n this chapter we prove Cherlin’s conjecture for exceptional groups of Lie type. Our main result shows that, if G is an almost simple primitive group having socle an exceptional group of Lie type, then G is not binary. The proof uses some of the results in the previous chapters together with a detailed analysis of the maximal subgroups of G.

Gill, N., Liebeck, M., Spiga, P. (2022). Exceptional Groups. In N. Gill, M.W. Liebeck, P. Spiga (a cura di), Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups (pp. 71-101). Springer [10.1007/978-3-030-95956-2_3].

Exceptional Groups

Spiga P.
2022

Abstract

n this chapter we prove Cherlin’s conjecture for exceptional groups of Lie type. Our main result shows that, if G is an almost simple primitive group having socle an exceptional group of Lie type, then G is not binary. The proof uses some of the results in the previous chapters together with a detailed analysis of the maximal subgroups of G.
Capitolo o saggio
Lie groups
English
Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups
Gill, N; Liebeck, MW; Spiga, P
18-gen-2022
2022
978-3-030-95955-5
2302
Springer
71
101
Gill, N., Liebeck, M., Spiga, P. (2022). Exceptional Groups. In N. Gill, M.W. Liebeck, P. Spiga (a cura di), Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups (pp. 71-101). Springer [10.1007/978-3-030-95956-2_3].
open
File in questo prodotto:
File Dimensione Formato  
Gill-2022-Lect Notes Math-preprint.pdf

accesso aperto

Descrizione: Contributo in libro
Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/416066
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact