We give new evidence to the fact that the structure of a solvable group can be controlled by irreducible monomial characters. In particular, we inspect the role of monomial characters in the Isaacs-Navarro-Wolf conjecture and in Gluck's conjecture.

Rossi, D. (2023). Monomial characters of finite solvable groups. ARCHIV DER MATHEMATIK, 120(4), 339-347 [10.1007/s00013-023-01827-4].

Monomial characters of finite solvable groups

Rossi, D
2023

Abstract

We give new evidence to the fact that the structure of a solvable group can be controlled by irreducible monomial characters. In particular, we inspect the role of monomial characters in the Isaacs-Navarro-Wolf conjecture and in Gluck's conjecture.
Articolo in rivista - Articolo scientifico
Monomial characters; Non-vanishing elements; Solvable groups
English
2023
120
4
339
347
open
Rossi, D. (2023). Monomial characters of finite solvable groups. ARCHIV DER MATHEMATIK, 120(4), 339-347 [10.1007/s00013-023-01827-4].
File in questo prodotto:
File Dimensione Formato  
Rossi-2023-Arch Math-AAM.pdf

Accesso Aperto

Descrizione: Article
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Altro
Dimensione 428.42 kB
Formato Adobe PDF
428.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/418647
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
Social impact