n this chapter we prove Cherlin’s conjecture for exceptional groups of Lie type. Our main result shows that, if G is an almost simple primitive group having socle an exceptional group of Lie type, then G is not binary. The proof uses some of the results in the previous chapters together with a detailed analysis of the maximal subgroups of G.
Gill, N., Liebeck, M., Spiga, P. (2022). Exceptional Groups. In N. Gill, M.W. Liebeck, P. Spiga (a cura di), Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups (pp. 71-101). Springer [10.1007/978-3-030-95956-2_3].
Exceptional Groups
Spiga P.
2022
Abstract
n this chapter we prove Cherlin’s conjecture for exceptional groups of Lie type. Our main result shows that, if G is an almost simple primitive group having socle an exceptional group of Lie type, then G is not binary. The proof uses some of the results in the previous chapters together with a detailed analysis of the maximal subgroups of G.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Gill-2022-Lect Notes Math-preprint.pdf
accesso aperto
Descrizione: Contributo in libro
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Creative Commons
Dimensione
1.64 MB
Formato
Adobe PDF
|
1.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.