÞ
þ γ2ðlog ỹ − log ỹexpÞ; ð29aÞ

ahvp;lμ ða; ỹ; dÞ ¼ ahvp;lμ ð0; ỹexpÞ þ δda2 þ γ3ðỹ − ỹexpÞ
þ γ4ðỹ2 − ỹ2expÞ; ð29bÞ

ahvp;lμ ða; ỹ; dÞ ¼ ahvp;lμ ð0; ỹexpÞ þ δda2 þ γ5ðỹ − ỹexpÞ
þ γ6ð1=ỹ − 1=ỹexpÞ; ð29cÞ

ahvp;lμ ða; ỹ; dÞ ¼ ahvp;lμ ð0; ỹexpÞ þ δda2 þ γ7ðỹ − ỹexpÞ
þ γ8ðỹ log ỹ − ỹexp log ỹexpÞ; ð29dÞ

where d is a label for the local-local or local-conserved
correlator. All Ansätze contain four parameters to be
fitted, including an Oða2Þ term to account for discre-
tization errors. Ansatz (b) assumes a purely polynomial
behavior in the variable ỹ, while fit (d) allows for a
nonanalytic ỹ log ỹ term. The latter Ansatz was used
in our previous Nf ¼ 2 calculation [20]. Ansätze (a) and
(c) are directly motivated by the discussion in
Sec. II E, (a) containing the logarithmic singularity
that appears in the limit mπ → 0 at fixed muon mass,

FIG. 8. Extrapolation of the connected light contribution to ahvpμ , (left panel) using the physical value of the muon mass in the

kernel K̃ðtÞ on all ensembles, and (right panel) using the rescaled mass mphys
μ · flattπ

fphysπ
. The result of the fit based on Eq. (29c) is

shown. The black curve represents the chiral dependence in the continuum, and the black point the final result at the physical
pion mass.

TABLE III. Results of the connected light-quark contribution in units of 10−10 using different fits and cuts. (Left) Using the standard
kernel. (Right) Using the rescaling of the muon mass using fπ .

Standard kernel Kernel with rescaling using fπ

Cut 300 MeV Cut 360 MeV No cut Cut 300 MeV Cut 360 MeV No cut

Fit Eq. (29a) 700(22) 695(19) 700(18) 675(14) 671(11) 671(10)
Fit Eq. (29b) 700(23) 689(19) 683(17) 669(14) 656(09) 645(07)
Fit Eq. (29c) 700(22) 697(19) 704(18) 677(14) 676(12) 681(11)
Fit Eq. (29d) 700(22) 692(19) 692(17) 672(14) 663(10) 657(08)
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while (c) contains the 1=m2
π term relevant in the regime

mμ ≪ mπ ≪ mρ.
We give the results we obtain from these four

Ansätze, with and without rescaling mμ, in Table III.
We have performed these fits either including all
ensembles, or imposing cuts on ỹ, corresponding to
pion masses below 360 MeV or, alternatively, below
300 MeV. Focusing first on the rescaled data, we note
that fits (a), (c) and (d) yield χ2=d:o:f: ≈ 1.0 while fit
(b) produces higher values of around 1.6. With the pion-
mass cut at 360 MeV, one sees that results (a) and
(c) show good consistency and yield somewhat larger
values of ahvp;lμ than fits (b) and (d). Given the more
singular chiral behavior of Ansätze (a) and (c), this
outcome is not unexpected. Looking at the stability of
the final value for ahvp;lμ as a function of the pion-mass
cut, we observe excellent stability in the case of fits (a)
and (c), while the results of fits (b) and (d) systemati-
cally drift upward as a stronger pion-mass cut is
imposed. With the strongest cut, mπ < 300 MeV, all
four Ansätze yield the same result within half a standard
deviation. In view of the greater stability of fits (a) and
(c) against pion-mass cuts, and the stronger theoretical
motivation underlying them, we choose to average the
results of fit (a) and (c) with the cut mπ < 360 MeV for
our final central value. As a systematic error, we take
the full difference between the results of these fits, and
thus our final result for the connected light-quark
contribution is

ahvp;lμ ¼ ð674� 12� 5Þ × 10−10: ð30Þ

A few further remarks are in order. It is important to
note that the results of fits (a) and (c) are in very good
agreement with the values of ahvp;lμ directly obtained on
ensemble E250 with the rescaled muon mass; see
Table VI. We also remark that the statistical uncertainty
on the final result, Eq. (30), is only 20% lower than the
statistical uncertainties on E250; we conclude that the
chiral extrapolation of our results obtained at heavier
pion masses, which tend to be more precise, does not
lead to an artificially small final uncertainty. A com-
parison with the extrapolated results obtained from the
standard kernel, shown in the left part of Table III,
shows that the latter lie systematically higher than the
rescaled ones. Their statistical uncertainty is larger by
about 50% than in the unrescaled case. Still, when
combining statistical and systematic uncertainties in
quadrature of Eq. (30), the central value of fit (c) only
lies 1.6 standard deviations higher than our final central
value, Eq. (30).

C. The quark-disconnected contribution

The quark-disconnected contributions have been com-
puted on a subset of the gauge ensembles, as described in
Sec. II B. Three ensembles at the same lattice spacing—
N203, N200 and D200—allow us to study the chiral
behavior. Two other ensembles, N401 and N302, enable
us to constrain the discretization effects.
The quark-disconnected contribution vanishes

exactly for the ensembles generated at the SU(3)-
symmetric point. In fact, it is a double zero in the
SU(3)-breaking combination ðms −mlÞ. Since our
ensembles follow a chiral trajectory at fixed bare
average quark mass ð2mq;l þmq;sÞ, we can consider
the values of adiscμ as being to a good approximation10

a function of the single variable m2
K −m2

π . The results of
all five ensembles are thus displayed in Fig. 9 as a
function of Δ2

2, where Δ2 ≡m2
K −m2

π , since close to
the SU(3)-symmetric point, the dependence of adiscμ on
Δ2

2 is linear. We observe that discretization effects
are negligible at the current level of precision. The
result of an extrapolation to the physical point Δ2 ¼
0.227 GeV2 assuming a linear proportionality to Δ2

2 is

ahvp;discμ ¼ −18.6ð2.2Þ × 10−10.
As discussed below Eq. (18), the disconnected contri-

bution has a singular behavior in the limit mπ → 0, closely
related to the corresponding behavior of the connected
light contribution. Therefore, we consider the possibility

FIG. 9. Extrapolation of the disconnected contribution to ahvpμ

in the SU(3)-breaking variable Δ2 ≡m2
K −m2

π . The data points
for the local-local and the local-conserved discretizations are
shown. A linear fit (straight black line), as well as a fit based on
Ansatz (31) are shown.

10A residual dependence on the independent combination
ð1
2
m2

π þm2
KÞ persists at higher orders in the chiral expansion

and via OðaÞ discretization effects.
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that the disconnected contribution contains a term with
precisely the dependence given in Eq. (18). In order to
make this term consistent with the double zero of the
disconnected correlator at Δ2 ¼ 0, we fix M̂2 ≡ 1

2
m2

π þm2
K

to its physical value, express m2
π through the variable Δ2

and use the Ansatz

ahvp;discμ ðΔ2Þ ¼ γ8Δ2
2 −

α2m2
μ

3240π2
·
3

2

�
1

M̂2 − Δ2

−
Δ2

M̂4
−

1

M̂2

�
:

ð31Þ

Fitting the single free parameter γ8, we obtain ahvp;discμ ¼
−27.7ð2.2Þ × 10−10. From Fig. (18), it is clear that both
the linear fit in Δ2

2 and the one based on Ansatz (31) are
consistent with the lattice data. While a singular chiral

behavior must be present in ahvp;discμ , the Ansatz (31) may
lead to an overestimate of this effect. Therefore, we quote
as our final result the average of the linear and the
chirally singular fit,

ahvp;discμ ¼ ð−23.2� 2.2� 4.5Þ × 10−10; ð32Þ

where the first error is statistical and the second is a
systematic error associated with the extrapolation to the
physical point, taken to be the half distance between the
two extrapolated values.

D. The total ahvpμ

In summary, adding up the connected light, strange and
charm contributions as well as the quark-disconnected
contribution, our result for ahvpμ in isospin-symmetric
QCD at mπ ¼ 134.97 MeV and fπ ¼ 92.4 MeV is

ahvpμ ¼ ð720.0� 12.4� 6.8Þ × 10−10; ð33Þ

where the first error is statistical and the second is the
systematic error. The latter is dominated by the chiral
extrapolation of the light-connected and the disconnected
contributions. The result, Eq. (33), does not contain any
correction for QED or strong isospin-breaking effects.
For now, we do not attempt to include such a correction,
but rather add (in quadrature) a systematic uncertainty of
7.2 × 10−10 corresponding to a recent lattice calculation of
these effects [60]. This then leads to our final result given in
Eq. (34) below.

V. DISCUSSION AND COMPARISON

In this paper we have presented a calculation of the
hadronic vacuum polarization contribution to aμ based on
gauge ensembles with Nf ¼ 2þ 1 flavors of OðaÞ
improved Wilson quarks. Our final result is

ahvpμ ¼ ð720.0� 12.4stat � 9.9systÞ × 10−10; ð34Þ

FIG. 10. Compilation of lattice results for the connected contributions to ahvpμ from individual charm, strange and light
quarks (left to right). In the rightmost panel, the full results, including (where available) the contributions from quark-
disconnected diagrams and corrections due to isospin breaking, are compared to the phenomenological determination
of Ref. [55], represented by the red vertical band. Our result is compared to the calculations labeled FNAL-HPQCD-MILC 19
[56–58], PACS 19 [59], ETMC 19 [60–62], RBC/UKQCD 18 [39], BMW 17 [38], as well as our previous calculation in two-
flavor QCD [20] (Mainz/CLS 17).
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where the first error is statistical, and the second is an
estimate of the total systematic uncertainty, which also
accounts for the fact that the corrections due to isospin
breaking have not been included. We thus find that
the overall error of our determination is 2.2%. In
Fig. 10 we compare our results to those of several
other recent lattice calculations [20,38,39,58–60]. While
our estimate is at the higher end of lattice results, we
note that the direct difference with the result based on
dispersion theory of Ref. [55] is 26.6� 16.0, which
amounts to ∼1.7 standard deviations and may signal a
slight tension.
There are several ways in which our result can be

improved without relying on the obvious strategy of
adding more ensembles and increasing the overall sta-
tistics. First, we have seen in Sec. III B that the use of
detailed spectroscopy information in the isovector channel
is a huge advantage, as it nearly halves the statistical
uncertainty in the estimate for ahvp;lμ on ensemble D200.
This is the result of either constructing the vector
correlator from the energies and overlaps determined
via the generalized eigenvalue problem (GEVP) or of
using this information in the improved bounding method.
Extending these calculations to more ensembles—in
particular those with physical and near-physical pion
masses—will boost the statistical accuracy and reliability
significantly.
Second, we have pointed out that it is advantageous to

split the correlator into isovector and isoscalar compo-
nents according to Eq. (4) rather than focusing on
separating the contributions from individual quark flavors.
One reason is that the singular chiral behavior expected
from Eq. (17) is shared between the light quark connected
and the disconnected contributions. This will help to
better constrain the pion-mass dependence of the quark-
disconnected contribution, which is often still obtained
from an extrapolation to the physical point from a set of
results at heavier pion masses. The decomposition accord-
ing to isospin also gives a better handle on finite-volume
effects, which are partly compensated for between the
light connected and disconnected contributions. This is of
particular importance, since finite-volume corrections for
the disconnected part of the vector correlator could be
sizable but, to our knowledge, have not been estimated
so far.
The third refinement concerns the determination of

isospin-breaking corrections. We stress again that our
final estimate in Eq. (34) is valid at a well-defined
reference point of the isospin-symmetric theory, given
by the mass of the neutral pion in the continuum limit.
The determination of the corrections due to isospin
breaking relies on the definition of an alternative
reference point that is consistent with the effects
induced by a nonvanishing mass splitting among the

up and down quarks and the coupling between
quarks and photons. This requires an adjustment of
bare parameters and the reevaluation of a number of
observables that enter the calculation of ahvpμ . An
account of the status of our activities in this direction
is given in Refs. [14,15]. In the absence of a complete
evaluation, we have refrained from simply adding
results for the isospin-breaking correction from the
literature. Instead, we have opted for an additional
systematic error which is as large as the correction
determined in [60].
As the community awaits the first results from the

E989 experiment at Fermilab, it is remarkable that
several collaborations using different setups and discre-
tizations of the QCD action obtain largely consistent
estimates for ahvpμ with overall errors at the level of 2%.
However, the collection of available results does not
allow for a firm conclusion as to whether the phenom-
enological estimate or the so-called “no new physics”
scenario is confirmed.
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APPENDIX A: RESULTS FOR THE INDIVIDUAL CONTRIBUTIONS
TO ahvpμ AND AUXILIARY CALCULATIONS

This appendix collects the numerical results obtained for the various contributions to ahvpμ . In addition, the value of the
renormalization factor of the charm current, the pion mass and its decay constant are given for completeness in the
tables below.

TABLE IV. Values of the connected strange and charm contribution to ahvpμ , in units of 10−10, for the local-local (LL) and for the local-
conserved (CL) discretizations of the correlation function. For the strange, the symmetric lattice derivative is used for the improvement
term, while the away derivative is used for the charm (see Sec. II C). In addition, the charm hopping parameter is given, as well as the

mass-dependent renormalization factor ZðcÞ
V for the charm vector current. The bounding method is used to handle the tail of the

correlator, as described in Sec. III A. For the charm contribution, the first error is statistical, the second comes from the tuning of
the charm hopping parameter. The scale-setting uncertainty is not included at this stage.

ID aðLLÞ;sμ aðCLÞ;sμ aðLLÞ;cμ aðCLÞ;cμ
κc ZðcÞ

V

H101 91.09(42) 92.47(41) 23.909(31)(56) 12.541(21)(31) 0.122897(18) 1.20324(11)(25)
H102 81.10(37) 82.47(36) 24.088(20)(81) 12.709(20)(46) 0.123041(26) 1.19743(08)(20)
H105* 71.94(31) 73.27(31) 24.437(42)(61) 12.996(29)(35) 0.123244(19) 1.18964(08)(15)
N101 72.14(23) 73.50(23) 24.414(57)(61) 12.996(38)(35) 0.123244(19) 1.18964(08)(15)
C101 68.37(18) 69.70(18) 24.580(43)(39) 13.140(29)(22) 0.123361(12) 1.18500(05)(10)

B450 87.27(49) 88.41(48) 21.793(24)(70) 12.668(18)(43) 0.125095(22) 1.12972(06)(16)
S400 77.72(34) 78.78(34) 21.808(27)(64) 12.919(20)(41) 0.125252(20) 1.11159(13)(18)
N401 70.80(20) 71.81(20) 22.390(39)(50) 13.248(29)(32) 0.125439(15) 1.11412(04)(19)

H200* 83.02(87) 83.69(86) 20.018(37)(56) 13.248(28)(40) 0.127579(16) 1.04843(03)(19)
N202 88.83(71) 89.61(69) 20.052(39)(56) 13.280(30)(40) 0.127579(16) 1.04843(03)(53)
N203 76.17(37) 76.91(36) 19.969(30)(39) 13.252(22)(28) 0.127714(11) 1.04534(03)(19)
N200 67.90(23) 68.60(22) 20.323(42)(26) 13.577(32)(18) 0.127858(07) 1.04012(03)(13)
D200 62.20(15) 62.93(15) 20.677(39)(22) 13.895(30)(16) 0.127986(06) 1.03587(04)(11)
E250 59.64(14) 60.36(14) 20.798(02)(21) 14.027(02)(15) 0.128052(05) 1.03310(01)(10)

N300 81.03(69) 81.44(68) 17.367(34)(73) 13.159(29)(58) 0.130099(18) 0.97722(03)(12)
N302 70.11(31) 70.53(30) 17.839(28)(38) 13.606(23)(30) 0.130247(09) 0.97241(03)(10)
J303 62.87(21) 63.27(20) 17.931(49)(31) 13.870(40)(27) 0.130362(09) 0.96037(10)(19)

TABLE V. Results for ahvp;discμ , with and without rescaling the muon mass.

No rescaling With rescaling

ID aðLLÞ;lμ aðCLÞ;lμ aðLLÞ;lμ aðCLÞ;lμ

N401 −5.41ð1.25Þ −5.50ð1.21Þ −5.76ð1.30Þ −5.85ð1.26Þ
N203 −1.60ð0.77Þ −1.65ð0.80Þ −1.85ð0.88Þ −1.91ð0.92Þ
N200 −5.50ð1.32Þ −5.55ð1.46Þ −5.99ð1.46Þ −6.05ð1.61Þ
D200 −3.79ð3.51Þ −8.32ð3.57Þ −3.78ð3.50Þ −8.30ð3.56Þ
N302 −1.55ð1.16Þ −1.77ð1.23Þ −1.84ð1.39Þ −2.10ð1.47Þ
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TABLE VI. Values of the connected light contribution to ahvpμ , in units of 10−10, for the local-local (LL) and for the local-conserved
(CL) discretizations of the correlation function, as described in the main text. The symmetric lattice derivative of the improvement term
is used. In addition, the pion mass and the pion decay constant are given, some of them taken from Ref. [65]. No FSE correction has been
applied on any data in the table. The treatment of the long-distance part of the correlator is described in Sec. III A. In the “no rescaling”
columns, the scale-setting error has not been included. In the “with rescaling” columns, the statistical fluctuations of the fπ
determination are taken into account.

No rescaling With rescaling

ID amπ a
ffiffiffi
2

p
fπ aðLLÞ;lμ aðCLÞ;lμ aðLLÞ;lμ aðCLÞ;lμ

H101 0.1818(07) 0.06458(29) 455.5(2.0) 462.4(2.0) 571.9(4.4) 580.5(4.5)
H102 0.1547(08) 0.06151(27) 495.0(3.5) 501.9(3.4) 572.2(4.7) 580.2(4.7)
H105* 0.1224(11) 0.05802(39) 548.7(5.9) 555.4(6.0) 576.4(8.0) 583.4(8.1)
N101 0.1217(06) 0.05832(30) 562.8(4.3) 568.9(4.2) 589.8(6.8) 596.4(6.7)
C101 0.0967(08) 0.05535(37) 625.0(6.7) 633.3(7.5) 612.9(6.9) 621.9(7.3)

B450 0.1608(05) 0.05750(27) 436.3(2.4) 442.0(2.4) 556.8(4.7) 564.3(4.8)
S400 0.1357(05) 0.05463(21) 481.4(3.8) 486.4(3.8) 564.3(5.2) 570.2(5.2)
N401 0.1104(06) 0.05324(17) 543.8(4.2) 548.9(4.1) 581.5(5.3) 587.0(5.2)

H200* 0.1362(07) 0.04805(27) 413.6(4.5) 417.8(4.3) 532.0(5.5) 537.5(5.3)
N202 0.1335(05) 0.04884(18) 441.8(3.0) 445.9(2.9) 567.9(4.4) 573.2(4.3)
N203 0.1126(04) 0.04699(16) 479.1(3.3) 483.2(3.3) 564.6(5.0) 569.4(5.1)
N200 0.0920(05) 0.04454(18) 520.0(5.3) 524.4(5.0) 571.8(6.1) 576.6(5.8)
D200 0.0649(04) 0.04254(18) 600.3(5.0) 604.3(5.9) 598.6(6.3) 602.4(6.3)
E250 0.0422(04) 0.04089(19) 735.1(14.6) 726.3(14.8) 679.7(14.8) 671.6(14.9)

N300 0.1063(04) 0.03811(13) 404.1(3.4) 406.0(3.3) 540.6(5.5) 543.2(5.4)
N302 0.0872(04) 0.03570(19) 436.6(4.4) 438.8(4.4) 535.4(6.5) 538.1(6.5)
J303 0.0651(03) 0.03412(14) 526.6(7.4) 527.4(7.2) 577.5(8.5) 578.3(8.4)

TABLE VII. Estimates of the finite-size effects Δahvpμ ≡ ahvpμ ðL ¼ ∞Þ − ahvpμ ðLÞ ¼ Δa<μ ðtiÞ þ Δa>μ ðtiÞ on the isovector contribution
ahvp;I¼1
μ in the TMR in units of 10−10. We used the value ti ¼ ðmπL=4Þ2=mπ , as in [20], to which we refer for unexplained notation. The

parameters of the GS model are obtained by fitting the tail of the correlation function using the Lüscher formalism. When there are two
lines, the second line corresponds to the GS parameters extracted from a direct lattice calculation of the timelike pion form factor [29].
The FSE effects are given both with and without rescaling of the muon mass via fπ .

GS parameters No rescaling With rescaling

ID ti [fm] mρ=mπ gρππ Δa<μ ðtiÞ Δa>μ ðtiÞ Δa<μ ðtiÞ Δa>μ ðtiÞ
H101 1.04 2.101(103) 4.60(42) 0.29 2.0(0.4) 0.37 2.4(0.5)
H102 0.86 2.307(07) 4.88(02) 0.40 5.6(0.1) 0.47 6.3(0.1)
H105* 0.69 2.743(110) 5.01(24) 0.46 16.6(1.4) 0.48 17.3(1.5)
N101 1.55 2.792(10) 4.93(04) 0.61 1.8(0.1) 0.64 1.9(0.1)
C101 1.21 3.362(73) 4.92(12) 0.92 8.1(0.3) 0.90 8.0(0.3)

1.21 3.395(26) 5.67(17) 0.92 7.9(0.2) 0.90 7.8(0.2)

B450 0.76 2.100(10) 4.86(04) 0.27 4.4(0.1) 0.35 5.6(0.1)
S400 0.69 2.299(41) 5.01(14) 0.38 11.0(0.5) 0.45 12.8(0.6)
N401 1.22 2.716(25) 5.08(06) 0.60 3.7(0.1) 0.65 3.9(0.1)

1.22 2.717(16) 5.84(17) 0.60 3.6(0.1) 0.65 3.8(0.1)

H200* 0.58 2.095(02) 4.86(07) 0.27 10.5(0.2) 0.40 13.3(0.2)
N202 1.22 2.016(04) 5.21(07) 0.23 1.1(0.1) 0.30 1.4(0.2)
N203 1.03 2.398(13) 4.91(05) 0.40 3.2(0.1) 0.47 3.7(0.1)

1.03 2.382(11) 6.03(13) 0.40 3.1(0.1) 0.47 3.6(0.1)

(Table continued)
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APPENDIX B: DETERMINATION OF THE CHARM-QUARK HOPPING PARAMETER

We list in Table IX the values of the cs̄ pseudoscalar meson masses determined for different values of the charm hopping
parameter. The “physical” value of the charm-quark hopping parameter is determined by the condition that the cs̄ meson
mass match the physical value of the Ds meson mass, mDs

¼ 1972 MeV.

TABLE VIII. Results of spectroscopy calculations in the isovector vector channel for the parameters mρ and gρππ of the ρ meson. See
Eqs. (19) and (20). For ensemble J303, the data from [29] has been rebinned and analyzed using the jackknife method.

amρ mρ=mπ gρππ Source

C101 0.3327(23) 3.395(26) 5.67(17) [29]

N401 0.2989(16) 2.717(16) 5.84(17) [29]

N203 0.2682(13) 2.382(11) 6.03(13) New data
N200 0.2522(13) 2.733(16) 5.94(10) [29]
D200 0.2501(12) 3.839(18) 6.065(92) New data

J303 0.2020(15) 3.090(24) 6.33(16) [29]

TABLE VII. (Continued)

GS parameters No rescaling With rescaling

ID ti [fm] mρ=mπ gρππ Δa<μ ðtiÞ Δa>μ ðtiÞ Δa<μ ðtiÞ Δa>μ ðtiÞ
N200 0.84 2.833(20) 4.98(05) 0.50 9.2(0.2) 0.60 9.3(0.8)

0.85 2.733(16) 5.94(10) 0.49 9.6(0.2) 0.55 10.6(0.2)
D200 1.09 3.737(72) 5.26(10) 1.00 13.4(0.4) 0.99 13.3(0.4)

1.09 3.877(34) 6.16(19) 1.00 12.8(0.2) 0.99 12.7(0.2)
E250 1.54 5.270(42) 5.59(03) 1.88 20.7(0.2) 1.74 19.4(0.2)

1.54 5.955(84) 6.06(21) 1.88 19.1(0.2) 1.74 17.9(0.2)

N300 0.75 2.100(01) 4.89(08) 0.27 4.6(0.2) 0.36 6.1(0.3)
N302 0.65 2.301(07) 5.59(08) 0.36 13.0(0.3) 0.45 15.8(0.3)
J303 0.85 2.993(02) 5.17(03) 0.61 12.4(0.1) 0.67 13.4(0.1)

0.85 3.090(24) 6.33(16) 0.61 11.4(0.5) 0.67 12.4(0.5)

TABLE IX. Values of the cs̄ pseudoscalar meson masses determined for different values of the charm hopping parameter, and its
interpolation to the physical Ds meson mass. The uncertainty on the interpolated κ arising from the lattice spacing uncertainty is not
included here.

ID Interpolation Simulations

H101 κ 0.122897(18) 0.12320 0.12290 0.12260 0.12230
amDs

0.8615 0.8513(6) 0.8614(6) 0.8714(6) 0.8813(6)

H102 κ 0.123041(26) 0.12330 0.12300 0.12270 0.12240
amDs

0.8615 0.8528(9) 0.8629(9) 0.8729(9) 0.8828(9)

N101 κ 0.123244(19) 0.12360 0.12340 0.12320 0.12300
amDs

0.8615 0.8495(6) 0.8563(6) 0.8630(6) 0.8697(6)

C101 κ 0.123361(12) 0.12400 0.12370 0.12340 0.12310
amDs

0.8615 0.8467(4) 0.8534(4) 0.8602(4) 0..8669(4)

B450 κ 0.125095(22) 0.12530 0.12510 0.12490 0.12470
amDs

0.7615 0.7543(8) 0.7614(8) 0.7683(8) 0.7752(8)

(Table continued)
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