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Chapter 1

Introduction

In this monograph, we are concerned with the problem of classifying the finite primitive binary permutation
groups. Let G be a permutation group on the set Ω. Given a positive integer n, given I := (ω1, ω2, . . . , ωn)
in the Cartesian product Ωn and given g ∈ G, we write

Ig := (ωg1 , ω
g
2 , . . . , ω

g
n).

Moreover, for every 1 ≤ i < j ≤ n, we let Iij := (ωi, ωj) be the 2-subtuple of I corresponding to the ith

and to the jth coordinate. Now, the permutation group G on Ω is called binary if, for all positive integers
n, and for all I and J in Ωn, there exists g ∈ G such that Ig = J if and only if for all 2-subtuples, Iij, of
I, there exists an element gij such that I

gij
ij = Jij .

Cherlin has proposed a conjecture listing the finite primitive binary permutation groups [20]. The
conjecture is as follows, and our task is to complete the proof of this conjecture.

Conjecture 1.1. A finite primitive binary permutation group must be one of the following:

1. a symmetric group Sym(n) acting naturally on n elements;

2. a cyclic group of prime order acting regularly on itself;

3. an affine orthogonal group V ⋊ O(V ) with V a vector space over a finite field equipped with a non-
degenerate anisotropic quadratic form, acting on itself by translation, with complement the full or-
thogonal group O(V ).

The terminology of Conjecture 1.1 is fully explained in subsequent sections. In particular, we give two
equivalent definitions of the adjective “binary” in §1.1, and all three families listed in Conjecture 1.1 are
fully discussed in §1.2.

The O’Nan–Scott–Aschbacher theorem describes the structure of finite primitive permutation groups:
there are five families of these. Thus, to prove Conjecture 1.1, it is sufficient to prove it for each of these
families.

Cherlin himself gave a proof of the conjecture for the family of affine permutation groups, i.e. when
G has an abelian socle [21]. Wiscons then studied the remaining cases and showed that Conjecture 1.1
reduces to the following statement concerning almost simple groups [106].

Conjecture 1.2. If G is a finite binary almost simple primitive group on Ω, then G = Sym(Ω).

We recall that an almost simple group G is a finite group that has a unique minimal normal subgroup
S and, moreover, the group S is non-abelian and simple. Note that S is the socle of G.

We now invoke the Classification of Finite Simple Groups which says that a non-abelian simple group
is either an alternating group, Alt(n) with n ≥ 5; a simple group of Lie type; or one of 26 sporadic groups.

In [46], Conjecture 1.2 was proved for groups with socle a simple alternating group; in [34], Conjec-
ture 1.2 was proved for groups with socle a sporadic simple group. In this monograph we deal with the
remaining family.
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6 CHAPTER 1. INTRODUCTION

Theorem 1.3. Let G be an almost simple group with socle a finite group of Lie type and assume that G
has a primitive and binary action on a set Ω. Then |Ω| ∈ {5, 6, 8} and G ∼= Sym(Ω).

The examples in Theorem 1.3 arise via the isomorphisms

1. G ∼= SL2(4).2 ∼= PGL2(5) ∼= Sym(5) and |Ω| = 5;

2. G ∼= Sp4(2)
∼= PSL2(9).2 ∼= Sym(6) and |Ω| = 6;

3. G ∼= SL4(2).2 ∼= Sym(8) and |Ω| = 8.

Note that, here, we have not tried to list all isomorphisms between classical groups and the symmetric
groups listed in Theorem 1.3. The listed isomorphisms are the ones that crop up in the proof that
follows; there are many further isomorphisms with classical groups not listed in the theorem (for example
SO−

4 (2)
∼= ΓO3(4) ∼= Sym(5)).

A special case of Theorem 1.3 has already appeared in the literature; in [34], the theorem is proved for
the case where G is almost simple with socle a finite group of Lie type of rank 1.

Theorem 1.3 is the final piece in the jigsaw. We can now assert that Cherlin’s conjecture is true:1

Corollary 1.4. Conjecture 1.1 is true.

As will become clear, once the various equivalent definitions of the word “binary” have been introduced,
a proof of Conjecture 1.1 is equivalent to a classification of the finite primitive binary relational structures.
In particular we have the following (the definition of homogeneous relational structure can be found in
Definitions 1.1.1 and 1.1.5):

Corollary 1.5. Let R be a homogeneous binary relational structure with vertex set Ω, such that G =
Aut(R) acts primitively on Ω. Then the action of G on Ω is one of the actions listed in Conjecture 1.1.

We have not completely described the relational structure R in our statement of Corollary 1.5 – to do
this, we would need to specify the relations in R. We will not do this here, but we can at least start the
task, making use of the fact that all relations of R must be unions of orbits of G on Ω2.

Consider the first family listed in Conjecture 1.1, where G = Sym(Ω). In this case G has two orbits
on Ω2: the set D, of distinct pairs, and the set R, of repeated pairs. Thus the binary relational structures
with all relations some union of D and R are:

(Ω), (Ω,D), (Ω, R), (Ω,D,R), (Ω, R,D) and (Ω,D ∪R).

One can check directly that every one of these is homogeneous and has automorphism group isomorphic
to Sym(Ω). One needs to repeat this analysis for the other two families; in these cases enumerating orbits
and ascertaining which of the resulting structures are homogeneous is much more difficult.

For the remainder of this chapter we have three basic aims: first we seek to give the basic theory of
relational complexity for permutation groups including, in particular, the definition of a binary action, and
of a binary permutation group. We will also describe some of the key examples.

1Wiscons informed us of a small gap in his proof of [106, Proposition 4.1]. The next paragraph consists of his comments
on this, including a patch. For notation and terminology, we refer to the rest of this chapter.

[106, Proposition 4.1] is devoted to showing that primitive groups of diagonal type are not binary. The gap in the proof
stems from an implicit (and accidental) assumption in the first sentence of the proof of [106, Lemma 4.2] that the socle is a
product of at least three isomorphic nonabelian simple groups. This leaves open the case of two factors, for which it suffices
to consider the following setting: let G be a group acting on a nonabelian group T in such a way that the stabilizer of 1 ∈ T

satisfies Inn(T ) ≤ G1 ≤ Aut(T ) × 〈i〉 for i : T → T the inversion map. In this context, we show the action of G on T is
not binary. To see this, choose noncommuting a, b ∈ T , not both of order 2, and observe that (1, a, b, ab) and (1, a, b, ba) are
2-subtuple complete (witnessed by conjugating by 1, a, or b−1). However, since one of a or b is not of order 2, G1,a,b ≤ Aut(T ),
so G1,a,b fixes ab 6= ba. Thus, (1, a, b, ab) and (1, a, b, ba) are not 4-subtuple complete, so such an action is not binary.
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Second, we will give some motivation for interest in our result – thus we will survey some related results
in the study of relational structures, and in group theory. We will also briefly discuss Cherlin’s original
motivation for studying binary permutation groups, which arises from model theoretic considerations.

In neither of these first two aspects do we make any claim for originality – instead we seek to draw the
key definitions and examples together into one place. Much of the material of this kind that we present
below was worked out by Cherlin in his papers [20, 21, 26].

Our third aim in this chapter is to present some of the results and methods concerning binary permu-
tation groups that we consider to be most essential. These will be used in subsequent chapters when we
commence our proof of Theorem 1.3.

The remainder of this monograph is occupied with a proof of Theorem 1.3. In Chapter 2 we give a
number of general background results concerning groups of Lie type; in Chapter 3 we prove the theorem
for the exceptional groups of Lie type; in Chapter 4 we prove the theorem for the classical groups of Lie
type.

Acknowledgements

All three authors were supported in this work by the Engineering and Physical Sciences Research Council
grant number EP/R028702/1.

All three of us wish to express our thanks to Gregory Cherlin for his help and encouragement of our
work, and for his creation of the beautiful mathematics that inspired our research in the first place. Thanks
are also due to Joshua Wiscons for a number of helpful discussions.

NG and PS would like to thank their PhD students, Scott Hudson and Bianca Lodá; their research
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1.1 Basics: The definition of relational complexity

The notion of relational complexity can be defined in two different ways. Our job in this section is to present
these definitions, and to show that they are equivalent. Throughout this section G is a permutation group
on a set Ω of size t < ∞. Note that when we write “permutation group” we are assuming that the
associated action of G on Ω is faithful – in other words we can think of G as a subgroup of Sym(Ω).

1.1.1 Relational structures

The first approach towards relational complexity is via the concept of a relational structure [21]. Recall
that, for a positive integer ℓ, Ωℓ denotes the set of ℓ-tuples with entries in Ω.

Definition 1.1.1. A relational structure R is a tuple (Ω, R1, . . . , Rk), where Ω is a set, k is a non-negative
integer and, for each i ∈ {1, . . . , k}, there exists an integer ℓi ≥ 2 such that Ri ⊆ Ωℓi .

The set Ω is called the vertex set of the structure, while the sets R1, . . . , Rk are referred to as relations;
in addition, for each i, the integer ℓi is the arity of relation Ri. We say that the relational structure R is
of arity ℓ, where ℓ = max{ℓ1, . . . , ℓk}.

Example 1.1.2. If a relation, or a relational structure is of arity 2 (resp. 3), then it is commonly called
binary (resp. ternary). Binary relational structures which contain a single relation are nothing more nor
less than directed graphs: if R = (Ω, R1) is one such, then the elements of the vertex set Ω are of course
the vertices, and each pair in R1 can be thought of as a directed edge between two elements of Ω. (Note
that by “graph” here we implicitly mean a graph with no multiple edges.)

When considering a binary relational structure with more than one relation, it is sometimes helpful
to think of it as a directed graph in which there are several different “edge colours” – each relation
corresponding to a different “colour”.
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The notions of isomorphism and automorphism are generalizations of the corresponding definitions for
graphs.

Definition 1.1.3. Let R = (Ω, R1, . . . , Rk) and S = (Λ, S1, . . . , Sk) be relational structures. An isomor-
phism h : R → S is a bijection h : Ω → Λ such that

(ω1, . . . , ωℓi) ∈ Ri ⇐⇒ (ωh1 , . . . , ω
h
ℓi) ∈ Si.

An automorphism g of R is an element of Sym(Ω) that is also an isomorphism g : R → R. It is clear that
the set of all automorphisms of R forms a group under composition of bijections; we denote this group by
Aut(R), and note that it is a subgroup of Sym(Ω).

Note that we have only defined isomorphisms between relational structures that have the same number
of relations; the definition also implies that the (ordered) list of relation-arities must be the same for
isomorphic relational structures.2

Our focus will be on those relational structures that exhibit the maximum possible level of symmetry
– this requires the notion of homogeneity. To state this definition we must first explain what is meant by
“an induced substructure” – once again this notion is a direct analogue of the same idea for graphs.

Definition 1.1.4. Let R = (Ω, R1, . . . , Rk) be a relational structure, with Ri a relation of arity ℓi for
each i = 1, . . . , k. Let Γ be a subset of Ω. The induced substructure on Γ is the relational structure
RΓ = (Γ, R′

1, . . . , R
′
k) where R

′
i = Γℓi ∩Ri.

So, to clarify what we said above: if R = (Ω, R1) is a binary structure with a single relation (i.e. a
directed graph), and Γ is a subset of the vertex set Ω, then RΓ is precisely the induced subgraph on Γ.

Definition 1.1.5. A relational structure R = (Ω, R1, . . . , Rk) is called homogeneous if, for all Γ,Γ′ ⊂ Ω
and for all isomorphisms h : RΓ → RΓ′ , there exists g ∈ Aut(R) such that g|Γ = h.

The following example will be important shortly.

Example 1.1.6. Given a permutation group G on a set Ω of size t, we define a relational structure
RG = (Ω, R1, . . . , Rk), where the relations R1, . . . , Rk are precisely the orbits of the group G on the sets
Ω2, . . . ,Ωt−1.

Observe, first, that by definition any element of G maps an element of relation Ri to an element of
relation Ri, for all i ∈ {1, . . . , k}; we conclude that G ≤ Aut(RG).

On the other hand, suppose that h ∈ Aut(RG), and let r = (ω1, . . . , ωt−1) be a tuple of distinct elements
in Ω lying in relation Rj , for some j. The image of this tuple under h also lies in Rj; since Rj is an orbit
of G, this implies that there exists g ∈ G such that for all i ∈ {1, . . . , t − 1}, ωhi = ωgi . It follows that
ωht = ωgt , where ωt is the only element of Ω not represented in the tuple r. We conclude that h = g and
so, in particular, G = Aut(RG).

Finally, suppose that Γ and ∆ are proper subsets of Ω of size s such that the associated induced relational
structures are isomorphic, i.e. there exists an isomorphism h : (RG)Γ → (RG)∆. Let rγ = (γ1, . . . , γs) be
a tuple containing all of the distinct elements of Γ, and observe that rγ lies in a relation Rj of RG, for
some j. Indeed, by construction, rγ lies in the corresponding relation Rj of (RG)Γ, and so (rγ)

h lies in
the corresponding relation Rj of (RG)∆, and hence also lies in the relation Rj of RG. In particular, since
Rj is an orbit of G, we conclude that there exists g ∈ G such that for all i ∈ {1, . . . , s}, γhi = γgi . Since
G = Aut(RG), we conclude that RG is homogeneous.

2One can imagine a slight weakening of Definition 1.1.3 where one allows an automorphism of R to map a set of tuples
corresponding to one relation to the set of tuples corresponding to a different relation – for certain relational structures, this
would yield a larger automorphism group (which would contain Aut(R) as defined above, as a normal subgroup). We will not
need this extension in what follows.
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We are ready to give our first definition of relational complexity. Before stating it, we remind the reader
that we are assuming that G is a permutation group on a set Ω, and we recall that if R is any relational
structure with vertex set Ω, then Aut(R) is also a permutation group on Ω.

Definition 1.1.7. The structural relational complexity of a permutation group G is equal to the smallest
integer s ≥ 2 for which there exists a homogeneous relational structure R = (Ω, R1, . . . , Rk) of arity s such
that Aut(R) is permutation isomorphic to G.

Note that Example 1.1.6 implies, in particular, that if |Ω| ≥ 3, then the structural relational complexity
of G is well-defined, and is bounded above by |Ω| − 1 (and is at least 2). In what follows, we will write
SRC(G,Ω) for the structural relational complexity of the permutation group G.

One might wonder why we have required that SRC(G,Ω) ≥ 2. The reason is that, in the next section
we will define a different statistic TRC(G,Ω) using a completely different approach, and we will also require
that TRC(G,Ω) ≥ 2. We will then show that SRC(G,Ω) = TRC(G,Ω) for all permutation groups G on
a set Ω. Were we to omit the requirement that SRC(G,Ω) ≥ 2 and TRC(G,Ω) ≥ 2, there would be a
number of actions for which SRC(G,Ω) 6= TRC(G,Ω), for instance the natural action of Sym(Ω).

1.1.2 Tuples

In this section we give an alternative approach to the notion of relational complexity based on [26]. We
then show that it coincides with the approach of the previous section. As before G is a permutation group
on a finite set Ω.

Definition 1.1.8. Let 2 ≤ r ≤ n be positive integers, and let I = (I1, . . . , In) and J = (J1, . . . , Jn) be
elements of Ωn. We say that I and J are r-subtuple complete with respect to G if, for all k1, k2, . . . , kr
integers with 1 ≤ k1, k2, . . . , kr ≤ n, there exists g ∈ G with Igki = Jki for i ∈ {1, . . . , r}. In this case we
write I∼r J .

Note that if I∼r J and u ≤ r, then I∼u J .

Definition 1.1.9. The permutation group G has tuple relational complexity equal to s if the following two
conditions hold:

1. if n ≥ s is any integer and I, J are elements of Ωn such that I∼s J , then there exists g ∈ G such
that Ig = J .

2. s ≥ 2 is the smallest integer for which (1) holds.

We write TRC(G,Ω) for the tuple relational complexity of the permutation group G.

Put another way, the tuple relational complexity of G is the smallest integer s ≥ 2 such that

I∼s J =⇒ I∼n J,

for any integer n ≥ s, and any pair of n-tuples I and J .
It is not immediately clear, a priori, that TRC(G,Ω) exists for every permutation group G on the set

Ω. The next lemma deals with this concern.

Lemma 1.1.10. If SRC(G,Ω) = s, then TRC(G,Ω) exists and is bounded above by s.

Proof. Let n ≥ 2 be some integer, and let I and J be subsets of Ωn such that I∼s J . We must prove that
there exists g ∈ G such that Ig = J .

Let R be a homogeneous relational structure of arity s for which G = Aut(R). Write {I} (resp. {J})
for the underlying set associated with the n-tuple I (resp. J); as s ≥ 2, these sets must be of equal
cardinality bounded above by n. Now consider the induced substructures R{I} and R{J} and consider the
map h : R{I} → R{J} for which h(Ii) = Ji for all i ∈ {1, . . . , n}.
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We claim that h is an isomorphism of relational structures. Let (Ii1 , . . . , Iiu) be an element of some
relation Rj in R{I}. Note that u ≤ s and recall that I∼u J with respect to the action of G. Thus there
exists g ∈ G such that

(Ji1 , . . . , Jiu) = (Ii1 , . . . , Iiu)
g.

Then, since g ∈ Aut(R), we conclude that (Ji1 , . . . , Jiu) is an element of relation Rj in R{J}. We conclude
that h is an isomorphism as required.

Now, since R is homogeneous, there exists g ∈ G = Aut(R) such that g|{I} = h; in particular Ig = J ,
as required.

Lemma 1.1.11. SRC(G,Ω) ≤ TRC(G,Ω).

Proof. Let r = TRC(G,Ω). Define R = (Ω, R1, . . . , Rk), where R1, . . . , Rk are the orbits of G on Ωi for all
i ∈ {2, . . . , r}.

Clearly G ≤ Aut(R). Suppose that σ ∈ Aut(R), and let I = (ω1, . . . , ωt) be a t-tuple of distinct
elements of Ω, where t = |Ω| (so every entry of Ω occurs as an entry in I). Then I∼r Iσ, and so there exists
g ∈ G such that Ig = Iσ. This implies that σ = g, and so Aut(R) ≤ G. We conclude that G = Aut(R).

We must show that R is homogeneous. Let Γ and ∆ be subsets of Ω of size s such that there exists
an isomorphism ϕ : RΓ → R∆. Furthermore, let I = (γ1, . . . , γs) be an s-tuple of distinct elements of
Γ. Suppose first s ≤ r. Since R contains all the orbits of G on Ωs and since RΓ

∼= R∆, we deduce that
I and ϕ(I) are in the same G-orbit, that is, there exists g ∈ G such that Ig = ϕ(I). Thus ϕ = g|Γ, as
required. Suppose next s > r. Since all r-subtuples of I occur as relations in R and since RΓ

∼= R∆, we
conclude that I∼r ϕ(I). Since r = TRC(G,Ω), we deduce I∼s ϕ(I). As before, this implies that there
exists g ∈ G = Aut(R) such that Ig = ϕ(I); in other words ϕ = g|Γ, as required.

Corollary 1.1.12. SRC(G,Ω) = TRC(G,Ω).

In light of this corollary, we now drop the distinction between the two types of relational complexity:

Definition 1.1.13. The relational complexity of G is equal to the tuple relational complexity of G (and
hence also equal to the structural relational complexity of G), and is denoted RC(G,Ω).

In particular, a permutation group G ≤ Sym(Ω) is called binary if RC(G,Ω) = 2.

Our definition of relational complexity has, to this point, pertained only to permutation groups, i.e. to
faithful group actions. It is convenient to extend this definition now to any group action:

Definition 1.1.14. Suppose that a group G acts on a set Ω. The relational complexity of the action,
denoted RC(G,Ω), is the relational complexity of the permutation group induced by the action of G on Ω.

Note, finally, that in [26] the word arity is used as a synonym for relational complexity.

1.2 Basics: Some key examples

Our focus in this monograph is on actions with small relational complexity, thus the examples we present
below are skewed in this direction. In particular, all of the actions listed in Conjecture 1.1 are discussed.

As we shall see, there are times when the structural definition of relational complexity is easiest to
work with, and times when we prefer the tuple definition.

Before we outline the primary examples, we need to say a few words about the third family in Conjec-
ture 1.1. This family consists of all groups isomorphic to an affine orthogonal group V ⋊ O(V ) with V a
vector space over a finite field equipped with a non-degenerate anisotropic quadratic form, acting on itself
by translation, with complement the full orthogonal group O(V ). It is a straightforward consequence of
the classification of non-degenerate quadratic forms that if V admits an anisotropic quadratic form Q (i.e.
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one for which Q(v) 6= 0 for all v ∈ V \ {0})3, then dim(V ) ≤ 2. We will split this family into two smaller
families according to whether dim(V ) is 1 or 2;

3a. dim(V ) = 1: the associated group G is isomorphic to Fq⋊C2, where C2 acts as −1 on the finite field
Fq with q elements, and the action is on Ω = Fq. For G to be primitive we require that q is prime,
and we obtain that G is isomorphic to the dihedral group of order 2q, with the action being on the
q-gon, as usual.

3b. dim(V ) = 2 and the associated quadratic form is of minus type: the associated group G is isomorphic
to F2

q ⋊O−
2 (q)

∼= F2
q ⋊D2(q+1), where D2(q+1) is a dihedral group of order 2(q + 1).

First, let us observe that the relational complexity of the natural action of the symmetric group is as
small as it can possibly be.

Example 1.2.1. Consider the natural action of G = Sym(t) on the set Ω = {1, . . . , t}. Define

R = {(i, j) | 1 ≤ i, j ≤ t and i 6= j}.

Then R = (Ω, R) is the complete directed graph, R is homogeneous and G = Aut(R). We conclude
immediately that RC(G,Ω) = 2.

Note that the first family of permutation groups listed in Conjecture 1.1 is precisely the family of finite
symmetric groups in their natural action.

In many group-theoretic respects, the alternating group is very like the symmetric group. The next
example shows that relational complexity does not conform to this rule-of-thumb: while, as we have just
seen, the natural action of the symmetric group has relational complexity as small as it can possibly be,
the natural action of the alternating group has relational complexity as large as it can possibly be.

Example 1.2.2. Consider the natural action of G = Alt(t) on the set Ω = {1, . . . , t}. Consider the tuples

I = (1, 2, 3, . . . , t) and J = (2, 1, 3, . . . , t).

It is straightforward to check that I∼t−2J ; it is equally clear that the only permutation h for which Ih = J
is h = (1, 2) 6∈ G. We conclude that RC(G,Ω) ≥ t− 1. Now Example 1.1.6 implies that RC(G,Ω) = t− 1.

The previous two examples are a salutary warning that, in general, relational complexity behaves badly
with respect to subgroups. All is not lost however: Lemma 1.6.2 shows that the relational complexity of a
group is related to that of some of its subgroups.

Our first aim is to understand the actions listed in Conjecture 1.1. Note that the Families 2 and 3a
(using the notation at the start of this section) consist of primitive actions with very small point-stabilizers
(size 1 and 2, respectively). In the next couple of examples we consider this situation.

Example 1.2.3. If G acts regularly on Ω, then RC(G,Ω) is binary.
Proof: Suppose that I = (I1, . . . , In) and J = (J1, . . . , Jn) satisfy I ∼2 J . For i ∈ {1, . . . , n − 1},

let gi be an element of G that satisfies Igii = Ji and Igii+1 = Ji+1. The regularity of G implies that, for
j ∈ {1, . . . , n}, there is a unique element of G satisfying Igj = Jj . This fact, applied with j = 2, implies
that g1 = g2; then applied with j = 3, implies that g2 = g3, and so on. Thus g1 = · · · = gn−1; calling this
element g, we see that Ig = J and we conclude that I∼n J , as required.

Recall that the only regular primitive actions are associated with cyclic groups of prime order; we see,
then, that the second family of groups in Conjecture 1.1 are precisely the regular primitive groups.

3It may be perhaps better to call such a Q a non-singular form rather than an anisotropic form – a vector v is generally
called singular if Q(v) = 0, and isotropic if β(v,v) = 0 where β is the polar form of Q. If the characteristic of the field is odd,
these two definitions coincide, however in characteristic 2 this is not the case. Our definition of an anisotropic form requires
that the only singular vector for Q is the zero vector, but note that all vectors are isotropic in the characteristic 2 case. In
any case, we will stick to calling such a Q anisotropic as it is consistent with what has come before in the literature.
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Example 1.2.4. Suppose that G is transitive and a point-stabilizer H has size 2, and suppose that x is
the non-trivial element in H. Let C = xG be the conjugacy class of x in G. Then

RC(G) =

{

2, if C 6⊆ C2;

3, otherwise.

Proof: It is an easy exercise to verify that, under these assumptions, RC(G) ≤ 3. One can use, for
instance, Lemma 1.5.1 below.

Since RC(G) ≤ 3, it is clear that a pair of n-tuples will be n-subtuple complete if and only if they
are 3-subtuple complete. Thus, if there exists an n-tuple that is 2-subtuple complete but not n-subtuple
complete, then there must exist a 3-tuple that is 2-subtuple complete but not 3-subtuple complete.

Suppose that G is not binary, and let (P,Q) = ((P1, P2, P3), (Q1, Q2, Q3)) be a pair of 3-tuples that is
2-subtuple complete but not 3-subtuple complete. Then there is, by assumption, an element g of G that
maps (P1, P2) to (Q1, Q2). Replacing Q by Qg

−1
and relabelling, we conclude that there exists a pair

((P1, P2, P3), (P1, P2, P4))

that is 2-subtuple complete but not 3-subtuple complete, in particular P3 6= P4. Write Hi for the stabilizer
of Pi, and let xi be the non-trivial element of Hi. Then we must have

P x13 = P x23 = P4.

Since (P,Q) is not 3-subtuple complete, x1 6= x2, otherwise P
x1 = Q. Moreover, since P x1x23 = P3, we

conclude that x1x2 is the non-trivial element in H3. Thus C ⊆ C2, as required.

Suppose now that C ⊆ C2. Let x1, x2, x3 ∈ C with x3 = x1x2. In particular, there exist three
points P1, P2 and P3 with GP1 = 〈x1〉, GP2 = 〈x2〉 and GP3 = 〈x3〉. Set P4 := P x13 . We claim that
((P1, P2, P3), (P1, P2, P4)) is a pair of 3-tuples that is 2-subtuple complete. In fact,

(P1, P2)
1G = (P1, P2),

(P1, P3)
x1 = (P x11 , P x13 ) = (P1, P4),

(P2, P3)
x2 = (P x22 , P x23 ) = (P2, P

x3x2
3 ) = (P2, P

x1
3 ) = (P2, P4).

If this pair is 3-subtuple complete, then there exists g ∈ G with P g1 = P1, P
g
2 = P2 and P g3 = P4. In

particular, g ∈ 〈x1〉 ∩ 〈x2〉. If g = 1, then P3 = P4 = P x13 and hence x1 ∈ 〈x3〉. This gives x1 = x3
and hence x2 = 1 because x1x2 = x3. However, this is a contradiction. Thus g = x1 = x2 and hence
x3 = x1x2 = 1, again a contradiction. Therefore, ((P1, P2, P3), (P1, P2, P4)) is a pair of 3-tuples that are
2-subtuple complete but that are not 3-subtuple complete; hence G is not binary.

There is an important special case which occurs when point-stabilizers are of size 2, and G has a regular
normal subgroup N . In this case it follows immediately that C 6⊆ C2 (where C is as in Example 1.2.4),
and thus RC(G,Ω) = 2. Such an action is primitive if and only if N is of prime order, and we now see
that Family 3a pertaining to Conjecture 1.1 is precisely this.4

Our next example addresses Family 3b in Conjecture 1.1.

4The problem of specifying relational complexity when point-stabilizers have size 2 is now reduced to the problem of
studying when C, a certain conjugacy class of involutions satisfies C ⊆ C2. This problem is, in general, difficult, however one
potential avenue of investigation is via the class constants of the finite group G, denoted aijv. For any conjugacy class Ci in
a group G, we define Ĉi =

∑
c∈Ci

ci to be the class sum of Ci in the group algebra CG. Now write

ĈiĈj =

k∑

v=1

aijvĈv,

where k is the number of conjugacy classes in G. The non-negative integers aijv for 1 ≤ i, j, v ≤ k are the class constants of
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Example 1.2.5. This example is Lemma 1.1 of [21]. We identify Ω with a vector space V over a field
F , such that V is endowed with a quadratic form Q such that Q is anisotropic, i.e. Q(v) 6= 0 for all
v ∈ V \ {0}. We set G = V ⋊O(V ), where O(V ) is the isometry group of the form Q, and the semidirect
product is the natural one, as is the action of G on Ω = V .

Let us see that this action is binary. Let n be a positive integer, and assume that u = (u0, . . . , un) and
u′ = (u′0, . . . , u

′
n) satisfy u∼2 u′. Let us show that u ∼n+ 1u

′. We may suppose, without loss of generality
that u0 = u′0 = 0.

Note that u∼2 u′ implies that Q(ui) = Q(u′i) for all i ∈ {1, . . . , n}. What is more, since the isometry
group also preserves the polar form β of Q, u∼2 u′ also implies that

β(ui, uj) = β(u′i, u
′
j),

for any 1 ≤ i, j ≤ n. This, in turn, implies that

Q





n∑

j=1

cjuj



 = Q





n∑

j=1

cju
′
j



 , (1.2.1)

for any choice of scalars c1, . . . , cn ∈ F .
Let W = span(u), and let W ′ = span(u′) and suppose, without loss of generality, that u1, . . . , um is a

basis for W (for m = dim(W )). We claim that then u′1, . . . , u
′
m is a basis for W ′. To see this, it is enough

to show that if u1, . . . , uk are linearly independent, then so too are u′1, . . . , u
′
k. Suppose that c1, . . . , ck ∈ F

such that c1u
′
1 + · · · + cku

′
k = 0. Then, clearly,

Q(c1u
′
1 + · · ·+ cku

′
k) = Q(0) = 0.

But, by the observation above, this implies that Q(c1u1 + · · ·+ ckuk) = 0, which implies that c1u1 + · · ·+
ckuk = 0, which in turn implies that c1 = · · · = ck = 0. The claim follows.

Now we can define an isometry f : W → W ′ by setting f(ui) = u′i for i ∈ {1, . . . ,m}, and extending
linearly. Then Witt’s Lemma implies that there exists g ∈ O(V ) such that ugi = u′i for all i ∈ {1, . . . ,m}.
Let us now consider m < i ≤ n. Write ui =

∑m
j=1 cjuj and now, observe that (1.2.1) yields that

Q



u′i −
m∑

j=1

cju
′
j



 = Q



ui −
n∑

j=1

cjuj



 = Q(0) = 0.

Now the fact that Q is anisotropic implies that u′i−
m∑

j=1
cju

′
j = 0, and we conclude that ugi = u′i, as required.

All of the examples considered so far have been transitive. Let us briefly consider what can happen
with intransitive actions.

Example 1.2.6. Suppose that the action of G on Ω is intransitive with orbits ∆1, . . . ,∆v. It is immediate
from the definition that

RC(G,Ω) ≥ max{RC(G,∆1),RC(G,∆2), . . . ,RC(G,∆v)}.
G. Now a well-known formula asserts that

aijv =
|Ci||Cj |

|G|

∑

χ∈IrrC(G)

χ(gi)χ(gj)χ(g
−1
v )

χ(1)
.

We conclude, therefore, that if a point-stabilizer H = 〈x〉 has size 2, then RC(G) = 2 if and only if

∑

χ∈IrrC(G)

χ(x)3

χ(1)
= 0.
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On the other hand, let n ≥ 3 and consider the intransitive action of G = Sym(n) with two orbits, where
the action on the first orbit is the natural one of degree n, and the second orbit is of size 2. Clearly the
action of G on each orbit is binary; on the other hand, one can check directly that RC(G,Ω) = n = t− 2.

This example suggests that the problem of calculating the relational complexity of intransitive actions
may be rather difficult.

1.2.1 Existing results on relational complexity

Results on relational complexity above and beyond the basic examples discussed above are hard to obtain.
Nearly all of the important results are due to Cherlin, and his co-authors, and we briefly mention some of
these here. The first result is stated in [20], with a small correction in [21].

Theorem 1.2.7. Let Ω be the set of all k-subsets of a the set {1, . . . , n} with 2k ≤ n. If G = Sym(n),
then RC(G,Ω) = 2 + ⌊log2 k⌋. If G = Alt(n), then

RC(G,Ω) =







n− 1, if k = 1;

max(n− 2, 3), if k = 2;

n− 2, if k ≥ 3 and n = 2k + 2;

n− 3, otherwise.

The actions of the symmetric and alternating groups on partitions, rather than k-sets, are currently
being studied by Cherlin and Wiscons [24]. The only general result to date is for Sym(2n) and Alt(2n)
acting on Ω, the set of partitions of 2n into n blocks of size 2 (so, for G = Sym(2n), this is the action on
cosets of a maximal imprimitive subgroup of form Sym(2)wr Sym(n)). The result they have obtained for
n ≥ 2 is as follows:

RC(Sym(2n),Ω) = n;

RC(Alt(2n),Ω) =







2, n = 2;

4, n ∈ {3, 4};
n, n > 3 and n ≡ 0, 1, 3, 5 (mod 6);

n− 1, n > 4 and n ≡ 2, 4 (mod 6).

As we shall see below (Theorem 1.5.2), when considering large relational complexity, an important
family of actions involves groups G which are subgroups of Sym(m)wr Sym(r) containing (Alt(m))r, where
the action of Sym(m) is on k-subsets of {1, . . . ,m} and the wreath product has the product action of degree
t =

(m
k

)r
. The particular situation where G = Sym(m)wr Sym(r) is studied in [26]. We summarise some

of the results there, using the notation just established.

Theorem 1.2.8. Let G = Sym(m)wr Sym(r) acting on a set Ω of size t =
(m
k

)r
, as described.

1. If m = 2, then k = 1 and RC(G,Ω) = 2 + ⌊log2 r⌋.

2. If k = 1, then RC(G,Ω) ≤ m+ ⌊log2 r⌋.

3. RC(G,Ω) ≤ ⌊2 + log2 k⌋⌊1 + log2 r⌋ with equality if m ≥ 2k⌊1 + log2 r⌋.

The particular situation where k = 1 and G = Sym(m)wr Sym(r) (so we are considering the natural
product action of degree mr) has been taken much further in a series of papers by Saracino [87, 88, 89].
Saracino’s results effectively yield an exact value for the relational complexity of this family of actions. We
do not write this value here as the precise formulation of the results is slightly involved; instead we refer
to [26, §6] and to the papers of Saracino, particularly the first.
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1.3 Motivation: On homogeneity

In his paper [20], Cherlin chooses a quote from Aschbacher as an epigraph. This quote, plus some more,
goes as follows:

Define an object X in a category C to possess the Witt property if, whenever Y and Z are
subobjects of X and α : Y → Z is an isomorphism, then α extends to an automorphism of
X. Witt’s Lemma says that orthogonal spaces, symplectic spaces, and unitary spaces have the
Witt property in the category of spaces with forms and isometries. All objects in the category
of sets and functions have the Witt property. But in most categories few objects have the Witt
property; those that do are very well behaved indeed. If X is an object with the Witt property
and G is its group of automorphisms, then the representation of G on X is usually an excellent
tool for studying G. [3, pp. 81, 82]

One should think of “the Witt property” as a generalization of the notion of homogeneity which we have
introduced in the specific setting of relational structures. The study of homogeneous objects in different
categories has a long and interesting history.5

Before discussing this history, let us delve a little deeper into why such objects have received attention:
Aschbacher’s answer is given above. This approach has its roots in the Erlangen Programme of Klein, in
which the key features of a particular “geometry” define, and are defined by, the group of automorphisms
of said geometry. The idea here is that one studies the geometry in question, one deduces information
about the geometry, which one then reinterprets as information about the associated group; one can use
this information about the group to deduce further information about the geometry and so on. Thus the
process of mathematical inquiry moves back-and-forth between geometrical study and algebraic (group
theoretic).

The efficacy of this approach varies considerably – if an object has a very small automorphism group
for instance, then group theory may provide very little insight. On the other hand, as Aschbacher suggests,
this approach is most spectacularly successful when the object in question is homogeneous. Indeed the two
examples which Aschbacher mentions clearly illustrate the success of this approach.

First, we note that the category of sets and functions have the Witt property. If we restrict ourselves to
finite objects in this category, then the associated automorphism groups are the finite symmetric groups,
Sym(n). Of course, all of the basic group-theoretical information about these groups is most naturally
expressed in the language of their natural (homogeneous) action on a set of size n. This includes their
conjugacy class structure (via cycle type), and their subgroup structure (via the O’Nan–Scott-Aschbacher
Theorem [2, 91]; see also [71]).

Second, in the category of spaces with forms, basic linear algebra asserts that objects associated with
a zero form (i.e. naked vector spaces) have the Witt property; Witt’s Lemma extends this to cover objects
associated with either a non-degenerate quadratic or non-degenerate sesquilinear form. Again, restricting
ourselves to finite such objects, we obtain the finite classical groups as the associated automorphism
groups. As before, the basic group-theoretical properties of these groups are most naturally expressed
in the language of their natural homogeneous action on the associated vector space. This includes their
conjugacy class structure (via rational canonical form for GLn(q), and the variants due to Wall for the
other classical groups [101]), and their subgroup structure (via Aschbacher’s Theorem [1]).

In light of all this, a natural question when studying some (permutation) group G is whether we can
find an object in some category on which G acts homogeneously. Example 1.1.6 gives an easy answer to
this: it turns out that there is always such an object in the category of relational structures. The bad news
is that the object provided by Example 1.1.6 is little more than an encoding of the complete structure of
the permutation group in terms of a relational structure – studying the structure RG will hardly be easier
than studying the original group and its associated action.

5There is some inconsistency in terminology across the literature – homogeneity as we have defined it here is sometimes
called “ultra-homogeneity” while homogeneity refers to a strictly weaker property.
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The investigation of relational complexity seeks to remedy this disappointing state of affairs: given a
group G and an associated action, RC(G,Ω) gives us an indication of the efficiency with which we can
build a relational structure on which G can act homogeneously. From this point of view, an “efficient”
representation ofG acting homogeneously on a relational structure is one for which the arity of the structure
is as small as possible.

There is an alternative way of viewing efficiency in this context where one is, instead, interested in
using relational structures with as few relations as possible (but not necessarily worrying about the arity
of the relations used). We will not pursue this point of view here, but we refer to [52] (for the primitive
case) and to [22] (for the general case), for results that pertain to this approach.

1.3.1 Existing results on homogeneity

We briefly review some important results on homogeneity for particular finite relational structures.
The classification of homogeneous graphs was partially completed by Sheehan [94], and then completely

by Gardiner [42]. Indeed, Gardiner’s result applies to a wider class of graphs than those we would call
homogeneous. This classification was then extended by Lachlan to homogeneous digraphs [60].

In order to state these results we need some terminology: a digraph, Γ, is an ordered pair (V (Γ), E(Γ)),
where V (Γ) is a non-empty set, and E(Γ) is an irreflexive binary relation on that set. The digraph is
symmetric (resp. anti-symmetric) if, whenever (x, y) ∈ E(Γ), we have (y, x) in (resp. not in) E(Γ). So a
symmetric digraph is the object commonly called a graph in the literature.

If Γ and ∆ are two digraphs, then we can construct two new digraphs with vertex set V (Γ)× V (∆):

1. in the composition of Γ and ∆, Γ[∆], vertices (u1, v1) and (u2, v2) are connected if and only if
(u1, u2) ∈ E(Γ), or u1 = u2 and (v1, v2) ∈ E(∆);

2. in the direct product of Γ and ∆, Γ × ∆ vertices (u1, v1) and (u2, v2) are connected if and only if
(u1, u2) ∈ E(Γ) and (v1, v2) ∈ E(∆).

We write Kn for the complete (symmetric di)graph on n vertices. We also define two infinite families
of graphs, both indexed by a parameter n ∈ Z with n ≥ 3:

1. Λn is the digraph with vertex set {0, 1, . . . , n−1} and (x, y) ∈ E(Γn) if and only if x−y ≡ 1 (mod n);

2. ∆n is the symmetric digraph with vertex set {0, 1, . . . , n − 1} and (x, y) ∈ E(∆n) if and only if
x− y ≡ ±1 (mod n).

Thus Λn is the directed cycle on n vertices, and ∆n is the undirected cycle on n vertices. Let S
(resp. A) denote the set of homogeneous symmetric (resp. antisymmetric) digraphs. We write Γ for the
complement of Γ. Then Gardiner’s result is the following:

Theorem 1.3.1. A digraph Γ is in S if and only if Γ or Γ is isomorphic to one of

∆5, K3 ×K3, Km[Kn],

where m,n ∈ Z+.

Now we will state Lachlan’s result in three stages. First we need to define three “sporadic homogeneous
digraphs”; this is done in Figure 1.1.

Second we classify the homogeneous antisymmetric digraphs.

Theorem 1.3.2. A digraph Γ is in A if and only if Γ is isomorphic to one of

Λ4, Kn, Kn[Λ3], Λ3[Kn], H0,

where n ∈ Z+.
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(a) H0 (b) H1 (c) H2

Figure 1.1: Three homogeneous digraphs. The presence of an undirected edge {v,w} in the diagrams for
H0 and H1 indicates that both directed edges between v and w are present. In the diagram for H2 we have
omitted most of the directed edges. To obtain the remaining edges, note first that each vertex in H2 has
a unique mate, to which it is connected by an undirected edge (indicated in the diagram). Next, let v and
w be vertices, and let w′ be the mate of w. Finally, if (v,w) is a directed edge, then (w′, v) is a directed
edge, and if (w, v) is a directed edge, then (v,w′) is a directed edge. This leads to the insertion of another
36 directed edges.

Finally we can state Lachlan’s classification of homogeneous digraphs.

Theorem 1.3.3. A digraph Γ is homogeneous if and only if Γ or Γ is isomorphic to a digraph with one of
the following forms:

Kn[A], A[Kn], S, Λ3[S], S[Λ3], H1, H2,

where n ∈ Z+, A ∈ A and S ∈ S.
Lachlan’s result, expressed in our terms, is almost a classification of those homogeneous relational

structures R = (Ω, R1) such that R1 is binary. We write “almost” because Lachlan imposes the condition
that R1 is irreflexive whereas we make no such restriction. Nonetheless, given that in this monograph we are
focusing on transitive actions, Lachlan’s result is sufficient: any relational structure R = (Ω, R1) for which
R1 is binary and Aut(R) is transitive on Ω, will either be precisely of the form listed in Theorem 1.3.3, or
else will be of the form listed in Theorem 1.3.3 with the addition of a loop at every vertex. We have made
no attempt to extend this classification to the situation where Aut(R) is not transitive on Ω although we
note that in this situation, Aut(R) would have exactly two orbits on Ω – one corresponding to vertices
with loops, one corresponding to vertices without.

The groups Aut(Γ) for Γ appearing in Theorem 1.3.3 have not been explicitly listed to our knowledge.
We will not calculate this list, but we can at least start the task: It is easy to check that Aut(Λn) is the
cyclic group of order n, Aut(∆n) is the dihedral group of order 2n and Aut(Kn) is the symmetric group of
degree n. It is slightly more involved to check the larger sporadic examples; the automorphism group and
the action on points (which is necessarily binary) are as follows:

1. Aut(K3 ×K3) = Sym(3)wr Sym(2) in the product action on 9 points;

2. Aut(H0) ∼= SL2(3) acting on the 8 cosets of a Sylow 3-subgroup;

3. Aut(H1) is the semidihedral group of order 16 – it has presentation 〈x, y|x8 = y2, xy = x3〉 – in an
action of degree 8;

4. Aut(H2) ∼= Alt(4) ⋊ C4 where C4 = 〈x〉 acts by conjugation on Alt(4) via gx = g(1,2,3,4) for all
g ∈ Alt(4); as an abstract group Aut(H2) ∼= (Alt(4)× 2).2, and the action is of degree 12.
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To complete the enumeration of the automorphism groups of homogeneous digraphs, we would need to
study the automorphisms of the various graphs arising from the composition of two others: for instance,
we would need to calculate Aut(A[Kn]) and Aut(Kn[A]) for each A ∈ A. We will not do this.

There are a multitude of results that extend Gardiner, Sheehan and/or Lachlan’s results to finite
(di)graphs with automorphism groups that satisfy weaker properties than homogeneity. We particularly
mention [48] which considers so-called set-homogeneous digraphs. In a different direction Cherlin has
classified the homogeneous countable digraphs [25] extending work of Lachlan and Woodrow classifying
the homogeneous countable graphs [63], and of Lachlan classifying the homogeneous countable tournaments
[61].

Analogues for some of the given results exist for relational structures containing a single relation which
may not be binary. Lachlan and Tripp have classified the homogeneous 3-graphs [64] and Cameron has
done the same for homogeneous k-graphs with k ≥ 6 [17]; these results are analogues of Gardiner’s result
for ternary relational structures with a single relation. Devillers has studied a rather similar problem in
her work on homogeneous Steiner systems, however the notion of homogeneity considered there is different
to ours [37].

1.4 Motivation: On model theory

Cherlin’s conjecture arises from model theory considerations rooted in Lachlan’s theory of finite homoge-
neous relational structures (see, for instance, [59, 62]). We give a brief summary of some of the main ideas;
the origin of nearly everything we consider here is [20].

Let us consider a family of theorems indexed by parameters k and ℓ, with k, ℓ ∈ Z+ and ℓ ≥ 2. Theorem
(k, ℓ) is a full classification of the homogeneous relational structures with at most ℓ relations, and with arity
at most k. So, for instance, the first theorem we are likely to consider is Theorem (2, 1) which (modulo
the transitivity assumption we discussed above) is just Theorem 1.3.3, a result of Lachlan himself that
classifies finite binary relational structures with one relation; in other words finite simple homogeneous
directed graphs.

Lachlan’s theory of finite homogeneous relational structures asserted a number of facts about the form
of these theorems, and about the relationships between them. With regard to the form of the theorem,
Lachlan’s theory asserts that each theorem can be written as follows:

“A finite homogeneous relational structure of arity at most k with at most ℓ relations lies in one of a
number of infinite families, or else is one of a finite number of sporadic individuals.”

The power of this assertion is in the restrictions which Lachlan placed upon the definition of the word
“family”: a family of finite homogeneous relational structures in Lachlan’s sense is an infinite collection of
structures that can be constructed from a single infinite relational structure via a set of explicitly described
operations.

With regard to the relationships between these theorems, Lachlan’s theory gives us information about
what the word “sporadic” means in these theorems. Specifically he asserts that any sporadic individual
cropping up in Theorem (k, ℓ), say, will appear later as part of an infinite family in Theorem (k′, ℓ′) for
some k′ ≥ k and ℓ′ ≥ ℓ. Thus the “sporadic-ness” of a particular homogeneous relational structure is, in
some sense, not genuine – rather, it is an artefact of restricting our investigations to particular values of k
and ℓ.

The significance of all of this from a group-theoretic point of view lies in Cherlin’s observation that
every finite permutation group can be viewed as the automorphism group of a homogeneous relational
structure – we demonstrated one way of seeing this in Example 1.1.6. This observation allows us to shift
our point of view on the family of theorems studied by Lachlan: we can think of them as being about finite
permutation groups.

In this setting the parameters k and ℓ can be seen as providing some kind of stratification on the universe
of finite permutations groups, and Lachlan’s results concerning “families” and “sporadic-ness” can be seen
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as statements about groups as well as structures. Finally, we can rewrite the theorems themselves from a
group-theoretic point of view; they take the following form:

“Let G be the automorphism group of a homogeneous relational structure R on a set Ω of arity at most k
with at most ℓ relations. Then, viewed as a permutation group on Ω, G lies in one of a number of infinite

families, or else is one of a finite number of sporadic individuals.”

With this set-up, any given permutation group G will occur in an infinite number of Theorems (k, ℓ).
Typically, though, we are interested in the first such occurrence: we are interested in the pair (k, ℓ) for
which k is minimal, and having fixed k as this minimal value, we then seek the minimum possible value of
ℓ. The resulting pair (k, ℓ) is a measure of the complexity of G from the model-theoretic point of view or,
using the point of view espoused in §1.3, gives a measure of the efficiency with which G can be represented
as the automorphism group of a homogeneous relational structure.

Of course, plenty remains: we know that these theorems about finite permutation groups exist; we
know their form, and we know something about the relationships that exist between them. We would like
to know the statements of these theorems, and we would like to prove them!

As described in the previous section, this last task has only been completed for Theorem (2, 1) (and,
even then, with a small caveat). The main theorem of this monograph completes the task of ascertaining
which groups appear as primitive permutation groups in any Theorem (2, ℓ).

1.5 Motivation: Other important statistics

It turns out that relational complexity is closely connected to a number of other permutation group
statistics, some of which have received a great deal of attention in the literature. Our reference for the
following definitions is [5].

For Λ = {ω1, . . . , ωk} ⊆ Ω and for G ≤ Sym(Ω), we write G(Λ) or Gω1,ω2,...,ωk
for the point-wise

stabilizer. If G(Λ) = {1}, then we say that Λ is a base. The size of the smallest possible base is known as
the base size of G and is denoted b(G).

We say that a base is a minimal base if no proper subset of it is a base. We denote the maximum size
of a minimal base by B(G).

Given an ordered sequence of elements of Ω, [ω1, ω2, . . . , ωk], we can study the associated stabilizer
chain:

G ≥ Gω1 ≥ Gω1,ω2 ≥ Gω1,ω2,ω3 ≥ · · · ≥ Gω1,ω2,...,ωk
.

If all the inclusions given above are strict, then the stabilizer chain is called irredundant. If, furthermore,
the group Gω1,ω2,...,ωk

is trivial, then the sequence [ω1, ω2, . . . , ωk] is called an irredundant base. The size
of the longest possible irredundant base is denoted I(G).

Finally, let Λ be any subset of Ω. We say that Λ is an independent set if its point-wise stabilizer is not
equal to the point-wise stabilizer of any proper subset of Λ. We define the height of G to be the maximum
size of an independent set, and we denote this quantity by H(G).

Note that if G is a transitive permutation group on a set Ω, then H(G) = 1 if and only if G is regular;
similarly, H(G) = 2 if and only if the stabilizer of a point is a non-trivial TI-subgroup of G. (Recall that
X is said to be a non-trivial TI-subgroup of a group G if X is a proper subgroup of G and X ∩Xg = 1,
for every g ∈ G \NG(X).)

There is a basic connection between the four statistics we have defined so far:

b(G) ≤ B(G) ≤ H(G) ≤ I(G) ≤ b(G) log t. (1.5.1)

Recall that in this document, if the base is not specified, then “log” always means “log to the base 2”;
recall, also, that t = |Ω|. Let us see why (1.5.1) is true:
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The first inequality is obvious. For the second, suppose that Λ is a minimal base; then Λ is an
independent set. For the third, suppose that Λ := {ω1, ω2, . . . , ωk} is an independent set and observe that

G > Gω1 > Gω1,ω2 > Gω1,ω2,ω3 > · · · > Gω1,ω2,...,ωk

is a strictly decreasing sequence of stabilizers. In particular, [ω1, ω2, . . . , ωk] is irredundant and we may
extend this irredundant sequence to an irredundant base. Hence H(G) ≤ I(G).

The fourth inequality has been attributed to Blaha [7] who, in turn, describes it as an “observation of
Babai” [4]. Suppose that G has a base of size b = b(G). Then, in particular |G| ≤ tb. On the other hand,
any irredundant base and any independent set have size at most log |G|. We conclude that I(G) ≤ log(tb),
and the result follows.

We are ready to connect relational complexity to the four statistics we have just defined. The key result
is the following.

Lemma 1.5.1. RC(G) ≤ H(G) + 1.

Proof. Let h = H(G) and consider a pair (I, J) ∈ Ωn such that I∼h+1J . We must show that I∼n J .
Observe that we can reorder the tuples without affecting their subtuple completeness. Hence, without

loss of generality, we can assume that

GI1 > GI1,I2 > · · · > GI1,I2,...,Iℓ ,

for some ℓ ≤ h and then this chain stabilizers, i.e.

GI1,...,Iℓ = GI1,...,Iℓ+j
,

for all 1 ≤ j ≤ n − ℓ. From the assumption of h-subtuple completeness it follows that there exists an
element g ∈ G such that Igi = Ji for all 1 ≤ i ≤ ℓ and observe that the set of all such elements g forms a
coset of GI1,...,Iℓ .

The assumption of (h + 1)-subtuple completeness implies, moreover, that for all 1 ≤ j ≤ n − ℓ there
exists gj ∈ G such that

{

I
gj
i = Ji, for 1 ≤ i ≤ ℓ,

I
gj
ℓ+j = Jℓ+j .

The set of all such elements gj forms a coset of GI1,...,Iℓ,Iℓ+j
, which is, again, a coset of GI1,...,Iℓ. Since any

coset of GI1,...,Iℓ is defined by the image of the points I1, . . . , Iℓ under an element of the coset, we conclude
that elements of the same coset of GI1,...,Iℓ map Iℓ+j to Jℓ+j for all 1 ≤ j ≤ n− ℓ. In particular, I∼n J , as
required.

Lemma 1.5.1 has been exploited in [44], where an upper bound on the height of a primitive permutation
group is proved, from which the obvious upper bound on relational complexity is deduced. The main result
on height is the following:

Theorem 1.5.2. Let G be a finite primitive group of degree t. Then one of the following holds:

1. G is a subgroup of Sym(m)wr Sym(r) containing (Alt(m))r, where the action of Sym(m) is on k-
subsets of {1, . . . ,m} and the wreath product has the product action of degree t =

(m
k

)r
;

2. H(G) < 9 log t.

Note that various members of the family listed at item (1) of Theorem 1.5.2 genuinely violate the bound
at item (2): for example, when r = k = 1, we obtain the groups Sym(t) and Alt(t) in their natural action,
for which the height is t − 1 and t − 2, respectively. In fact, though, we do not know the exact height of
the groups listed at item (1) for all possible values of k, m and r.
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The proof of Theorem 1.5.2 exploits the rich array of results in the literature giving bounds on b(G)
for various families of permutation groups. In particular, use is made of the proof of the Cameron-Kantor
conjecture [19] by Liebeck and Shalev [80], and of Cameron’s follow-up conjecture giving a value for the
associated constant [18] by many authors [11, 13, 14, 15]. These results mean that, in the almost simple
case, work is only required for the so-called “standard actions”.

Theorem 1.5.2 is an analogue of an existing result for b(G) [70]; now (1.5.1) and Lemma 1.5.1 yield
analogues for B(G) and RC(G). With this result for RC(G), and with the proof of Conjecture 1.1, we now
have a good handle on those permutation groups G for which RC(G) is either very large, or as small as
possible. In the case where RC(G) is large, work remains to be done to ascertain the relational complexity
of the groups listed at item (1) of the theorem; the most important results in this direction can be found
in [26], and we summarised some of these above in Theorem 1.2.8.

The relationship between the various statistics occurring in (1.5.1), and between these statistics and
RC(G) is an intriguing area of investigation, although not one that has hitherto received much attention.
Cherlin and Wiscons have started to study some of these questions, and we mention two of their remarks
[23]:

1. From computational evidence, it appears that RC(G) and H(G) are “close” (say, RC(G) ≥ H(G)−3).
The obvious exceptions to this rule of thumb are the symmetric groups in their natural action; more
generally, among primitive groups of degree at most 100, the only groups for which RC(G) < H(G)−3
are various members of the family listed at item (1) of Theorem 1.5.2.

2. Again, from computational evidence, more often than not, it appears that B(G) and H(G) coincide
for primitive groups. Moreover, for all primitive groups of degree at most 100, H(G) − B(G) ≤ 3.

We shy away from making conjectures about the general pattern for larger n but, still, these lines of inquiry
seem promising.

1.6 Methods: basic lemmas

Most of the results in this section were first written down in [34, 45, 46]. All of these papers were focused
on showing that certain group actions are not binary, hence the lemmas we present here tend to yield lower
bounds for relational complexity.

As always G is a group acting on a set Ω. In what follows, we will write I, J ∈ Ωn to mean that
n ≥ 2 is a positive integer and I, J are elements of Ωn; we will always assume that I = (I1, . . . , In) and
J = (J1, . . . , Jn). We will write I∼k J to mean that the pair (I, J) is k-subtuple complete; we will write
I∼k,nJ to mean that the pair (I, J) is k-subtuple complete but not n-subtuple complete with respect to the
action of G.

1.6.1 Relational complexity and subgroups

Examples 1.2.1 and 1.2.2 serve as a warning that relational complexity can behave badly with respect to
arbitrary subgroups of the group G. Nonetheless, something can still be said.

Lemma 1.6.1. Let G be a transitive permutation group on Ω and let M be a point-stabilizer in this action.
Let Λ be a non-trivial orbit of M . Then

RC(G,Ω) ≥ RC(M,Λ).

Note, in particular, that if G is binary, then the action ofM on all non-trivial suborbits must be binary.
This will be useful later, particularly when we consider actions in which G is very large and M relatively
small (for instance, G = E8(2), and M = Aut(PSU3(8))), in which case it is sometimes possible to use
magma to list all of the transitive binary actions of M .
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Proof. Write α for an element of Ω stabilized by M . Let r = RC(M,Λ); then there exist I, J ∈ Λn such
that I ∼r−1,nJ with respect to the action of M on Λ. But now observe that if we define

I∗ = (α, I1, . . . , In) and J
∗ = (α, J1, . . . , Jn),

then I∗ ∼
r−1,n+1J

∗, and the result follows.

We write (G :M) here, and below, to mean the set of right cosets of M in G.

Lemma 1.6.2. Let M < H < G. Then RC(G : (G :M)) ≥ RC(H, (H :M)).

Proof. Write r = RC(H : (H : M)), and observe that Λ = (H : M) is a subset of Ω = (G : M). Then
there exist I, J ∈ Λn such that I ∼r−1,nJ with respect to the action of H.

We must show that I ∼r−1,nJ with respect to the action of G. That I∼r−1J with respect to the action of
G is immediate. Suppose that I∼n J with respect to the action of G. Then there exists g ∈ G such that
Igi = Ji for all i ∈ {1, . . . , n}. Since Ii, Ji ∈ (H : M) for all i ∈ {1, . . . , n}, we must have g ∈ H. But then
I∼n J with respect to the action of H, which is a contradiction.

1.6.2 Relational complexity and subsets

For Λ a subset of Ω we write GΛ for the set-wise stabilizer of Λ, and G(Λ) for the point-wise stabilizer of

Λ. We write GΛ for the permutation group induced on Λ by GΛ; note that GΛ ∼= GΛ/G(Λ).

In this section we present some results connecting RC(G,Ω) with RC(GΛ,Λ).

Definition 1.6.3. Let t := |Ω|. For k ∈ Z+ with k ≥ 2, we say that the action of G on Ω is strongly
non-k-ary if there exist I, J ∈ Ωt such that I∼k,t J , and all elements of I (resp. J) are distinct.

Note that this definition requires the existence of I, J ∈ Ωt with I∼k,t J and with every element of Ω
occurring as an entry of I (and, therefore, also of J). If k = 2, then we tend to write strongly non-binary
as a synonym for strongly non-k-ary.

The notion of a strongly non-k-ary set is connected to a classical notion in permutation group theory
which was introduced by Wielandt [103].

Definition 1.6.4. Let G ≤ Sym(Ω) and let k ∈ Z+. The k-closure of G is the set

G(k) = {σ ∈ Sym(Ω) | ∀I ∈ Ωk, there exists g ∈ G, Ig = Iσ}.

We say that G is k-closed if G = G(k).

Observe that G(k) is the largest subgroup of Sym(Ω) that has the same orbits on the set of k-tuples of
Ω as G. Now the connection with strongly non-k-ary sets is as follows.

Lemma 1.6.5. The group G is strongly non-k-ary if and only if G is not k-closed.

Proof. Write Ω := {ω1, . . . , ωt}. If G is not k-closed, then there exists σ ∈ G(k) \ G. Now, it is easy to
verify that I := (ω1, . . . , ωt) and J := Iσ = (ωσ1 , . . . , ω

σ
t ) are k-subtuple complete (because σ ∈ G(k)) and

are not t-subtuple complete (because σ /∈ G). Thus I∼k,t J , and we conclude that the action of G on Ω is
strongly non-k-ary. The converse is similar.

The most important example, for us, of a permutation group that is not k-closed is as follows.

Example 1.6.6. Let G be a k-transitive permutation group on Ω, for some integer k ≥ 2. The definition
implies that G(k) = Sym(Ω).

We immediately conclude that Alt(Ω) is not (t−2)-closed, and we obtain (again) that RC(Alt(Ω),Ω) ≥
t− 1.

Recall that the Classification of Finite Simple Groups implies that examples of k-transitive permutation
groups that do not contain Alt(Ω) only exist for k ≤ 5. What is more, all such groups are classified for
k ≥ 2 (see, for instance [38, §7.7]).
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The next lemma shows how we will use the notion of a strongly non-k-ary permutation group in what
follows.

Lemma 1.6.7. Let Λ ⊆ Ω. If GΛ is strongly non-k-ary, then RC(G,Ω) > k.

Proof. Suppose that |Λ| = ℓ, and let I, J be ℓ-tuples of distinct elements of Λ such that I∼k,ℓ J with respect

to the action of GΛ. It is enough to show that I∼k,ℓ J with respect to the action of G. It is immediate that
I∼k J with respect to the action of G. On the other hand, if I∼ℓ J , then there exists g ∈ G such that
Ig = J . Since I contains all elements of Λ, we conclude that g ∈ GΛ which contradicts the fact that I 6∼ℓ J
with respect to the action of GΛ.

1.6.3 Strongly non-binary subsets

Our final few results apply specifically to the study of binary actions. As usual G acts on a set Ω, and we
refer to a subset Λ ⊆ Ω as strongly non-binary if GΛ is strongly non-binary.

The next lemma details our first example of such a subset. This example was first described in [46]; its
key properties are a consequence of Example 1.6.6 and Lemma 1.6.7.

Lemma 1.6.8. Suppose that there exists a subset Λ ⊆ Ω such that |Λ| ≥ 2 and GΛ is a 2-transitive proper
subgroup of Sym(Λ). Then GΛ is strongly non-binary and the action of G on Ω is not binary.

In subsequent chapters, our focus is on proving that certain actions are not binary. Lemma 1.6.8 means
that we will be interested in finding subsets which have 2-transitive set-wise stabilizers. The next lemma
requires no proof, but we include it as it clarifies when such subsets exist.

Lemma 1.6.9. Let K be some 2-transitive group, and let K0 be a point-stabilizer in K. Let H be a
subgroup of G and suppose that ϕ : H → K is a surjective homomorphism. Let M be the stabilizer in G
of a point ω ∈ Ω and let C be the core of H ∩M in H. If Ker(ϕ) = C and ϕ(H ∩M) = K0, then H acts
2-transitively on the orbit ωH .

The next lemma is a useful tool in finding subsets on which a set-stabilizer acts 2-transitively (recall
that, when r ≥ 2, the affine special linear group ASLr(q) is 2-transitive in its natural action on qr points).

Lemma 1.6.10. Let G be a finite group acting transitively on a set Ω with point-stabilizer M , and suppose
that the following two conditions hold:

(i) M has a subgroup A ∼= SLr(q), where r ≥ 2, and

(ii) G has a subgroup S that is a central quotient of SLr+1(q), such that A ≤ S (the natural completely
reducible embedding) and S 6≤M .

Then there is a subset ∆ of Ω such that |∆| = qr and G∆ ≥ ASLr(q).

Proof. We have A ≤ S∩M < S. Since A is embedded in S via the natural completely reducible embedding,
we have S ∩M ≤ Pi(S) with i ∈ {1, r}, where Pi(S) is a maximal parabolic subgroup of S stabilizing a
1-dimensional or an r-dimensional subspace. Say i = 1 (the case i = r is entirely similar). Then writing
matrices with respect to a suitable basis,

S ∩M ≤ P1(S) =

{(
Y v
0 λ

)

: Y ∈ GLr(q), v ∈ Frq,det(Y )λ = 1

}

,

where A is the subgroup obtained by setting λ = 1, det(Y ) = 1 and v = 0. Define

U =

{(
I 0
a 1

)

: a ∈ Frq

}

,

and set ∆ = {Mu : u ∈ U} ⊆ Ω (where we identify Ω with the set (G :M) of right cosets of M in G).
Since M ∩ U = 1, the cosets Mu (u ∈ U) are all distinct, and so |∆| = qr. Since A normalizes U and

A ≤M , the subgroup UA ∼= qr.SLr(q) stabilizes ∆, and since UA∩M = A, we have (UA)∆ = ASLr(q) ≤
G∆.
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It turns out that in the context of almost simple groups, it is convenient to use a variant of Lemma 1.6.8
where we don’t just seek proper 2-transitive subgroups of Sym(Ω), but also exclude Alt(Ω) from our
consideration. To that end we include the following definition which first appeared in [46].

Definition 1.6.11. A subset Λ ⊆ Ω is a G-beautiful subset if GΛ is a 2-transitive subgroup of Sym(Λ)
that is isomorphic to neither Alt(Λ) nor Sym(Λ).

In what follows, if the group G is clear from the context, we will speak of a beautiful subset rather
than a G-beautiful subset of Ω. Observe that a beautiful subset of Ω is a strongly non-binary subset. The
reason for the stronger definition is explained by the following result.

Lemma 1.6.12. Suppose that G is almost simple with socle S. If Ω contains an S-beautiful subset, then
G is not binary.

Proof. Let Λ be an S-beautiful subset and observe that Λ has cardinality at least 5. Then, since S is
normal in G, the group (SΛG(Λ))/G(Λ) is a normal subgroup of GΛ/G(Λ). This implies that GΛ/G(Λ)

is (isomorphic to) a 2-transitive proper subgroup of Sym(Λ). Then Lemma 1.6.8 implies that G is not
binary.

Although in this paper we do not need to deal with C1-actions for classical groups since they were dealt
with in [46], we include the next lemma because it clearly illustrates the beautiful subsets method. The
lemma has the added advantage of giving the reader an idea of how to deal with C1-actions in general.
(These actions all yield to the method of beautiful subsets provided n and q are not too small.)

Lemma 1.6.13. Let S = PSLn(q) and for n = 2 assume q > 5. Let M be a maximal parabolic subgroup
of S, and let Ω be the set of right cosets of M . Then Ω contains an S-beautiful subset.

Proof. Here M is the stabilizer of a subspace W of V , where V is the natural n-dimensional module for
SLn(q). Since the action of S on the k-dimensional subspaces of V is permutation isomorphic to the action
on the (n− k)-subspaces of V , we may assume that dim(W ) ≤ n/2.

If dim(W ) = 1, then the action of S on Ω is 2-transitive. Now Ω itself is an S-beautiful subset, because
we are assuming q > 5 when n = 2.

Suppose next that dim(W ) > 1. Observe that this implies that n ≥ 4. Let W ′ be a subspace of W
with dim(W ′) = dim(W ) − 1 and consider Λ = {W ′′ ≤ V | W ′ ⊂ W ′′,dim(W ′′) = dim(W )}. Clearly,
SΛ = StabS(W

′) and the action of SΛ on Λ is permutation isomorphic to the natural 2-transitive action
of GL(V/W ′) on the 1-dimensional subspaces of V/W ′. Since dim(V/W ′) ≥ 3, the action of GL(V/W ′)
induces neither the alternating nor the symmetric group on the set P1(V/W

′) of 1-dimensional subspaces
of V/W ′; therefore Λ is a beautiful subset.

Our second example of a strongly non-binary subset is taken from [45, Example 2.2]

Example 1.6.14. Let G be a subgroup of Sym(Ω), let g1, g2, . . . , gr be elements of G, and let τ, η1, . . . , ηr
be elements of Sym(Ω) with

g1 = τη1, g2 = τη2, . . . , gr = τηr.

Suppose that, for every i ∈ {1, . . . , r}, the support of τ is disjoint from the support of ηi; moreover, suppose
that, for each ω ∈ Ω, there exists i ∈ {1, . . . , r} (which may depend upon ω) with ωηi = ω. Suppose, in
addition, τ /∈ G. Now, writing Ω = {ω1, . . . , ωt}, observe that

((ω1, ω2, . . . , ωt), (ω
τ
1 , ω

τ
2 , . . . , ω

τ
t ))

is a non-binary witness. Thus the action of G on Ω is strongly non-binary.
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The next two lemmas which are taken from [34] are based on Example 1.6.14. In both cases, the given
assumptions on the permutation group G are enough to conclude that a strongly non-binary subset of the
type described in Example 1.6.14 must exist. In both lemmas, given a permutation or a permutation group
X on Ω, we let FixΩ(X) define the subset of Ω fixed point-wise by X; if Ω is clear from the context, we
drop the label Ω.

Lemma 1.6.15 ([34, Lemma 2.5]). Let G be a transitive permutation group on Ω, let α ∈ Ω and let p
be a prime with p dividing both |Ω| and |Gα| and with p2 not dividing |Gα|. Suppose that G contains an
elementary abelian p-subgroup V = 〈g, h〉 with g ∈ Gα, with 〈h〉 and 〈gh〉 conjugate to 〈g〉 via G. Then G
is not binary.

In [34, Lemma 2.5], the hypothesis actually requires that h and gh are conjugate to g via G; however
the same proof yields the conclusion that G is not binary under the weaker assuption that 〈h〉 and 〈gh〉
are conjugate to 〈g〉 in G, as stated in the lemma. We will need this strengthening in what follows.

Lemma 1.6.16 ([34, Lemma 2.6]). Let G be a permutation group on Ω and suppose that g and h are
G-conjugate elements of prime order p, and gh−1 is conjugate to g (and so to h). Suppose that V = 〈g, h〉
is elementary abelian of order p2. Suppose, finally, that G does not contain any elements of order p that
fix more points of Ω than g. If |Fix(V )| < |Fix(g)|, then G is not binary.

1.7 Methods: Frobenius groups

It turns out that the presence of Frobenius groups can be a powerful tool in proving that certain actions
are not binary. We give three lemmas in this direction; the first was proved independently by Wiscons,
although a proof has not appeared in the literature.6

Lemma 1.7.1. Let G be a Frobenius permutation group on Ω (that is, G acts transitively on Ω, Gω 6= 1 for
every ω ∈ Ω and Gωω′ = 1 for every ω, ω′ ∈ Ω with ω 6= ω′). If G is binary, then a Frobenius complement
has order equal to 2.

Proof. Throughout this proof we write G = N ⋊H where N is the Frobenius kernel, and H is a Frobenius
complement (and point-stabilizer). Suppose that G is binary. Let a and b be distinct non-trivial elements
of N . We claim that the binary condition on triples implies that

HHa ∩HHb = H.

To see this, assume H stabilizes α ∈ Ω. Let β ∈ αHa ∩ αHb. Then the tuples (α,αa, αb)∼2 (β, αa, αb).
As G is binary, there exists g ∈ G mapping the first tuple to the second. Then g ∈ Ha ∩Hb and since the
action is Frobenius, g = 1 and hence α = β. So αHa ∩αHb = α, and considering the isomorphic action on
cosets of H yields HHa ∩HHb = H.

We will show that if |H| > 2, then this equality cannot hold. Suppose, then, that h1, h2, h3, h4 ∈ H are
such that

h1a
−1h2a = h3b

−1h4b. (1.7.1)

Observe first that if the element represented by the two sides of this equation is equal to an element of H,
then a−1h2a must also be an element of H and so h2 is equal to 1, as is h4, and in addition h1 = h3.

Thus it suffices to find a solution to (1.7.1) for which h1 6= h3. To do this we start by rearranging to
obtain that

h−1
3 h1a

−1h2ah
−1
4 = b−1h4bh

−1
4

6Here is the shorter and more elegant argument due to Wiscon for Lemma 1.7.1
For distinct a, b, c ∈ Ω, binarity implies that the intersection of the suborbits cGa and cGb is equal to cGa,b, so as the

action is Frobenius, (cGa) ∩ (cGb) = {c}. Also, using again that the action is Frobenius, |cGa| = |Ga| = |Gb| = |cGb|.
This shows that

⋃
a 6=c(cGa \ {c}) is a disjoint union of sets of constant size |Ga| − 1. So, letting N = |Ω|, we find that

N − 1 = |Ω \ {c}| ≥ (N − 1)(|Ga| − 1), implying that |Ga| = 2.
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and observe that the right-hand side lies in N . Thus the left-hand side lies in N . Doing some rearranging
we find that the left-hand side can be rewritten as

(h−1
3 h1a

−1h−1
1 h3)(h

−1
3 h1h2ah

−1
2 h−1

1 h3)(h
−1
3 h1h2h

−1
4 ).

Since the first two bracketed terms lie in N , we conclude that h−1
3 h1h2h

−1
4 = 1. This allows us to replace

h4 in (1.7.1) to get
h1a

−1h2a = h3b
−1h−1

3 h1h2b,

which we rearrange one last time to obtain

(a−1)(h2ah
−1
2 )(h2b

−1h−1
2 ) = h−1

1 h3b
−1h−1

3 h1 (1.7.2)

where, again, we have put terms that lie in N in brackets.
Now, for h ∈ H \ {1}, we define

φh :N → N

n 7→ n−1hnh−1.

We claim that this map is a bijection. We need only show injectivity: suppose that n1, n2 ∈ N with

n−1
1 hn1h

−1 = n−1
2 hn2h

−1.

Then n2n
−1
1 hn1n

−1
2 = h and hence n1n

−1
2 centralizes h. Since we have a Frobenius action, we obtain that

n1 = n2, as required.
Now fix b ∈ N and h2 ∈ H \ {1} and consider (1.7.2). The first two bracketed terms correspond to

φh2(a) and the surjectivity of the function φh2 implies that the left-hand side of (1.7.2) ranges over all
values of N as a varies across N . Recall, though, that we require that a 6= b: this restriction tells us that
the left-hand side equals all but one of the elements of N , as a varies.

On the other hand if H has orbits of size at least 3, we obtain that (1.7.2) has a solution in which
h1 6= h3. We are done.

Lemma 1.7.2. Let F ⊳G ≤ Sym(Ω) with F having an orbit Λ ⊆ Ω on which it acts as a Frobenius group.
(As usual, FΛ is the permutation group induced by the action of F on Λ.) Write FΛ = T ⋊ C, where T
is the Frobenius kernel, and C is a Frobenius complement. If T is cyclic, and C contains an element x of
order strictly greater than 2, then G is not binary.

Proof. Let α ∈ Λ. Since Λ is a block of imprimitivity for G, the group Gα must preserve Λ set-wise.
Observe that GΛ normalizes F , because F EG. In particular, FΛEGΛ. Since the non-identity elements of
T are precisely those elements of FΛ that are fixed-point-free, GΛ also normalizes T . Thus T is a regular
normal subgroup of GΛ. As T acts regularly on Λ, from the Frattini argument we obtain GΛ = T ⋊GΛ

α .
We can, therefore, identify T with Λ in such a way that the action of GΛ

α on Λ is permutation isomorphic
to the conjugation-action of GΛ

α on T . To see this, define

θ :T → Λ

y 7→ αy,

and observe that, for y ∈ T and g ∈ Gα,

θ(yg) = α(yg) = αg
−1yg = αyg = (αy)g = (θ(y))g.

With this set-up, we write n = |T | and we let y be a generator of T . We will construct (for the action
of G) a 2-subtuple complete pair of the form

(

(1, y, ya), (1, y, yb)

)

. (1.7.3)
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We must choose a and b appropriately. Let x ∈ C having order strictly greater than 2. First, let k ∈ Z+

be such that yx = yk; note that gcd(k, n) = 1, and so k is invertible modulo n. Then we set a = 1+k
k ∈ Zn

and set b = 1 + k. Now observe that

(1, y)id = (1, y);

(1, ya)x = (1, y(k+1)/k)x = (1, yk+1) = (1, yb);

(y, ya)y
−1x2y = (y, y(k+1)/k)y

−1x2y = (1, y1/k)x
2t = (1, yk)y = (y, yk+1) = (y, yb).

We see immediately that the pair (1.7.3) is 2-subtuple complete.
Note on the other hand that, provided a 6= b, this pair cannot be 3-subtuple complete: suppose that

an element g ∈ G sends the first triple in (1.7.3) to the second. Then g fixes 1 and, as we saw above, this
means that the action of g on Λ is isomorphic to the action of g by conjugation on T . Since yg = y, we
conclude that, if (ya)g = yb, then we must have a = b modulo n. But now observe that

a = b⇐⇒ 1 + k

k
= 1 + k ⇐⇒ k2 = 1.

Since we chose x to have order strictly greater than 2, we see that k2 6= 1, and we conclude that (1.7.3) is
a pair which is 2-subtuple complete but not 3-subtuple complete. The result follows.

Lemma 1.7.3. Let F = T ⋊ C ≤ G ≤ Sym(Ω) with C acting by conjugation fixed-point-freely on T .
Suppose there exists α ∈ Ω such that Fα = C, and let Λ be the orbit of α under F . Define

m := min{|Gγ1,γ2 | | γ1, γ2 distinct elements of Λ}.

If
⌈
(|C|−1)(|C|−2)

|Λ|−2

⌉

≥ m, then G is not binary. In particular, if |G : F | ≤
⌈
(|C|−1)(|C|−2)

|Λ|−2

⌉

, then G is not

binary.

Proof. Observe that F acts as a Frobenius group on Λ, where T is the Frobenius kernel, and C is a
Frobenius complement. It is useful to observe that the regularity of T on Λ implies that, for every c ∈ C
and for every β ∈ Λ, there exists a unique x ∈ T such that βxc = β.

We study triples of the form (

(α, β, γ), (α, β, δ)

)

, (1.7.4)

for α, β, γ, δ ∈ Λ. We make the following claim:
Claim: for any distinct pair of elements (α, β), there are at least (|C| − 1)(|C| − 2) choices for (γ, δ)

such that the set {α, β, γ, δ} has size 4, and the pair (1.7.4) is 2-subtuple complete.
Proof of claim: First we consider the set of pairs of distinct non-trivial elements in C, i.e.

C(2) := {(c1, c2) | c1, c2 ∈ C\{1}, c1 6= c2}.

Now we construct a function φ : C(2) → Ω2 as follows. For (c1, c2) ∈ C(2), we let t1 be the unique non-
trivial element of T such that t1c1 ∈ Gβ. Now, since c1 6= c2, we can define γ to be the unique point in Λ
fixed by t1c1c

−1
2 . Observe that γ is distinct from both α and β.

Next, we see that

γt1c1c
−1
2 = γ ⇐⇒ γt1c1 = γc2 .

We define δ := γc2 , and we set φ(c1, c2) = (γ, δ). An easy argument shows that δ is distinct from all of α, β
and γ. Furthermore we claim that, with these definitions the pair (1.7.4) is 2-subtuple complete. Indeed,
observe that

(α, β)1 = (α, β), (α, γ)c2 = (α, δ) and (β, γ)t1c1 = (β, δ).

Thus every element (γ, δ) in the image of φ gives rise to a 2-subtuple complete pair as in (1.7.4). Since the
domain of φ, C(2) has order (|C| − 1)(|C| − 2), the claim will follow if we prove that φ is one-to-one.
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Suppose, then, that φ(c1, c2) = (γ, δ) = φ(c′1, c
′
2). Let t1 (resp. t′1) be the unique element of T such

that t1c1 (resp. t′1c
′
1) is in Gβ. Then t1c1c

−1
2 and t′1c

′
1(c

′
2)

−1 fix γ. What is more γc2 = γc
′
2 = δ and so

c′2c
−1
2 fixes γ. However c2, c

′
2 ∈ C = Fα and so c′2c

−1
2 fixes two points of Λ. We conclude that c2 = c′2. But

now, write h1 := t1c1 and h′1 := t′1c
′
1; observe that h1, h

′
1 ∈ Gβ and γh1 = γh

′
1 . As before we conclude that

h′1h
−1
1 fixes β and γ, and so h1 = h′1. Then t1c1 = t′1c

′
1 and so t−1

1 t′1 = c′1c
−1
1 ; since T ∩C = {1}, this gives

c1 = c′1, as required.
The claim and the pigeon-hole principle imply that there exists some γ ∈ Λ \ {α, β} for which there

are k :=
⌈
(|C|−1)(|C|−2)

|Λ|−2

⌉

choices for δ such that all pairs of the form (1.7.4) are 2-subtuple complete; call

these elements δ1, . . . , δk. If G is binary, then all of these pairs are 3-subtuple complete and we conclude
that the set {γ, δ1, . . . , δk} is a subset of an orbit of Gα,β . But this is only possible if k + 1 ≤ m, and the
result follows.

1.8 Methods: On computation

We will use magma very frequently in what follows to verify that certain actions are not binary. The methods
we use to do this are largely drawn from [34]. We give a brief summary of some of the key methods here.
In what follows G acts transitively on the set Ω, and M is the stabilizer of a point.

Test 1: Using the permutation character. Given ℓ ∈ N \ {0}, we denote by Ω(ℓ) the subset of the
Cartesian product Ωℓ consisting of the ℓ-tuples (ω1, . . . , ωℓ) with ωi 6= ωj, for every two distinct elements
i, j ∈ {1, . . . , ℓ}. We denote by rℓ(G) the number of orbits of G on Ω(ℓ). The next result is Lemma 2.7 of
[34].

Lemma 1.8.1. If G is transitive and binary, then rℓ(G) ≤ r2(G)
ℓ(ℓ−1)/2 for each ℓ ∈ N.

Let π : G→ N be the permutation character of G, that is, π(g) = fixΩ(g) where fixΩ(g) is the cardinality
of the fixed point set FixΩ(g) := {ω ∈ Ω | ωg = ω} of g. From the Orbit Counting Lemma, we have

rℓ(G) =
1

|G|
∑

g∈G

fixΩ(g)(fixΩ(g)− 1) · · · (fixΩ − (ℓ− 1))

= 〈π(π − 1) · · · (π − (ℓ− 1)), 1〉G,

where 1 is the principal character of G and 〈·, ·〉G is the natural Hermitian product on the space of C-class
functions of G.

Clearly whenever the permutation character of G is available in magma, we can directly check the
inequality in Lemma 1.8.1, and this is often enough to confirm that a particular action is not binary.

Test 2: using Lemma 1.6.5. By connecting the notion of strong-non-binariness to 2-closure,
Lemma 1.6.5 yields an immediate computational dividend: there are built-in routines in magma to compute
the 2-closure of a permutation group.

Thus if Ω is small enough, say |Ω| ≤ 107, then we can easily check whether or not the group G is
2-closed. Thus we can ascertain whether or not G is strongly non-binary.

Test 3: a direct analysis. The next test we discuss is feasible once again provided |Ω| ≤ 107. It
simply tests whether or not 2-subtuple-completeness implies 3-subtuple completeness, and the procedure
is as follows:

We fix α ∈ Ω, we compute the orbits of Gα on Ω \ {α} and we select a set of representatives O for
these orbits. Then, for each β ∈ O, we compute the orbits of Gα ∩ Gβ on Ω \ {α, β} and we select a set
of representatives Oβ . Then, for each γ ∈ Oβ, we compute γGα ∩ γGβ . Finally, for each γ′ ∈ γGα ∩ γGβ ,
we test whether the two triples (α, β, γ) and (α, β, γ′) are G-conjugate. If the answer is “no”, then G is
not binary because by construction (α, β, γ) and (α, β, γ′) are 2-subtuple complete. In particular, in this
circumstance, we can break all the “for loops” and deduce that G is not binary.

If the answer is “yes”, for every β, γ, γ′, then we cannot deduce that G is binary, but we can keep
track of these cases for a deeper analysis. We observe that, if the answer is “yes”, for every β, γ, γ′, then
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2-subtuple completeness implies 3-subtuple completeness. At this point, we may either use a different
method for checking whether the permutation group is genuinely binary or, with a similar method, we
can check whether 3-subtuple completeness implies 4-subtuple completeness. This test is very expensive
in terms of time, therefore before starting this whole procedure, we do a preliminary check: for 106 times,
we select β, γ, γ′ as above at random and we check this random triple.

Test 4: studying suborbits. Lemma 1.6.1 implies that if G is binary, then the action of M on any
suborbit is also binary. This fact is particularly useful for computation in situations where the group G is
very large compared to the group M .

In general, our approach is to demonstrate that there must be some suborbit on which the action of M
is not binary. For instance, this would follow in the case where |Ω| = |G : M | is divisible by some integer
d, and all non-trivial transitive binary actions of M are also of degree divisible by d.

This last approach sometimes fails for just a few possible actions of M ; in this situation, provided the
action of G on Ω is primitive, the following lemma is often useful.

Lemma 1.8.2 ([103, Theorem 18.2]). Suppose that G is a finite primitive subgroup of Sym(Ω). Let Γ be a
non-trivial orbit of M . Then, every simple section of M is isomorphic to a section of the group MΓ which
M induces on Γ. In particular, each composition factor of M is isomorphic to a section of MΓ.

This lemma means that when studying possible suborbits of our action we may disregard the actions
of M (on a set Γ say) where M has a simple section not isomorphic to a section of the group MΓ. If the
resulting set of actions are all not binary, then we can conclude that the action of G on Ω is also not binary.
The method is summarised in Lemma 3.1 of [34]:

Lemma 1.8.3. Let G be a primitive group on a set Ω, let α be a point of Ω, let M be the stabilizer of α
in G and let d be an integer with d ≥ 2. Suppose M 6= 1 and, for each transitive action of M on a set Λ
satisfying:

1. |Λ| > 1, and

2. every composition factor of M is isomorphic to some section of MΛ, and

3. either M(Λ) = 1 or, given λ ∈ Λ, the stabilizer Mλ has a normal subgroup N with N 6= M(Λ) and
N ∼=M(Λ), and

4. M is binary in its action on Λ,

we have that d divides |Λ|. Then either d divides |Ω| − 1 or G is not binary.

Test 5: special primes. We have turned Lemmas 1.6.15 and 1.6.16 into a routine in magma. Both
of these lemmas are rather convenient from a computational point of view because they do not require us
to construct the permutation representation of G on (G : M). For example, the only critical step in the
routine for Lemmas 1.6.15 and Lemma 1.6.16 is the construction of the centraliser in G of an element g in
M of prime order p. There is a stardard built-in command in magma for constructing centralizers. Most
often than not, this command is sufficient for our computations. However, for very large groups, where it
is computationally out of reach to use a general command for computing centralizers, we have constructed
CG(g) with ad hoc methods exploiting the subgroup structure of the group G under consideration.

Test 6: M very small. This method draws on the following lemma.

Lemma 1.8.4 ([46, Lemma 2.5]). Let ω0, ω1, ω2 ∈ Ω with Gω0 ∩ Gω1 = 1. Suppose there exists g ∈
Gω0 ∩Gω2Gω1 with g /∈ Gω2 . Then the two triples (ω0, ω1, ω2) and (ω0, ω1, ω

g
2) are 2-subtuple complete but

are not 3-subtuple complete. In particular, G is not binary.

This method is particularly useful when M (Gω0 in Lemma 1.8.4) is small compared to G because in
this case it is more likely that Gω0∩Gω1 = 1, for some ω1. This method also has the benefit that it does not
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require us to construct the permutation representation of G on (G :M), and that all the computations are
performed locally. Since this method is designed to deal with the case that (G : M) is large compared to
M , we do not exhaustively check all triples ω0, ω1, ω2 ∈ (G :M). In practice, we let ω0 :=M , we generate
at random g1, g2 ∈ G, we let Gω1 := Mg1 and Gω2 := Mg2 and we check whether Lemma 1.8.4 applies to
ω0, ω1, ω2. We repeat this routine 105 times and if at some point we find a triple satisfying Lemma 1.8.4,
then G acting on (G :M) is not binary and we stop the routine. If, after the 105 trials, we have not found
any triple satisfying Lemma 1.8.4, then we turn to a different method.



Chapter 2

Preliminary results for groups of Lie type

In this chapter we collect a number of results that will be needed when we come to prove Theorem 1.3.
All of these results involve the finite groups of Lie type, so let us first establish the notation that we will
use in this chapter and those that follow.

Our notation for the classical groups is standard and is consistent with, for instance, [54, Table 2.1.B].
We write, for example, SO+

n (q) to mean a group of special isometries associated with a +-type quadratic
form on an n-dimensional vector space over the finite field Fq having q elements, and we write PSO+

n (q)
for the projective version of the same. We write SO±

n (q) or SO
ε
n(q) if we wish to allow the quadratic form

to have either + or − type.
We shall also use the general notation Cln(q) to denote a quasisimple classical group with natural

module of dimension n over the field Fq (over Fq2 for unitary groups).
Our Lie notation is also standard: we write An(q), Bn(q), Cn(q), and so on, for quasisimple groups

of Lie type associated with Dynkin diagrams of type An, Bn, Cn, . . . ; similarly we write 2An(q),
2B2(q),

and so on, for twisted versions of the same. Note that the Lie notation does not specify the group up
to isomorphism in all cases. For instance, An(q) can stand for both SLn+1(q) and PSLn+1(q).) We write
A−
n (q),D

−
n (q) and E−

6 (q) as alternative notation for 2An(q),
2Dn(q) and 2E6(q) respectively, and we write

A±
n (q),D

±
n (q), E

±
6 (q) or A

ε
n(q), D

ε
n(q), E

ε
6(q) if we wish to consider both the twisted and untwisted version

at the same time.
The results collected here are of six kinds:

1. Results concerning alternating sections: We consider a simple group of Lie type, G, and we
specify for which values of r the alternating group, Alt(r), is a section of G. These results will
be used later, in conjunction with Definition 1.6.11, when we study the primitive actions of G –
one frequently-used method for showing that these actions are not binary will be to show that they
exhibit a beautiful subset.

2. Stabilizer results: We consider a group G, and we consider all faithful transitive actions of G
in which the stabilizer of a point, H, contains a particular element g. We will prove that, for an
appropriately chosen G and g, such an action is always not binary. We call these “stabilizer results”
because these lemmas will typically be applied in later chapters in contexts where G is a point-
stabilizer and we are seeking to use Lemma 1.6.1. These applications motivate the choices of G
which we consider in this section.

3. Odd degree results: We consider a groupM , normally a small group of Lie type, and we use magma
to show that all of the transitive actions of odd degree of M are not binary. Although it is not about
groups of Lie type, we also include one result – Lemma 2.3.2 – which does the same thing for the
sporadic groups.

4. Centralizer results: We will present a number of results giving lower bounds for the size of a
centralizer of a non-trivial element in a simple group of Lie type.

31
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5. Automorphism results: We present a well-known result classifying the outer automorphisms of
prime ofrder of finite groups of Lie type.

6. Fusion and factorization results: All these results will be used in conjunction with Lemma 1.6.10
to prove the existence of beautiful subsets (Definition 1.6.11).

We will use the stabilizer results in two ways when it comes to the proof of Theorem 1.3. For the proof
we study an almost simple group G acting on the cosets of a maximal subgroup M . Now, the first use of
our stabilizer results is direct: if M contains the element g, then we immediately know that the action is
not binary and we are done.

The second use is slightly less direct. In this case, we wish to apply our stabilizer results to the group
M , rather than the group G: so we pick a distinguished element g ∈M and appeal to our stabilizer results
to assert that if H is any core-free subgroup of M that contains g, then the action of M on (M : H) is not
binary. Next we use our centralizer results, to show that, in general |CM (g)| is smaller than the smallest
centralizer in G. We conclude that there exists x ∈ CG(g)\CM (g). Now M ∩Mx is a core-free subgroup of
M that contains g. We conclude that the action of M on (M :M ∩Mx) is not binary. Then Lemma 1.6.1
implies that the action of G on (G :M) is not binary.

This second method explains the selection of groups under consideration for our stabilizer results: for
instance the group G appearing in Lemma 2.2.1 is studied because such a group is maximal in E8(q).

The second method also applies to the odd degree results: if we are studying the action of a group G
on the cosets of a subgroup M and we know (a) that |G :M | is even, (b) that all odd-degree actions of M
are not binary, then Lemma 1.6.1 implies that the action of G on (G :M) is not binary.

2.1 Results on alternating sections

Let G be a simple group of Lie type. We wish to know for which values of r the alternating group, Alt(r),
is a section of G.

We first consider classical groups.

Lemma 2.1.1. Let Cln(q) be a simple classical group with natural module of dimension n and p is a prime
number. If Cln(q) has a section isomorphic to the alternating group Alt(r), then

n ≥ Rp(Alt(r)), (2.1.1)

where Rp(Alt(r)) denotes the smallest dimension of a non-trivial projective representation of Alt(r) over
a field of characteristic p. In particular, for r ≥ 9, we have

Rp(Alt(r)) = r − 1− δ,

where

δ =

{

1, if p | r,
0, otherwise.

For 5 ≤ r ≤ 8, the values for Rp(Alt(r)) are as in Table 2.1.1.

r R2(Alt(r)) R3(Alt(r)) R5(Alt(r)) Rp(Alt(r)), p ≥ 7

5 2 2 2 2
6 3 2 3 3
7 4 4 3 4
8 4 7 7 7

Table 2.1.1: Values for Rp(Alt(r)), with 5 ≤ r ≤ 8
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Proof. The inequality Rp(Alt(r)) = r − 1− δ follows from [40, Proposition 4.1]. The values of Rp(Alt(r))
are well-known (see [54, Proposition 5.3.7]).

If G is exceptional, then the following lemma gives the result that we need. (Here, δx,y is the usual
Kronecker delta.)

Lemma 2.1.2. Let G = G(q) be a finite simple group of exceptional Lie type as in the table below, where
q = pa, a ≥ 1 and p is a prime number. If Alt(r) is a section of G, then r ≤ NG, where NG is as in the
table below.

G E8(q) E7(q) Eǫ6(q) F4(q) G2(q),
3D4(q)

2F4(q)

NG 17 + δp,3 13 + δp,7 11 + δp,2 + δp,5 10 + δp,11 6 + δp,5 6

Proof. Fix r ≥ 5, and let K ⊳ H ≤ G with H/K ∼= Alt(r), and |H| minimal. Choose a minimal subfield
Fq0 ⊆ Fq such that H ≤ G(q0), and a maximal subgroup M of G(q0) such that H ≤M .

Consider first G(q0) =
2F4(q0). The maximal subgroups are given by [83], from which it follows that

Alt(r) is a section of one of the groups Sp4(q0) or PSU3(q0). Hence by Lemma 2.1.1 we have 4 ≥ R2(Alt(r)),
forcing r ≤ 8. As Alt(7) is not a section of Sp4(q0) or PSU3(q0) (see, for instance, [10]), we in fact have
r ≤ 6, as in the conclusion.

The cases where G(q0) = G2(q0) or 3D4(q0) are dealt with similarly, using [29, 56, 57] for the lists of
maximal subgroups.

Now consider the remaining cases, where G is of type E8, E7, E
ǫ
6 or F4. By the minimality of H we

have K ≤ Φ(H), where Φ(H) is the Frattini subgroup of H. So, K is nilpotent.

Suppose Z(H) 6= 1, and let 1 6= x ∈ Z(H). Then H ≤ CG(x), which is contained in a parabolic or a
subsystem subgroup, and it follows that Alt(r) is a section of one of the following subgroups of G:

G Alt(r) section of one of

F4(q) B4(q), C3(q)
Eǫ6(q) Aǫ5(q), D

ǫ
5(q)

E7(q) A±
7 (q), D6(q), E

±
6 (q)

E8(q) D8(q), A
±
8 (q), E7(q)

Working down from F4(q), the bounds in the conclusion now follow using Lemma 2.1.1. (Note that the
possibilities r = 18 in E8 (p = 2) and r = 14 in E7 (p = 2) are excluded by the fact that D8(2

a) (resp.
D6(2

a)) does not have a section isomorphic to Alt(18) (resp. Alt(14)) (see [54, (5.3.8)]).

Suppose finally that Z(H) = 1. If Z(K) = 1, then K = 1 (as K is nilpotent), so H ∼= Alt(r), and the
conclusion follows from [77, Table 10.1]. So assume Z(K) 6= 1. If p divides |Z(K)|, then H is contained
in a parabolic subgroup of G by [8], a case already considered above. Hence we may assume that Z(K)
has order divisible by a prime s with s 6= p. As Z(H) = 1, it must be the case that H/K ∼= Alt(r)
acts non-trivially on the elementary abelian group E = Ω1(Os(Z(K))). Say E ∼= (Cs)

κ, of rank κ. Then
κ ≥ Rs(Alt(r)). On the other hand, [27] shows that κ ≤ R + 1, where R is the untwisted Lie rank of G.
Hence

Rs(Alt(r)) ≤ R+ 1,

and the bounds for r in the conclusion follow from this. This completes the proof.

2.2 Stabilizers containing certain elements

In this section we prove results that are (more or less) of the following kind: we suppose that x is an
element of a group G, and we prove that, if H is any core-free subgroup of G containing x, then the action
of G on (G : H) is not binary. In the first subsection we consider groups G of a variety of isomorphism
types; in subsequent subsections, G will always be almost simple.
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2.2.1 Some groups that are not almost simple

Lemma 2.2.1. Let S = PGL2(q)× Sym(5) with q > 5, and suppose that S EG with G/S solvable. Let L
be the normal subgroup in S that is isomorphic to PGL2(q), and suppose that g ∈ L has order q− 1; let M
be a subgroup of G that contains g. If the action of G on (G :M) is binary, then M contains L.

Proof. Assume that the action of G on (G :M) is binary. Notice that the element g normalizes, and acts
fixed-point-freely by conjugation upon two unipotent subgroups of L of order q; we call these U1 and U2.

Suppose that M does not contain U1. Since g ∈M , we have M ∩U1 = {1}. Now, we define Λ = {Mu |
u ∈ U1}. It is easy to see that U1 ⋊ 〈g〉 acts 2-transitively on Λ, which is a subset of (G : M) of size q.
Since G is binary on (G : M), the group GΛ is isomorphic to the symmetric group of degree q. As q > 5
and G/S is solvable, by Lemma 2.1.1, G has no section isomorphic to Alt(q), which is a contradiction.

Thus M contains U1 and, by the same reasoning, U2. But now 〈U1, U2, g〉 = L and we are done.

Lemma 2.2.2. Let S = PSL2(q) × PSL2(q) with q ≥ 4 and q 6= 5, and suppose that S = F ∗(G), where
F ∗(G) is the generalized Fitting subgroup of G. Let L be a subgroup of S isomorphic to Dt(q−1) ×Dt(q−1)

(where t = (2, q) and where Dt(q−1) denotes the dihedral group of order t(q − 1)), and let M be a subgroup
of G that contains L. If the action of G on (G :M) is binary, then M ≥ S.

Proof. We write S = S1 ×S2 and L = L1 ×L2, where Dt(q−1)
∼= Li < Si ∼= PSL2(q) for i ∈ {1, 2}. Assume

first that q /∈ {4, 7, 9, 11}.
Suppose, first, that M ∩ S = L; we must show that the action of G on (G : M) is not binary. Let

H = 〈M,S〉 = MS. Lemma 1.6.2 implies that it is sufficient to show that the action of H on (H : M) is
not binary. Now observe that

H/S =MS/S ∼=M/(M ∩ S) =M/L.

Thus |H :M | = |S : L| and we can identify (H :M) with the set of conjugates of L in S, by using the map

(H :M) → {Ls | s ∈ S}, Mg 7→ Lg.

Now define
Γ = {L1 × Lg2 | g ∈ S2}.

The intersection of the elements of Γ is L1 and so HΓ ≤ NH(L1). Since the reverse inclusion is also true,
we deduce

HΓ = NH(L1). (2.2.1)

Observe that the action of HΓ on Γ is isomorphic to the action of an almost simple group with socle
S2 = PSL2(q) on the cosets of a subgroup M2 for which M2 ∩ S2 ∼= Dt(q−1). When q /∈ {4, 7, 9, 11}, the
action of HΓ on Γ is primitive by [10, Table 8.1] and hence the main theorem of [34] implies that this action
is not binary. Thus there is an integer k ≥ 3 and two k-tuples I, J ∈ Γk that are 2-subtuple complete but
not k-subtuple complete with respect to the action of HΓ. Using (2.2.1), one can see that any h ∈ H for
which Ih = J must satisfy h ∈ HΓ, and so I, J are not k-subtuple complete with respect to the action of
H. Thus the action of H on (H : M) is not binary, and so the action of G on (G : M) is not binary, as
required.

We conclude that L is a proper subgroup of M ∩ S. We may assume, without loss of generality, that
M ∩ S contains S1 but not S2. Then the action of G on (G :M), modulo the kernel, is isomorphic to the
action of an almost simple group with socle S2 = PSL2(q) on the cosets of a maximal subgroup M2 for
which M2 ∩ S2 ∼= Dt(q−1). Once again the main theorem of [34] implies that this action is not binary.

The only remaining possibility is that M ≥ S, as required.
Assume now that q ∈ {4, 7, 9, 11}. With the help of magma, we have constructed all the groups G with

F ∗(G) = S ∼= PSL2(q)×PSL2(q) and all the subgroups H of G containing Dt(q−1)×Dt(q−1). Then we have
verified, by witnessing non-binary triples, that the action of G on (G : H) is binary only when S ≤ H.
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2.2.2 Classical groups

Lemma 2.2.3. Let G be almost simple with socle S = PSL2(q), and let x be the projective image of an
element x̃ as given in Table 2.2.1 line 1. Let M < G be core-free with x ∈M∩S. Then, provided q /∈ {4, 5},
the action of G on (G :M) is not binary.

Proof. For q ∈ {7, 9, 11, 13, 27}, we confirm the result using magma. In particular, for the rest of the proof
we suppose q = 8 or q > 13 with q 6= 27.

Let d = (2, q − 1). The stated conditions imply that M ∩ S ∈ {C(q−1)/d,D2(q−1)/d, B}, where B is a

Borel subgroup of S. We set q = pf , for a prime p and positive integer f , and we consider the three cases
separately.

Case 1: Suppose thatM∩S = C(q−1)/d. In particular, T := M∩S is a split torus in PSL2(q). Since distinct
split tori in PGL2(q) intersect trivially, we conclude |Gα,β | ≤ f . On the other hand, let B = U⋊T , a Borel
subgroup of S, and observe that B acts as a Frobenius group on the set Λ = {Mu | u ∈ U} ⊂ (G : M).
Clearly |Λ| = q; if p = 2, then d = 1, Λ is a beautiful subset and we are done. Suppose, then, that q is
odd; Lemma 1.7.3 implies that, if G is binary, then

⌈

( q−1
2 − 1)( q−1

2 − 2)

q

⌉

< f.

This implies ⌈q/4 − 2− 15/q⌉ < f . It is easy to verify that, when q > 13,

⌈q/4− 2− 15/(4q)⌉ = ⌈q/4− 2⌉ ≥ (q − 7)/4

and hence, in particular, q − 7 < 4f . However, this inequality is never satisfied when q > 13.

Case 2: Suppose that M ∩ S = D2(q−1)/d. The analysis of the previous case still applies: for q even,
we obtain a beautiful subset again and are done; for q odd, we proceed as before except that this time
|Gα,β | ≤ 2f , which implies that q − 7 < 8f . However, for q > 13, this inequality is satisfied only when
q = 27, but we are excluding this case here.

Case 3: Suppose that M ∩ S = B. Let K = 〈M,S〉. Then (K :M) is a set of size q + 1 that is stabilized
by K and on which K acts 2-transitively. By Lemma 2.1.1, any alternating section, Alt(r), of PΓL2(q) has
r ≤ 6, hence (K :M) is a beautiful subset of (G :M), and we are done.

We shall also need the following variant of Lemma 2.2.3.

Lemma 2.2.4. Let G be almost simple with socle S = PSL2(q
2), and let x be the projective image of

the diagonal matrix diag(a, a−1), where a ∈ Fq2 has order (q − 1, 2)(q − 1). Let M < G be core-free with
x ∈M ∩ S. Then, provided q ≥ 7, the action of G on (G :M) is not binary.

Proof. For λ ∈ Fq2 , define subgroups U±
λ of S by

U+
λ = {I + λtE12 : t ∈ Fq}, U−

λ = {I + λtE21 : t ∈ Fq},

where as usual Eij denotes the matrix with ij-entry 1 and 0 elsewhere. Then T = 〈x〉 normalizes U±
λ and

acts transitively on U±
λ \ {1}. Since 〈U±

λ : λ ∈ Fq2〉 = S, there exists λ and ǫ = ± such that U = U ǫλ 6≤M .
Then UT acts 2-transitively on the set Λ = {Mu | u ∈ U} ⊂ (G : M) of size q, and since Alt(q) is not a
section of G for q ≥ 7, it follows that the action of G on (G :M)) is not binary for q ≥ 7.

Lemma 2.2.5. Let G contain a subgroup S ∼= SLn(q)/Z, where Z is a central subgroup of SLn(q), and
such that n ≥ 3. Let x ∈ S be the projection in S of an element x̃ ∈ SLn(q) as given in Table 2.2.1 lines 2
and 3. Let M < G with x ∈M . Then one of the following holds:

1. G contains a section isomorphic to Sym(qn−2) (if q > 2) or Sym(2n−1) (if q = 2);



36 CHAPTER 2. PRELIMINARY RESULTS FOR GROUPS OF LIE TYPE

Line S/Z(S) x̃ Conditions

1 PSL2(q)

(
a

a−1

)

a of order q − 1

2
PSLn(q)
n ≥ 3
q ≥ 3





1
A

a−1





A ∈ GLn−2(q)
A of order qn−2 − 1
det(A) = a ∈ Fq

3
SLn(2)
n ≥ 3

(
1

A

)
A ∈ GLn−1(2)
A of order 2n−1 − 1

Table 2.2.1: Auxiliary table for Lemma 2.2.5

2. M contains S;

3. the action of G on (G :M) is not binary.

Proof. We assume that none of the three possibilities hold, and we reach a contradiction. In particular,
the action of G on (G :M) is binary. Since S ∼= SLn(q)/Z, there exists a surjective group homomorphism
π : SLn(q) → S.

Case 1: q > 2. We observe first that 〈x̃〉 normalizes two distinct elementary abelian subgroups of SLn(q)
of order qn−2, namely those having shape

U1 =
















1 u1 · · · un−2 0
1

. . .

1
1










| u1, . . . , un−2 ∈ Fq







, U2 =
















1
u1 1
...

. . .

un−2 1
0 1










| u1, . . . , un−2 ∈ Fq







.

Observe that 〈x̃〉 acts by conjugation fixed-point-freely on each of these two groups. Let us suppose that
π(U1) 6≤M . As π(x̃) = x ∈M , the fixed-point-freeness of the action yields π(U1) ∩M = {1}.

Now let Λ be the set of cosets of M corresponding to Mπ(U1), that is, Λ = {Mh | h ∈ π(U1)}. Then Λ
is a set of size qn−2 on which the group M1 = π(U1 ⋊ 〈x̃〉) acts 2-transitively. Since we are assuming that
G on (G :M) is binary, Λ is not a beautiful subset. Therefore, GΛ ≥ Sym(qn−2); however this contradicts
the fact that we are assuming that G has no section isomorphic to Sym(qn−2). Thus π(U1) ≤M .

A similar argument applies to U2. Thus π(U2) ≤M and hence 〈π(U1), π(U2), x〉 ≤M . Observe that
〈(

1 u
0 1

)

,

(
1 0
u 1

)

| u ∈ Fq

〉

= SL2(q).

Now, an easy inductive argument on n shows that

〈U1, U2〉 =
{(

Z 0
0 1

)

| Z ∈ SLn−1(q)

}

and hence, from the definition of x̃, we obtain that 〈U1, U2, x̃〉 contains all matrices of the form
(
Z

z−1

)

,

where Z ∈ GLn−1(q) has determinant z ∈ Fq. But now we define two elementary abelian subgroups of
SLn(q) of order q

n−1, namely those having shape

U3 =















1 u1
. . .

...
. . . un−1

1









| u1, . . . , un−1 ∈ Fq







, U4 =















1
. . .

. . .

u1 · · · un−1 1









| u1, . . . , un−1 ∈ Fq







.
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Repeating the same argument as before, with U1 and U2 replaced by U3 and U4, we obtain thatM contains
π(U3) and π(U4). But then M ≥ 〈π(U1), π(U2), π(U3), π(U4), x〉 = S, a contradiction, and we are done.

Case 2: q = 2. Clearly, in this case, Z = 1 and we may think of π as the identity mapping. We define
two elementary abelian subgroups of SLn(2) of order 2

n−1, namely those having shape

U1 =















1 u1
. . .

...
. . . un−1

1









| u1, . . . , un−1 ∈ Fq







, U2 =















1
. . .

. . .

u1 · · · un−1 1









| u1, . . . , un−1 ∈ Fq







.

We suppose that U1 6≤ M . As in the previous proof we use the fact that 〈x〉 normalizes, and acts fixed-
point-freely on, U1. As before, either G contains a section isomorphic to Sym(2n−1) (but this contradicts
our hypothesis) or else we obtain a beautiful subset (but this contradicts again our hypothesis). Hence M
contains U1 and, by the same argument, U2. Since 〈U1, U2〉 = SLn(2), we obtain a contradiction and are
done.

Applying Lemma 2.2.5 to the case where G is almost simple, and applying [54, Proposition 5.3.7] to
establish when G may contain the relevant alternating section, we obtain the following result.

Lemma 2.2.6. Let G be almost simple with socle S = PSLn(q), and let x be the projective image of an
element x̃ as given in Table 2.2.1. Let M < G be core-free with x ∈ M ∩ S. Then, provided (n, q) /∈
{(2, 4), (2, 5)} and (G,M) 6∈ {(Sym(8),Alt(7)), (Sym(8),Sym(7))}, the action of G on (G : M) is not
binary.

Moreover, if (n, q) /∈ {(2, 3), (3, 3)}, then |CS(x)| < qn.

Proof. Since M is core-free in G, we have S � M . When n = 2, the proof follows from Lemma 2.2.3.
When n ≥ 3, from Lemma 2.2.5, if the action of G on (G : M) is binary, then G contains a section
isomorphic to Sym(qn−2) (if q > 2) or Sym(2n−1) (if q = 2). From this it follows from Lemma 2.1.1 that
(n, q) ∈ {(3, 3), (3, 4), (3, 5), (3, 2), (4, 2)}. For these values of (n, q), we have constructed all the permutation
representations under consideration and we have checked that none is binary unless (n, q) = (4, 2) and
(G,M) is one for the cases listed in the statement.

When x̃ is as in Line 1 of Table 2.2.1, 〈x〉 is a torus in PSL2(q) of cardinality (q − 1)/2 when q is odd,
and q − 1 when q is even. Thus |CS(x)| ≤ q − 1 < q, except when q = 3. Similarly, using the fact that,
if A ∈ GLk(q) has order qk − 1 (that is, 〈A〉 is a Singer cycle), then CGLk(q)(A) = 〈A〉, we deduce that
|CS(x)| = (qn−1 − 1)(q − 1)/(n, q − 1) < qn − 1 when x̃ is as in Line 2 of Table 2.2.1 and q 6= 3, and
|CS(x)| = 2n−1 − 1 < 2n when x̃ is as in Line 3 of Table 2.2.1.

The fact that |CS(x)| < qn will be important later on – in Lemma 2.2.5, and in the results that follow,
we have tried to pick distinguished elements x ∈ S for which CS(x) is relatively small.

For groups with socle PSL4(q) we shall also need the following special result.

Lemma 2.2.7. Let G be almost simple with socle S = PSL4(q), and let x be the projective image of a
diagonal matrix x̃ = diag(1, 1, a, a−1), where a ∈ Fq has order q−1. LetM < G be core-free with x ∈M∩S.
Then, provided q ≥ 8, the action of G on (G :M) is not binary.

Proof. The proof is very similar to that of Lemma 2.2.5. Let T = 〈x〉, and for i 6= j define Uij = {I+αEij :
α ∈ Fq}, where Eij denotes the matrix with ij-entry 1 and 0 elsewhere. Then T acts fixed-point-freely on
the groups Uij for i ∈ {1, 2}, j ∈ {3, 4} or vice versa. Since these subgroups Uij generate S, at least one
of them is not contained in M . Hence we obtain a subset ∆ of size q on which G∆ acts 2-transitively. If
∆ is a beautiful subset then (G, (G : M)) is not binary. So suppose ∆ is not beautiful. Then Alt(q) is a
section of S, and moreover Alt(q − 1) is a section of M . By Lemma 2.1.1, Alt(q) is a section of S only if
q ≤ 8; moreover, if q = 8, then Alt(7) can only be a section of a maximal core-free subgroup M of G if M
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is a subfield subgroup of type PSL4(2) (see [10, Tables 8.8, 8.9]) – but such a subgroup does not contain
the element x. Hence if q ≥ 8 we have a contradiction, and the proof is complete.

We now need to prove an analogue of Lemma 2.2.5 for the other classical groups, albeit subject to some
conditions (including lower bounds on n). Some of the situations excluded by these conditions are studied
in subsequent lemmas. In the statement and proof of the lemma, if S is orthogonal or symplectic, we set
K = Fq; if S is unitary, then we set K = Fq2 . In either case, for a scalar a ∈ K we define a := aq; for a

matrix A = (aij)i,j ∈ GLd(K) we write A for the matrix (aij)i,j .

Lemma 2.2.8. Suppose that one of the following holds:

1. G contains a subgroup S ∼= SUn(q)/Z where Z is a central subgroup of SUn(q) and n ≥ 5;

2. G contains a subgroup S ∼= Spn(q)/Z where Z is a central subgroup of Spn(q) and n ≥ 4;

3. G contains a subgroup S ∼= Ωεn(q), q is even and n ≥ 8;

4. G contains a subgroup S ∼= SOε
n(q)/Z where Z is a central subgroup of SOε

n(q), q is odd and n ≥ 7.

Let k be the Witt index of the associated formed space. If S 6= SUn(q)/Z with n even, then we define
j = k, otherwise j = k − 1. We let B = {e1, . . . , ej , f1, . . . , fj} ∪ Y be a hyperbolic basis; thus Y is a
set of linearly independent anisotropic vectors if S 6= SU2j+2(q)/Z, otherwise Y = {ej+1, fj+1}. We set
y = |Y | ∈ {0, 1, 2}.

Let M < G with x ∈M , where x is the projective image in S of

x̃ =









1
A

1

A−T

Jy









,

written with respect to B, A ∈ GLj−1(K) is of order |K|j−1 − 1, and Jy is some y-by-y matrix. If S is
not unitary, then we can take Jy to be the identity matrix; if S is unitary, then Jy is a matrix such that
det(x̃) = 1 (thereby ensuring that x ∈ S).

Then one of the following holds:

1. G contains a section isomorphic to Sym(|K|j−1);

2. M contains S;

3. the action of G on (G :M) is not binary.

In particular if G is almost simple, M is core-free and the action of G on (G :M) is binary, then S is
symplectic and one of the following holds:

1. (k, q) = (2, 2), or

2. (k, q) = (2, 3) and M = 〈x〉.

Note that if S is orthogonal and q is even, then [12, Lemmas 2.5.7 and 2.5.9] imply that x̃ lies in Ωεn(q).

Proof. We suppose throughout that the action of G on (G : M) is binary. Our argument is the same for
all families, more or less, but the details are different; we will, therefore, need to do some case work –
especially in the third stage of the proof.
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Step 1. We observe first that 〈x〉 normalizes U1 and U2, two distinct elementary-abelian subgroups
of S of order |K|j−1, namely those having shape

















1 u1 · · · uj−1

1
. . .

1
1

−u1 1
...

. . .

−uj−1 1

















, and

















1
u1 1
...

. . .

uj−1 1
1 −u1 · · · −uj−1

1
. . .

1

















,

respectively. In each case we write only the first 2j rows and columns of each matrix – the remaining
rows and columns are completed by setting off-diagonal entries to be 0, and diagonal entries to be 1. The
resulting group is the set of all matrices obtained by allowing the parameters ui to range over K.

Observe that 〈x〉 acts fixed-point-freely on each of these two groups. Let us suppose that U1 6≤ M ;
then the fixed-point-freeness of the action means that U1 ∩ M = {1}. Now let Λ be the set of cosets
{Mu | u ∈ U1} of M corresponding to MU1. Then this is a set of size |K|j−1 on which the group
M1 = U1 ⋊ 〈x〉 acts 2-transitively. Now Lemma 1.6.8 implies that G contains a section isomorphic to
Sym(|K|j−1) and the result follows. The same argument works with U2 so we may assume hereafter that
M contains 〈U1, U2〉.

Observe that

〈







1 u 0 0
0 1 0 0
0 0 1 0
0 0 −ū 1






,







1 0 0 0
u 1 0 0
0 0 1 −ū
0 0 0 1







| u ∈ Fq

〉

=

{(
Z 0
0 Z̄−T

)

| Z ∈ SL2(q)

}

.

Now, an easy inductive argument on j shows that

〈U1, U2〉 =
{(

Z 0
0 Z̄−T

)

| Z ∈ SLj(q)

}

and hence, from the definition of x̃, K = 〈U1, U2, x〉 contains all matrices of the form
(

Z

Z
−T

)

,

where Z ∈ GLj(K).
Step 2a. Next we define U3, . . . , Uj+2, j elementary-abelian subgroups of S of order qj−1, namely

those having shape



















1 0 u2 · · · uj
. . . −u2

. . .
...

1 −uj
1

1
. . .

1



















,

























1 −u1
. . . u1 0 u3 · · · uj

. . . −u3
. . .

...
1 −uj

1
1

. . .

. . .

1

























, and so on.
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Note, first, that we have placed dotted lines to mark the point where the “e-vectors” change to “f -vectors”;
note, second, that we have omitted columns and rows corresponding to basis elements from Y ; note, third,
that in the case where S is symplectic the given matrices do not lie in S – but this is fixed by removing all
minus signs, and proceeding in the same way.

It is easy enough to see that 〈x〉 normalizes, and acts fixed-point freely on U3. Similarly, K contains a
conjugate of 〈x〉 that acts fixed-point-freely on U4, and so on. By the same argument as before, we have
two possibilities:

(a) M contains U3;

(b) there is a set Λ ⊂ Ω such that |Λ| = |K|j−1 and on which SΛ acts 2-transitively; then Lemma 1.6.8
implies that G contains a section isomorphic to Sym(|K|j−1) and the result follows.

Thus, again, we may assume that M contains U3.
Since the same argument works for U4, . . . , Uj+2, we conclude that the groupM must contain the group

W1, consisting of all matrices of the form




I Z
I

Iy



 , (2.2.2)

where Z is a j-by-j matrix satisfying Z = −ZT and having zero diagonal entries (or, in the case where S
is symplectic, Z satisfies Z = ZT and has zero diagonal entries).

Step 2b. Now we repeat the argument of Step 2a but this time, all the matrices we use are the
transposes of those in Step 2a. We conclude that M must contain the group W2, consisting of all matrices
of the form 



I
Z I

Iy



 , (2.2.3)

where Z is a j-by-j matrix satisfying Z = −ZT and having zero diagonal entries (or, in the case where S
is symplectic, Z satisfies Z = ZT and has zero diagonal entries).

Step 3. We use the fact that M contains the group 〈K,W1,W2〉 and we split into cases, depending on
the particular family of classical groups which we are dealing with.

Case 3A: S is unitary. In this case an easy argument says that, since M contains the group K,

the group M contains all matrices of the form (2.2.2), where Z is a j-by-j matrix satisfying Z = −ZT ,
i.e. we can drop the requirement that Z has zero diagonal entries. The resulting set of matrices forms
an elementary-abelian group U of size qj

2
which is the unipotent radical of a parabolic subgroup Pj in

SU2j(q).
The same argument works “with transposes” and we obtain that M contains all matrices of the form

(2.2.3), where Z is a j-by-j matrix satisfying Z = −ZT . We split into two cases, depending on the parity
of n.

Assume, first, that n = 2k + 1 with k ≥ 2. Then M contains the projective image of M0
∼= SU2k(q),

where M0 stabilizes the unique non-isotropic basis vector, v, in Y . Without loss of generality, we may
suppose that v has norm 1.

Let α2, . . . , αk ∈ K and for simplicity set α1 := 0. For each i ∈ {1, . . . , k}, let βi,i ∈ K with βi,i +
βi,i + αiαi = 0. (Observe that the existence of βi,i is guaranteed by Hilbert’s Theorem 90.) For each
i, j ∈ {1, . . . , k} with i 6= j, let βi,j = 0 when i > j and βi,j = −αiαj when i < j. Now, let g ∈ S be the
element fixing e1, . . . , ek pointwise and which satisfies

v 7→ v + α2e2 + · · · + αkek,

fi 7→ fi − αiv +

k∑

j=1

βi,jej .



2.2. STABILIZERS CONTAINING CERTAIN ELEMENTS 41

In particular, the matrix form of g with respect to the basis (e1, . . . , ek, f1, . . . , fk, v) is





I 0 0

B I −d
dT 0T 1



 , where d =








α1

α2

...
αk







, B =








β1,1 β1,2 · · · β1,k
β2,1 β2,2 · · · β2,k
...

...
. . .

...
βk,1 βk,2 · · · βk,k







.

Let U0 be the subgroup of S consisting of all of these elements, as α2, . . . , αk run through K. Let T0 =
NM0(U0) and observe that T0 acts transitively on the non-identity elements of U0. We conclude that
either M contains U0 or else U0 ⋊ T0 acts 2-transitively by right multiplication on the set of right cosets
{Mu | u ∈ U0}, a set of size Kk−1. In the latter case Lemma 1.6.8 implies that G contains a section
isomorphic to Sym(|K|k−1) and the result follows. In the former case M contains U0 which in turn implies
that M ≥ S and the result follows.

Assume, next, that n = 2j + 2. Then M contains the projective image of M0
∼= SU2k−2(q), where M0

stabilizes the basis vectors ek and fk. In this case we define two subgroups:

1. U1 is the subgroup of S whose elements g fix e1, . . . , ek−1 and which satisfy ek 7→ ek + α1e1 + · · · +
αk−1ek−1 for some α1, . . . , αk−1 ∈ K.

2. U2 is the subgroup of S whose elements g fix f1, . . . , fk−1 and which satisfy fk 7→ fk + β1f1 + · · · +
βk−1fk−1 for some β1, . . . , βk−1 ∈ K.

The same argument as for n odd allows us to conclude that either G contains a section isomorphic to
Sym(|K|k−1) or else M contains U1 and U2 and so contains S and the result follows.

From here, we have, by definition, that j = k.

Case 3B: S is symplectic and q is odd. Again an easy argument asserts that, sinceM also contains
the group K, then M must contain all matrices of the form (2.2.2), where Z is any symmetric matrix.

These matrices together form an elementary abelian group U of size q
1
2
k(k+1), which is the unipotent radical

of a parabolic subgroup Pk. Applying the same argument “with transposes” allows us to conclude that
M ≥ S, and the result follows.

Case 3C: S is symplectic and q is even. In this case, the set of matrices of the form (2.2.2),

where Z is symmetric with zero diagonal entries, forms an elementary abelian group U of size q
1
2
k(k−1),

which is the unipotent radical of a parabolic subgroup Pk of an orthogonal group L = Ω+
2k(q) (this is the

particular orthogonal group corresponding to the quadratic form for which our basis is hyperbolic).

Now, as in the odd case, we can apply the same argument to the transpose of these matrices to conclude
that M ∩S contains the group L ∼= Ω+

2k(q). In particular M ∩S is either L, L.2 or S. The result follows if
M ∩ S = S, so assume M ∩ S is either L or L.2. We define an element g̃ whose action on 〈e1, f2〉 is given
by the matrix

(
1 1
0 1

)

and which fixes all elements of B \ {e1, f1}. Clearly g̃ is an element of Sp2k(q); we

take g to be the projective image of g̃ in S. Observe that g centralizes x but does not normalize L. We
can, therefore, repeat all of the preceding argument using subgroups of Lg instead of L. The same case is
left: when M ∩ S contains both L and Lg. Since 〈L,Lg〉 = S the result follows.

Case 3D: S is orthogonal and n = 2k. In this case, S = Ω+
2k(q)/Z and the groups W1 and W2

are both unipotent radicals of parabolic subgroups Pk in S. From this, we conclude that M ≥ S and the
result follows.

Case 3E: S is orthogonal, and n ∈ {2k + 1, 2k + 2}. In this case, S = Ω2k+1(q) or Ω−
2k+2(q)/Z

and, arguing à la Case 3D, we see that M contains the projective image of L ∼= Ω+
2k(q), where L fixes all

vectors in the non-degenerate subspace 〈Y 〉. Recall that, by construction, the element x̃ fixes all vectors
in 〈Y 〉.

Suppose first that q is odd, let z ∈ Y and suppose that ϕ(z, z) = η where ϕ is the symmetric form
associated with the covering group of S. We define an element g̃ whose action on 〈e1, z, f1〉 is given by the
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matrix




1 a −1
2aη

1 −aη
1



 ,

where a is some non-zero element of Fq, and G̃ fixes all elements of B \ {e1, f1, z}. Clearly g̃ is an element
of SOε

n(q); we take g to be the projective image of g̃ in S. Observe that g centralizes x but does not
normalize L. We can, therefore, repeat all of the preceding argument using subgroups of Lg instead of L.
The same case is left: when M ∩ S contains both L and Lg. Notice that we can repeat this argument for
any choice of z ∈ Y and any choice of a ∈ Fq. It is straightforward to conclude that the resulting collection
of conjugates of L generates S and, hence M ≥ S and the result follows.

Suppose next that q is even, in which case n = 2k + 2, S = Ω2k+2(q) and Y = 〈x, y〉. Let Q be the
quadratic form associated with the covering group of S and consider the restriction of Q to the subspace
W = 〈e1, f1, x, y〉. Let g̃ be a linear transformation which fixes all elements of B \ {e1, f1, x, y} and, on W ,
restricts to an element of the group J = Ω−

4 (q) associated with Q|W . By [12, Lemma 2.5.9], g̃ is an element
of the covering group of S and we take g to be its projective image in G. Again g centralizes x and, again,
we must deal with the case where M ∩ S contains L and Lg for all such g. Thus we may assume that
M contains L1 = 〈Lg | g ∈ J〉. There are two possibilities: either J normalizes L1 or else we can repeat
the same argument with L1 in place of L and we are able to assume that M contains L2 = 〈Lg | g ∈ J〉.
Repeating as many times as necessary we are left with the situation where M contains a group L∞ that
contains L ∼= Ω+

2k(q) and is normalized by J ∼= Ω−
4 (q).

Let X = 〈e1, f1, e2, f2, x, y〉 and consider the group H ≤ S that fixes every vector in X⊥ and induces
Ω−
6 (q) on X. Observe that H contains J and so, in particular, J normalizes H ∩ L∞. Then H ∩ L∞ is

a subgroup of H = Ω−
6 (q)

∼= SU4(q) that contains a group isomorphic to Ω+
4 (q)

∼= SL2(q) × SL2(q) and
is normalized in H by a group isomorphic to Ω−

4 (q)
∼= SL2(q

2). Checking [10, Tables 8.10 and 8.14] we
conclude that H ∩ L∞ is either H or a subgroup of H isomorphic to Sp4(q). Suppose H ∩ L∞

∼= Sp4(q).
Checking [10, Table 8.10] we see that there is precisely one conjugacy class of subgroups of H ∼= SU4(q)
isomorphic to Sp4(q) hence, regarding H as Ω−

6 (q) these are the stabilizers of non-singular vectors. Note
that H ∩ L∞ contains all J-conjugates of H ∩ L. What is more the non-singular vectors fixed by H ∩ L
are precisely those in 〈x, y〉. This, in turn, means that, for all j ∈ J , the non-singular vectors fixed by
(H ∩L)j are precisely those in 〈x, y〉j . Thus if v is a non-singular vector fixed by H ∩L∞, then vj ∈ 〈x, y〉
for all j ∈ J . Direct calculation (or using the fact that J is irreducible on W ) confirms that no such vector
exists. We conclude that H ∩ L∞ = H.

Now observe that, working with respect to the basis B, M contains all of the fundamental root groups
for S, and hence M contains S as required.

Finally, suppose that G is almost simple and M is core-free. Either the action of G on (G : M) is
not binary (and we are done) or else G contains a section isomorphic to Sym(|K|j−1). Lemma 2.1.1 (and
[10]) yield the result barring only a few values of k and q. In particular we use magma to verify the result
when S = PSpn(q) with (k, q) ∈ {(2, 2), (2, 3), (2, 4), (2, 5), (2, 7), (3, 2), (3, 3), (4, 2)}, when S = PSUn(q)
with (k, q) = (2, 2) and when S is an orthogonal group with (k, q) ∈ {(3, 2), (3, 3), (4, 2)}.

The following proposition deals with one of the lacunae in the previous: when S is orthogonal, q is
odd, and G does not contain PSOε

n(q). The statement of the proposition uses the notation established in
the statement of the previous; to make matters more straightforward we assume that G is almost simple.

Lemma 2.2.9. Suppose that q is odd, and that S = PΩεn(q) E G ≤ Aut(PΩεn(q)) with n ≥ 7. Let k be
the Witt index of the associated formed space and let M < G be core-free with x ∈ M ∩ S, where x is the
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projective image of

x̃ =













1
A

ζ
1

A−T

ζ−1

Iy













written with respect to B, A ∈ GLk−2(q) is of order qk−2 − 1, ζ is a non-square in Fq and Iy is the y-by-y
identity matrix. If the action of G on (G :M) is binary, then

(k, q) ∈ {(3, 3), (3, 5), (3, 7), (3, 9), (4, 3)}.

Proof. We refer, first, to [12, Lemma 2.5.7] to confirm that x̃ is indeed an element of Ωεn(q). Now the
action of x̃ on the subspace W := 〈e1, . . . , ek−1, f1, . . . , fk−1, Y 〉 is identical to that studied in the previous
proposition; the arguments given there allow us to assume that M contains (the projective image of) the
group

K := {g ∈ Ωεn(q) | egk = ek, f
g
k = fk, g|W ∈ Ω(W )}.

We should be careful about exceptions however: studying the proof we see that our conclusion is valid
only when Alt(qk−2) is not a section in S. Now, Lemma 2.1.1 implies that exceptions occur only when
qk−2 ≤ 2k + 4; this yields the given list.

Now we study the normalizer in K of four different elementary-abelian subgroups U1, . . . , U4 of S
of order qk−2. We choose these groups so that they stabilize the subspaces E = 〈e1, . . . , ek〉 and F =
〈f1, . . . , fk〉. We require furthermore that 〈Y 〉 is in the 1-eigenspace of each of the groups, thus to specify
the elements of these groups it is enough to specify their action on the subspace E:

U1 := {g | eg1 = e1; for all i = 2, . . . , k − 1, there exist αi such that egi = ei + αiek};
U2 := {g | eg2 = e2; for all i = 1, 3, . . . , k − 1, there exist αi such that egi = ei + αiek};

U3 :=

{

g
∣
∣
∣
eg1 = e1, . . . , e

g
k−1 = ek−1;

for all i = 2, . . . , k − 1, there exist αi s.t. e
g
k = ek + α2e2 + · · ·+ αk−1ek−1

}

;

U4 :=

{

g
∣
∣
∣
eg1 = e1, . . . , e

g
k−1 = ek−1;

for all i = 1, 3, . . . , k − 1, there exist αi s.t. e
g
k = ek + α1e1 + α3e3 + · · · + αk−1ek−1

}

.

It is a simple matter to check that, for each i = 1, . . . , 4, NK(Ui) acts transitively on the non-trivial
elements of Ui. Thus, by the same argument as before, we have three possibilities:

(a) M contains Ui;

(b) G admits a beautiful subset of size qk−2;

(c) S admits a section isomorphic to Alt(qk−2).

The second possibility is ruled out because G is binary on (G : M) and the third is ruled out as before,
except for the listed exceptions. Therefore, M contains Ui for each i and hence 〈K,U1, . . . , U4〉 = S, and
the result follows.

Lemmas 2.2.10 and 2.2.11 deal with some small rank cases that were not covered by Lemma 2.2.8.

Lemma 2.2.10. Let G contain a subgroup S ∼= SU3(q)/Z, where Z is a central subgroup of SU3(q) and
q > 2. We let B := (e1, f1, x) be a hyperbolic basis for the underlying unitary space. Let

g̃ =





t
t−q

1



 ∈ SU3(q),
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where t ∈ Fq is of order q − 1; let

g̃′ =





u
u−q

uq−1



 ∈ SU3(q),

where u ∈ Fq is of order q2 − 1. Let g and g′ be the projective images of g̃ and g̃′ in S. Let M < G and, if
q is odd, then suppose that g ∈M ; if q is even, then suppose that g′ ∈M . Then one of the following holds:

1. G contains a section isomorphic to Sym(q);

2. M contains S;

3. the action of G on (G :M) is not binary.

In particular, if G is almost simple with socle S and M is core-free, then the action of G on (G : M) is
not binary.

Proof. Assume first that q is odd and suppose that the action of G on (G : M) is binary. Write T0 = 〈g〉
and observe that T0 normalizes the following groups of order q:

U1 :=











1 −1
2a

2 a
1
−a 1



 | a ∈ Fq






and U2 :=











1
−1

2a
2 1 −a

a 1



 | a ∈ Fq






.

What is more, U1 ⋊ T0 and U2 ⋊ T0 are both Frobenius subgroups.
Suppose that M does not contain the projective image of U1. Then, since M contains T0, we conclude

that M ∩ U1 = {1}. Define M1 to be the projective image in S of U1 ⋊ T0, and observe that M1 acts
2-transitively on (M1 : M ∩M1). Let Λ := {Mu | u ∈ U1}; we conclude that the set-wise stabilizer of
Λ acts 2-transitive. Lemma 1.6.8 implies that G contains a section isomorphic to Sym(q) and the result
follows.

Clearly the same argument applies if M does not contain the projective image of U2. Thus we may
assume that M contains the projective image of 〈U1, U2〉. This projective image is a subfield subgroup
isomorphic to SO3(q). Thus SO3(q) ≤ M . Now observe that g acts fixed-point-freely by conjugation on

the conjugates Ug
′

i for i ∈ {1, 2}. Therefore, we may apply the argument above also to the groups Ug
′

1

and Ug
′

2 . We conclude, again, that G contains a section isomorphic to Sym(q), or else that M contains

〈SO3(q), U
g′

1 , U
g′

2 〉 = S and the result follows.

Assume now that q > 2 is even and g′ ∈ M . Let X be the subgroup of S that is isomorphic to
SU2(q) and acts trivially on 〈x〉, where x is the third basis vector of the basis B for V . Then (g′)q+1 acts
fixed-point-freely on the unipotent subgroups

U1 :=











1 α 0
0 1 0
0 0 1



 | α ∈ Fq






, U2 :=











1 0 0
α 1 0
0 0 1



 | α ∈ Fq







of X. Therefore, arguing as usual, we can assume 〈U1, U2〉 = X ≤M . Hence Y = 〈X, g′〉 ≤M .
Now Y is a maximal subgroup of S in the C1 class (see for instance [10]). Then [46, Prop. 4.2] implies

that (S : Y ) contains a beautiful subset with respect to the action of S and, checking the proof of [46,
Prop. 4.4] we see that there is always a beautiful subset of size at least q. We conclude that either M
contains S (and the result follows) or else M ∩S = Y and (G :M) contains a subset Λ of size at least q on
which SΛ acts 2-transitively. Then Lemma 1.6.8 implies that G contains a section isomorphic to Sym(q)
and the result follows.

Finally, suppose that G is almost simple and M is core-free. Either the action of G on (G :M) is not
binary (and we are done) or else G contains a section isomorphic to Sym(q). Lemma 2.1.1 implies that
q ≤ 5; we confirm the result for q ∈ {3, 4, 5} with a magma computation.
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Lemma 2.2.11. Let G contain a subgroup S ∼= SU4(q)/Z, where Z is a central subgroup of SU4(q) and
q > 2. We let B := (e1, e2, f1, f2) be a hyperbolic basis for the underlying unitary space. Let x ∈ S be the
projection in S of

x̃ =







a
1

a−1

1







written with respect to B, where a is an element of F∗
q of order q − 1. Let M < G with x ∈ M . Then one

of the following holds:

1. G contains a section isomorphic to Sym(q);

2. M contains S;

3. the action of G on (G :M) is not binary.

In particular, if G is almost simple with socle S and M is core-free, then the action of G on (G : M) is
not binary.

Proof. Suppose that the action of G on (G : M) is binary, and write X = 〈x〉. Let y be any element of
one of the following forms:







1 α
1

1
−α 1







or







1 α
1 −α

1
1






,

or the transpose of these forms (in each case α ∈ F∗
q). Now let U = 〈yh | h ∈ X〉. In all four cases, U

is a group of order q that is normalized by X. In the usual way, we conclude that either M contains U ,
or else there is a subset, Λ := {Mu | u ∈ U}, of (G : M), on which GΛ acts 2-transitively. In the latter
case Lemma 1.6.8 implies that G contains a section isomorphic to Sym(q) and the result follows. On the
other hand, if the former case holds for all four unipotent subgroups in question, then, since these four
subgroups generate S, we conclude that M contains S and the result follows.

Finally, suppose that G is almost simple and M is core-free. Either the action of G on (G :M) is not
binary (and we are done) or else G contains a section isomorphic to Sym(q). Lemma 2.1.1 implies that
q ≤ 8. One can check directly that SU4(8) does not contain a section isomorphic to Alt(8); we confirm the
result for q ∈ {3, 4, 5, 7} with a magma computation.

The groups we deal with in Lemmas 2.2.12, 2.2.13 and 2.2.14 have already been considered in previous
lemmas; however, here, we choose a different distinguished element and we prove that every faithful
transitive action containing this element gives rise to a non-binary action.

Lemma 2.2.12. Let S = Sp4(q) where q = 2a with a ≥ 2, and suppose that S ≤ G ≤ Aut(S). Let g be
the element







a
b

b−1

a−1







written with respect to a hyperbolic basis (e1, e2, f2, f1), where a, b ∈ Fq are of order q − 1. Let M be any
core-free subgroup of G that contains g. Then the action of G on (G :M) is not binary.
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Proof. We assume that the action of (G : M) is binary, and show a contradiction. Suppose, first, that
q ≥ 8. Let T = 〈g〉 and consider the groups U1, . . . , U4, all of order q, which contain elements of shape
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respectively. Observe that, for all i = 1, . . . , 4, the group T normalizes Ui and acts fixed-point-freely upon
it. Thus, using our usual argument, either G contains Ui or G has a section isomorphic to Alt(q). From
Lemma 2.1.1, G does not contain a section isomorphic to Alt(7). Thus G contains 〈U1, U2, U3, U4〉 ∼=
Sp2(q) × Sp2(q), where 〈U1, U2, U3, U3〉 is the subgroup of S that stabilizes the subspaces 〈e1, f1〉 and
〈e2, f2〉.

Now we repeat the argument with the groups U5, . . . , U8, all of order q, which contain elements of shape
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respectively. As before we find that either there is a beautiful subset, or else G contains each of the groups
U5, . . . , U8. The first possibility is ruled out as before because S does not admit a section isomorphic to
Alt(7). Therefore M ≥ 〈Sp2(q)× Sp2(q), U5, . . . , U8〉 = S and hence M contains S, a contradiction.

If q = 4, then the result is confirmed using a magma computation.

Lemma 2.2.13. Let S = PSU3(q) with q > 2, and suppose that S ≤ G ≤ Aut(S). Let T be the projective
image of a maximal torus of SU3(q) of order (q + 1)2, and let T.2 be a subgroup of NS(T ). Let M be any
core-free subgroup of G that contains T.2. Then the action of G on (G :M) is not binary.

Proof. When q ∈ {3, 4, 5}, the veracity of this lemma is verified with the auxiliary help of magma.

Suppose that q > 5. Consulting [10, Table 8.5], we see that there are two possibilities for M ∩S: either
M ∩ S = T.2 or M ∩ S = T.Sym(3). In the latter case, M is a maximal subgroup of SM . Therefore,
the action of SM on (SM : M) is primitive, and we know that the action is not binary, thanks to the
argument in [45, Section 6]. Thus, by Lemma 1.6.2, the action of G on (G :M) is also not binary.

It turns out that the argument in [45, Section 6] can be used for the case M ∩ S = T.2 as well. First,
recall that if M ∩ S = T.Sym(3), then the action of SM on (SM : M) is permutation equivalent to the
natural action of SM on

{{V1, V2, V3} |dimFq2
(V1) = dimFq2

(V2) = dimFq2
(V3) = 1, V = V1 ⊥ V2 ⊥ V3,

V1, V2, V3 non-degenerate}.

If M ∩ S = T.2, then the action of SM on (SM : M) is permutation equivalent to the natural action of
SM on

Λ := {(V1, {V2, V3}) |dimFq2
(V1) = dimFq2

(V2) = dimFq2
(V3) = 1, V = V1 ⊥ V2 ⊥ V3,

V1, V2, V3 non-degenerate}.

Now fixM∩S = T.2 and identify (SM :M) with the given set Λ. Let e1, e2, e3 be a basis of V such that
the matrix of the Hermitian form with respect to this basis is the identity. Thus λ0 := (〈e1〉, {〈e2〉, 〈e3〉}) ∈
Λ.

Consider Λ0 := {(V1, {V2, V3}) ∈ Λ | V1 = 〈e1〉}. Clearly, (SM)Λ0 = (SM)〈e1〉, (SM)Λ0/Z((SM)Λ0) is
almost simple with socle isomorphic to PSL2(q) (here we are using q > 3), and the action of (SM)Λ0 on Λ0
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G(q) E8(q) E7(q) E6(q)
2E6(q) F4(q) G2(q)

3D4(q)

m 9 8 6 4 4 3 3

r 7 5 4 2 2 2 2

N q8 q7 q8 q18 q10 q4 q10

q q > 3 q > 3 q > 5 q > 5

Table 2.2.2: Values of m such that SLm(q)/Z ≤ G(q)

is permutation equivalent to the action of (SM)〈e1〉 on Λ′
0 := {{W1,W2} | dim(W1) = dim(W2), 〈e1〉⊥ =

W1 ⊥ W2,W1,W2 non degenerate}. Therefore (SM)Λ0 is an almost simple primitive group with socle
isomorphic to PSL2(q) and having degree |Λ0| = q(q − 1)/2. Applying [45, Theorem 1.3] to (SM)Λ0 , we
obtain that (SM)Λ0 is not binary and hence there exist two ℓ-tuples ({W1,1,W1,2}, . . . , {Wℓ,1,Wℓ,2}) and
({W ′

1,1,W
′
1,2}, . . . , {W ′

ℓ,1,W
′
ℓ,2}) in Λℓ0 which are 2-subtuple complete for the action of (SM)Λ0 but not in

the same (SM)Λ0 -orbit. By construction the two ℓ-tuples

I := ((〈e1〉, {W1,1,W1,2}), (〈e1〉, {W2,1,W2,2}), . . . , (〈e1〉, {Wℓ,1,Wℓ,2})),
J := ((〈e1〉, {W ′

1,1,W
′
1,2}), (〈e1〉, {W ′

2,1,W
′
2,2}), . . . , (〈e1〉, {W ′

ℓ,1,W
′
ℓ,2)})

are in Λℓ and are 2-subtuple complete. Moreover, I and J are not in the same SM -orbit. Thus SM is not
binary on Λ = (SM :M). Now, G is not binary on (G :M) by Lemma 1.6.2.

Lemma 2.2.14. Let S = PSp4(q) where q ∈ {3, 5}, and suppose that S ≤ G ≤ Aut(S). Let T be a torus
of S of size 1

2(q− 1)2, and let M be any core-free subgroup of G that contains T . Then the action of G on
(G :M) is not binary.

Proof. In each case we use magma: we consider all almost simple groups G with socle one of these two
groups; we then compute all the core-free subgroups M having order divisible by (q − 1)2/2; finally we
prove, in all cases, that the action of G on the right coset of M is not binary.

To test this, we have divided our algorithm in two cases: when |M |3 ≤ |G|, since we could not
afford to determine the permutation representation explicitly having too many points available, we have
generated, for 106 times, two cosets Mg1 and Mg2 of M in G, and we tested whether Lemma 1.8.4 applies
with ω0 := M , ω1 := Mg1 and ω2 := Mg2 (observe that for this test we do not need to construct the
permutation representation of G on the right cosets of M); when |M |3 > |G|, we have constructed the
permutation representation of G on the cosets of M and we looked (extensively) for pairs for the form
((ω1, ω2, . . . , ωℓ), (ω

′
1, ω

′
2, . . . , ω

′
ℓ)), with ℓ ≤ 4, which are 2-subtuple complete but not in the same orbit.

2.2.3 Exceptional groups

Lemma 2.2.15. Suppose that G is almost simple with socle G0 = G(q), an exceptional group of Lie type
as in Table 2.2.2, and let m be the value given in the table.

(i) Then G0 has a subgroup L ∼= SLm(q)/Z, where Z is central in SLm(q).

(ii) Adopt the assumptions on q in the last line of Table 2.2.2, and let x ∈ L be the element as in the
statement of Lemma 2.2.5, of order qm−2 − 1 (if q > 2) or 2m−1 − 1 (if q = 2). If M is any core-free
subgroup of G that contains x, then the action of G on (G :M) is not binary.

(iii) If x is the element in part (ii), then |CG(x)| < N , where N is as in Table 2.2.2.

Proof. (i) The existence of these subgroups L follows easily from inspection of extended Dynkin diagrams
(this fact will also be used in the proofs of Propositions 3.3.1 and 3.4.1, where we also provide additional
comments).
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(ii) Let L ∼= SLm(q)/Z be the subgroup of (i), and let x ∈ L be the element as in the statement of
Lemma 2.2.5. Suppose that M is a core-free subgroup of G containing x, and assume that the action of G
on (G :M) is binary. We apply Lemma 2.2.5: by our assumptions on q, the only possibilities are

(a) G has a section isomorphic to Alt(qm−2) (if q > 2) or Alt(2m−1) (if q = 2), or

(b) M contains L.

The possibility (a) is excluded by Lemma 2.1.2 together with our assumptions on q.
Hence L ≤M . Using Theorem 3.1.1, it is straightforward to see that any core-free maximal subgroup

H of G(q) containing M is either parabolic, or of maximal rank, or a subgroup F4(q) or C4(q) of 2E6(q).
(Actually this follows from [75] except for the case where q = 2.) Hence we can argue exactly as in the
proofs of Propositions 3.3.1, 3.4.1 and 3.6.1 (case (4) of the proof) that there are subgroups A < S of G
with the following properties:

(1) A ≤ L and A 6≤ H for any maximal subgroup H of G(q) containing M , and

(2) A ∼= SLr(q), S ∼= SLr+1(q)/Z, where r is as in Table 2.2.2.

By Lemma 1.6.10, there is a subset ∆ of (G : M) such that |∆| = qr and G∆ ≥ ASLr(q). Since Alt(qr)
is not a section of G, by Lemma 2.1.2 and our assumptions on q, this contradicts the assumption that the
action of G on (G :M) is binary, completing the proof of (ii).

(iii) There is a simple adjoint algebraic group Ḡ over the algebraic closure F̄q, and a Frobenius en-
domorphism F of Ḡ, such that G(q) is the socle of the fixed point group (ḠF )′. The element x lies in
L = (L̄F )′, where L̄ is a subsystem subgroup Am−1 of Ḡ. The composition factors of the restriction of the
Lie algebra L(Ḡ) to L̄ can be found in Tables 8.1 - 8.5 of [76], from which it is easy to work out the action
of x on L(Ḡ), and hence obtain the upper bound dimCL(Ḡ)(x) ≤ R, where R is as follows:

G(q) E8(q) E7(q) E6(q)
2E6(q) F4(q) G2(q)

3D4(q)

R 8 7 8 18 10 4 10

Here is an example of such a computation for the case where G(q) = 2E6(q): here L̄ = A3 and

L(Ḡ) ↓ A3 = L(A3)/λ
4
1/λ

4
3/λ

4
2/0

7,

where in this notation, λ1 denotes the irreducible 4-dimensional module VA3(λ1), and so on. The action of
x on the module λ1 is (1, a, λ, λq), where λ ∈ F̄q has order q2 − 1 and a = λ−1−q. Hence x has fixed point
space of dimension 1 on λ1 and λ3, and of dimension 0 on λ2 (which is ∧2(λ1)). It follows that

dimCL(Ḡ)(x) ≤ 3 + 4 + 4 + 7 = 18.

In each case there is in fact a subgroup of Ḡ of dimension R centralizing x: for E8 and E7 this is just
a maximal torus; for E6 it is a subgroup T5A1 (where T5 denotes a 1-dimensional torus); for 2E6 it is a
subgroup T2A2A2 (since x ∈ A2 < A3 = L̄, and this A2 centralizes A2A2 in Ḡ); similarly in F4 it is T2A2;
in G2 it is T1A1 and in 3D4 it is T1A

3
1. Hence these subgroups are the full centralizers of x in Ḡ (noting

that CḠ(x) is connected), and hence taking fixed points under the Frobenius endomorphism F , we see that
|CḠF (x)| is as follows:

G(q) |CḠF (x)| G(q) |CḠF (x)|
E8(q) (q7 − 1)(q − 1), q > 2 2E6(q) (q2 − 1)|A2(q

2)|
28 − 1, q = 2 F4(q) (q2 − 1)|A2(q)|

E7(q) (q6 − 1)(q − 1), q > 2 G2(q) (q − 1)|A1(q)|
27 − 1, q = 2 3D4(q) (q − 1)|A1(q

3)|
E6(q) (q4 − 1)(q − 1)|A1(q)|, q > 2

(25 − 1)|A1(2)|, q = 2

Since x is centralized by no graph or field automorphisms, it follows that |CG(x)| < N , where N is as in
Table 2.2.2. This completes the proof.



2.3. RESULTS ON ODD-DEGREE ACTIONS 49

Lemma 2.2.16. Let G contain a subgroup S isomorphic to 2F4(q) (q > 2), 2G2(q) (q > 3) or 2B2(q)
(q > 2). Then there exists an element x ∈ S of order q − 1 such that, if x ∈ M < G, then one of the
following holds:

1. G contains a section isomorphic to Sym(q);

2. M contains S;

3. the action of G on (G :M) is not binary.

In particular if G is almost simple, then we can choose x to have the following properties:

(i) If M is any core-free subgroup of G that contains x, then the action of G on (G :M) is not binary.

(ii) |CG(x)| = (q − 1)2, q − 1 or q − 1, according as S = 2F4(q),
2G2(q) or

2B2(q), respectively.

Proof. Suppose first that S = 2F4(q). Let T be a maximal torus of S of order (q − 1)2, and choose x ∈ T
of order q − 1 such that CAut(S)(x) = T (such an element exists by [96]). Let M be a subgroup of G
containing x and assume that the action of G on (G :M) is binary.

The structure of the root subgroups of S with respect to T can be found in [47, Theorem 2.4.5(d)]. If
U1 is a root subgroup of type A2

1 with respect to T , then either U1 is contained in M or else U1 ⋊ 〈x〉 acts
2-transitively on Λ = {Mu | u ∈ U1}, a set of size q ≥ 8. In the latter case Lemma 1.6.8 implies that G
contains a section isomorphic to Sym(q) and the result follows. Suppose, then that U1 ≤ M . The same
argument applies to U−

1 , the “opposite” root group of type A2
1. We can apply the same argument to a root

group U2, of type B2, although in this case we consider Z(U2) ⋊ 〈x〉, and we conclude that Z(U2) ≤ M .
The same argument applies to U−

2 , the “opposite” root group of type B2. Since 〈U±
1 , Z(U

±
2 )〉 = S, it

follows that M ≥ S and the result follows.
In the special case where G is almost simple and M is core-free, Lemma 2.1.2 implies that G does not

contain a section isomorphic to Alt(q) and the result follows.
Now suppose that S = 2G2(q). We refer to the main theorem of [102] for basic information about this

group. We may choose an element x ∈ S of order q−1 such that CAut(S)(x) = 〈x〉 and x normalizes a Sylow
3-subgroup P of S. If Z = Z(P ), then |Z| = q and [102, item (3)] implies that 〈x〉 acts fixed-point-freely
on Z. Let M be a subgroup of G containing x and assume that the action of G on (G :M) is binary.

Suppose that Z 6≤ M . Then Z ∩M = {1} and, identifying (G : M) with the cosets of M we can set
Λ = {Mz | z ∈ Z}, a subset of (G : M) of size q. Then Z ⋊ 〈g〉 acts 2-transitively on Λ. Lemma 1.6.8
implies that G contains a section isomorphic to Sym(q) and the result follows.

We may suppose, then, that Z ≤M . The same argument applies to the “opposite” Sylow 3-subgroup
P− of S and so we obtain a second subgroup, Z−, on which 〈x〉 acts fixed-point-freely, and which is
contained in M . Thus 〈Z,Z−, x〉 ≤M . From the list of maximal subgroups of 2G2(q) in [86], we see that
either 〈Z,Z−, x〉 = S or 〈Z,Z−, x〉 ≤ 2 × PSL2(q). The latter is not possible since 〈x〉 is fixed point free
on Z. Hence 〈Z,Z−, x〉 = S. Therefore, M ≥ S and the result follows.

In the special case whereG is almost simple andM is core-free, we note that G has no section isomorphic
to Alt(5) (because 5 does not divide |S|) and the result follows.

Suppose finally that S = 2B2(q). We refer to [98]. The first part of the argument for 2G2(q) applies here
word-for-word, except that this time P is a Sylow 2-subgroup of S. As in that previous case, we obtain
that M contains 〈Z1, Z2〉, where Z1 and Z2 are the centres of two distinct Sylow 2-subgroups of S. From
the list of the maximal subgroups of S in [98, Theorem 9] we obtain 〈Z1, Z2〉 = S, completing the proof
as before. In the special case where G is almost simple and M is core-free, we note that G has no section
isomorphic to Alt(3) (because 3 does not divide |S|) and the result follows.

2.3 Results on odd-degree actions

In this section we present two results, both proved using magma. Our methods are described in full in §1.8.
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Lemma 2.3.1. Let M0 be one of the following groups

PSL2(r) (r ≤ 31),PSL3(r) (r ∈ {2, 3, 4, 5}),PSL4(r) (r ∈ {2, 3, 5}),
PSU3(r) (r ∈ {3, 4, 5, 8}),PSU4(r) (r ∈ {2, 3, 4, 5, 7}),PSU5(r) (r ∈ {2, 3, 4, 5, 7}),PSU6(2),
PSp4(r) (r ∈ {2, 3, 4, 5, 7}),PSp6(r) (r ∈ {2, 3}),PSp8(2),
Ω7(r) (r ∈ {3, 5, 7, 9}),PΩ−

8 (r) (r ∈ {2, 3, 4}),Ω+
8 (2),Ω

±
10(2), Ω

−
10(3),

2B2(8),
2B2(32), G2(r) (r ∈ {3, 4, 5}), 3D4(r) (r ∈ {2, 3}), F4(r) (r ∈ {2, 3}), 2F4(2)

′, 2E6(2).

Let M be an almost simple group with socle M0 and let H be a core-free subgroup of M with |M : H| odd.
Then either the action of M on (M : H) is not binary or M,M0 and H are as in Table 2.3.1.

Table 2.3.1: Some odd-degree binary actions

M0 M |M : H|
Alt(5) Sym(5) 5
Alt(5) Alt(5) 15
PSL2(8) PSL2(8) 63
PSL2(8) PSL2(8).3 189
PSL2(16) PSL2(16) 255
PSL2(16) PSL2(16).2 51

Proof. Suppose first that M0 /∈ {F4(2), F4(3),
3D4(3),

2E6(2)}. We have constructed all the groups M
under consideration and all odd index subgroups H of M . The construction of H can be done quite
efficiently working recursively: for each group M under consideration, the list of the maximal core-free
subgroups X of M is either already available in magma, or it can be constructed. Then, we can simply
select the subgroups X with |M : X| odd. In all cases, X is considerably smaller than M and we can
directly compute the odd index subgroups of X. Thus, we obtain all odd index subgroups of M .

We then check that the action of M on (M : H) is not binary with a combination of techniques.
First, we have checked the permutation character bound, see Lemma 1.8.1, then we have tried to apply
Lemma 1.8.4 and finally Lemma 1.6.15. For permutation groups failing this method, the degree of the
action was less than 107 and hence we simply searched for non-binary t-tuples (with t relatively small:
except when M0 = PSU4(2), it was sufficient to consider t ∈ {3, 4}).

Suppose now that M0 = F4(2). In particular, either M = F4(2) or M = F4(2).2. Let H be a subgroup
of M with |M : H| odd and let K be a maximal core-free subgroup of M with H ≤ K. We have reported
in Table 3.2.1 the maximal subgroups of M . We have proved in Proposition 3.2.1 that the action of M on
(M : K) is not binary and hence we may suppose that H < K. Using the information on K in Table 3.2.1,
we have computed the odd index subgroups of K and we have checked that, except when M = F4(2).2,
K = [222](Sym(2)wr Sym(2)) and H is a Sylow 2-subgroup of K, the action of K on (K : H) is not binary.
In particular, we may suppose that M = F4(2).2, K = [222](Sym(2)wr Sym(2)). Now, let T be a maximal
subgroup of M with H ≤ T and with T ∼= [220].Alt(6) · 22 (clearly, this is possible from Table 3.2.1 and
from Sylow’s theorem). Now, the action of T on (T : H) is not binary and hence so is the action of M on
(M : H).

Suppose now that M0 = F4(3). In particular, M = F4(3) = M0. Let H be a subgroup of M with
|M : H| odd and let K be a maximal subgroup of M with H ≤ M . From [73], we see that K is
isomorphic to either 2.Ω9(3) or to 22.PΩ+

8 (3).Sym(3). For each of these two groups, we have computed
all the subgroups H with |K : H| odd and we have checked that either K is not binary on (K : H), or
K = H, or K = 22.PΩ+

8 (3).Sym(3) and |K : H| = 3. In the first case, we deduce that the action of M on
(M : H) is not binary and hence we may consider one of the remaining cases. In all cases, 7 is a divisor
of both |M : H| and |H| and also 72 is the largest power of 7 dividing |M |. Let V be a Sylow 7-subgroup
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of M . Now, NM (V ) lies in the maximal rank subgroup 3D4(3).3, since the normalizer of V in 3D4(3) is
V.SL2(3), see [57] for example. Therefore, we have NM (V ) ∼= V.(3×SL2(3)), where the action of 3×SL2(3)
by conjugation on V has two orbits of cardinality 4 on the subgroups of V having order 7. This shows that
we are in the position to apply Lemma 1.6.15 with the prime 7 and we deduce that also the action of M
on the remaining cases is not binary.

Suppose now thatM0 =
3D4(3). In this case, the maximal subgroups of M are not available in magma.

However, using [73], we see that if H is a core-free maximal subgroup of M and |M : H| is odd, then
H ∩ M0 is either G2(3), or (7 × SU3(3)).2, or (SL2(27) ◦ SL2(3)).2. Now, using the structure of these
groups, we may construct them as subgroups of M (for instance, when H ∩M0

∼= 7 × SU3(3).2, we may
construct H by computing the normalizer of a suitable subgroup of M of order 7). Then we have checked
that the action was not binary using the permutation character method. Then, we worked recursively on
the subgroups of H, as explained in the first part of this proof.

Suppose now that M0 =
2E6(2). We use the information in [105]. In this case, the maximal subgroups

of M are not available in magma. However, using the information in the work of Wilson [105], we see that
if |M : H| is odd, then X is contained in a parabolic subgroup P of M . The information in [105] is also
enough to construct the (abstract) group P explicitly using magma. At this point, we have constructed
for each parabolic subgroup P of M , all the subgroups H of P with |P : H| odd. We have checked
that the action of P on (P : H) is not binary (by witnessing non-binary triples or quadruples), unless
|P : H| ∈ {1, 3, 9, 15, 45}. At this point, the only actions that we need to discuss are the actions of M on
(M : H), where H ≤ P for some maximal parabolic subgroup P of M and for some subgroup H of P with
|P : H| ∈ {1, 3, 9, 15, 45}.

Using the structure of P , we deduce that 7 divides both |M : H| and |H|. Now, a Sylow 7-subgroup
V of M has order 49 = 72 and M has two conjugacy classes of elements of order 7, which are referred to
as type 7A and 7B. The group V contains 8 subgroups of order 7, where 4 of these subgroups consist only
of 7A elements and 4 of these subgroups consist only of 7B elements. Using this information, it is readily
seen that we may use Lemma 1.6.15 to show that M is not binary on (M : H).

Lemma 2.3.2. Let M be an almost simple group with socle M0 a sporadic simple group. Then every
faithful odd degree action of M is not binary.

Proof. We use magma to verify the statement of the lemma. We divide the proof into three cases.

(1) Suppose that M0 is one of the following groups:

M11, M12, M22, M23, M24, J1, J2, J3, HS, McL, He, Ru, Suz, Co1, Co2, Co3,

F i22, F i23, F i
′
24,HN or O′N.

Let M be an almost simple group with socle M0. We use magma to construct all odd index subgroups H of
M , using a recursive routine as described at the start of the previous proof. For the groups Co1 and Fi

′
24, we

used some extra information at the start of the recursion: in these cases, rather than computing all maximal
subgroups of M and selecting those of odd index, we explicitly constructed only the maximal subgroups
of M having odd index using the information in [28] or in the online atlas of finite group representations.
Then, to determine all the other odd index subgroups of M we can simply run the procedure above, for
each of the maximal subgroups that we have constructed.

Given (M,H) as above, and using the terminology in §1.8, either Test 3 (direct analysis) or Test 1
(using the permutation character) is enough to complete the magma calculations. When M0 is one of Fi23,
Fi′24, HN , O′N and Co3, we used Test 1 as well as Lemma 1.6.15.

(2) Suppose now that M0 is one of the following groups:

J4, Ly, Th,B.
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M0 K H |H : K|
J4 23+12 · (Sym(5) × PSL3(2)) 23+12 · (Sym(4)× PSL3(2)) 5
B 22+10+20.(M22 : 2× Sym(3)) 22+10+20.(M22 : 2× 2) 3
B [235].(Sym(5) × PSL3(2)) [232].(Sym(4)× PSL3(2)) 5
M 22+11+22.(M24 × Sym(3)) 22+11+22.(M24 × 2) 3
M 25+10+20.(Sym(3)× PSL5(2)) 25+10+20.(2× PSL5(2)) 3

Table 2.3.2

In this case we proceeded similarly at first, by constructing all core-free odd index subgroups H of M .
However in some cases the index |H :M | was too large to prove directly that the action of M on (M : H)
is not binary. Thus we took a different approach as follows.

Let M be an almost simple group with socle M0 in the given list, let H be a core-free subgroup of M
with |M : H| odd and let K be a maximal core-free subgroup ofM with H ≤ K. Recall that Conjecture 1.2
has been verified for primitive actions of almost simple groups having socle a sporadic simple group [34].
Therefore, we may suppose that H < K. Now, rather than studying the action of M on (M : H), we study
the action of K on (K : H). We use magma to confirm that, except when (M,M0,K,H) is in Table 2.3.2,
the action of K on the right cosets of H is not binary (by witnessing a non-binary triple or a non-binary
4-tuple). Now Lemma 1.6.2 implies that the action of M on (M : H) is not binary.

For the remaining cases in Table 2.3.2, we have computed the permutation character for the action
of M on the right cosets of H and we have checked that this action is not binary using the permutation
character bound (Test 1 in §1.8).

(3) Finally suppose that M is the Monster group. The maximal subgroups K of M having odd index can
be deduced from [104] and are:

21+24.Co1, 210+16.O+
10(2), 22+11+22.(M24 × Sym(3)),

25+10+20.(Sym(3)× PSL5(2)), 23+6+12+18.(PSL3(2)× 3.Sym(6)).

Let K be one of these groups and let H be a subgroup of K with |M : H| odd. We show that the action
of M on the right cosets of H is not binary. If K = H, then this follows from [34]. Suppose then H < K.
Observe that, when K ∼= 21+24.Co1, we have O2(K) ≤ H ≤ K and K/O2(K) ∼= Co1. Therefore, in this
case, the proof follows from the fact that the faithful transitive actions of Co1 of odd degree are not binary.

For the remaining three groups K, we have constructed all odd index subgroups H of K. Except when
(M0,K,H) is in the last two lines of Table 2.3.2, we have verified that the action of K on the right cosets of
H is not binary (by using three techniques: via the permutation character method, or via Lemma 1.8.4, or
when the degree of the action is not very large via witnessing a non-binary triple or a non-binary 4-tuple).
In particular, the action of M on the right cosets of H is not binary in these cases.

It remains to deal with the cases in Table 2.3.2: here we cannot argue as in the paragraph above,
because the information in the character table stored in magma is not enough to construct the permutation
character under consideration. When K = 25+10+20.(Sym(3) × L5(2)) and H = 25+10+20.(2 × L5(2)), the
action ofM on the right cosets of H is not binary by using Lemma 1.6.15 applied with the prime p = 7 (for
details see [34, Lemma 5.1 and 5.2]). When K = 22+11+22.(M24 × Sym(3)) and H = 22+11+22.(M24 × 2),
the action of M on the right cosets of H is not binary by using Lemma 1.6.15 applied with the prime p = 7
(for details see [34, Lemma 5.1 and 5.2]).

2.4 Results on centralizers

The first result in this subsection is taken from [41, §6].

Proposition 2.4.1. Let G = Cln(q) be a simple classical group, and let 1 6= g ∈ H.
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(i) Then |CG(g)| > f(n, q), where f(n, q) is as in Table 2.4.1.

(ii) In particular, for any G = Cln(q) we have

|CG(g)| >
q⌈(n−1)/2⌉

4

(
q − 1

2qe(logq(2n) + 4)

)1/2

.

Table 2.4.1: Lower bounds for centralizers in classical groups

H f(n, q)

PSLn(q)
qn−1

e(1+logq(n+1)) (n,q−1)

PSUn(q)
qn−1

(n,q+1) .
(

q−1
e(q+1)(2+logq(n+1))

)1/2

PSpn(q), PΩ
ǫ
n(q)

q⌈(n−1)/2⌉

4

(
q−1

2qe(logq(2n)+4)

)1/2

The next result is Lemma 5.7 of [84].

Lemma 2.4.2. Let S = G(q) be a be a simple group of Lie type, let d be the untwisted rank of S, and let
g be an element of S. Then

|CS(g)| ≥
(q − 1)d

|Inndiag(S)| .

2.5 Outer automorphisms of groups of Lie type

Here we record a well-known result which classifies all outer automorphisms of prime order of finite groups
of Lie type. In the terminology of [47, Defn. 2.5.13], all such are diagonal, field, graph-field or graph
automorphisms. A proof can be found in [68, Prop. 1.1].

Proposition 2.5.1. Let L = L(q) be a simple group of Lie type over Fq, and let α be an automorphism of
L of prime order. If L is classical with natural module V , suppose that α does not lie in PGL(V ); and if
L is exceptional, suppose that α 6∈ Inndiag(L). Then one of the following holds:

(i) α is a field or graph-field automorphism, and CL(α) is of type L(q1/|α|) or 2L(q1/2) (or 3D4(q
1/3)

when L = D4(q));

(ii) α is a graph automorphism and the possibilities are as in Table 2.5.1. (In the last column of the table,
t denotes a long root element.)

Table 2.5.1

L |α| possible types for CL(α)

PSLǫn(q) 2 PSOn(q) (n odd)
PSO±

n (q),PSpn(q) (n even, q odd)
Spn(q), CSpn(q)

(t) (n even, q even)

D4(q),
3D4(q) 3 G2(q), A

ǫ
2(q) if (3, q) = 1

G2(q), CG2(q)(t) if 3 divides q

Eǫ6(q) 2 F4(q), C4(q) (q odd)
F4(q), CF4(q)(t) (q even)
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2.6 On fusion and factorization

Before working our way through the families of maximal subgroups given in Theorem 3.1.1 we record a
few useful lemmas.

In the next lemma, given a group G and two subgroups X and Y with X < Y < G, we say that Y
controls fusion of X in G if, whenever Xg < Y for some g ∈ G, there exists y ∈ Y such that Xg = Xy.

Lemma 2.6.1. Let G be a finite group, and let A < S < H be subgroups of G with the following properties:

(i) S controls fusion of A in G;

(ii) H controls fusion of S in G;

(iii) Sx ≤ H for all x ∈ NG(A).

Then NG(A) = NH(A) (NG(S) ∩NG(A)).

Proof. Let x ∈ NG(A). Then Sx ≤ H by (iii), so by (ii) there exists h ∈ H such that Sx = Sh. Hence
x−1 ∈ HNG(S), so

NG(A) ⊆ HNG(S). (2.6.1)

Now let y ∈ NG(S). Then A
y ≤ S, so by (i) there exists s ∈ S such that Ay = As. Hence NG(S) ⊆ SNG(A),

and, by intersecting both sides of this inclusion by NG(S), it follows that

NG(S) = S (NG(S) ∩NG(A)). (2.6.2)

From (2.6.1) and (2.6.2), we deduce

NG(A) ⊆ H (NG(S) ∩NG(A))

and the proof follows by intersecting both sides of this inclusion by NG(A).

In our application of the above lemma we will also need the following result on factorizations of simple
groups, which is a consequence of Theorem A of [69].

Lemma 2.6.2. Let G be an almost simple group with socle G0 = PSLn(q
a), where a ≥ 2. Suppose G

has a factorization G = AB, where A,B are core-free subgroups and A is contained in a subfield subgroup
NG(PSLn(q

b)), where Fqb ⊂ Fqa. Then (n, qa) = (2, 4), (2, 9), (2, 16) or (3, 4), and the possibilities for
A,B are as follows:

G0 A ∩G0 B ∩G0

PSL2(4) Sym(3), C3 D10

PSL2(9) Sym(4),Alt(4), C3 Alt(5)
PSL2(16) PSL2(4) D34

PSL3(4) PSL3(2) Alt(6)

Proof. Theorem A of [69], together with [72] imply the listed restrictions on the pairs (n, qa). What is more
we know the maximal subgroups of G0 which contain A∩G0 and B ∩G0; these are listed as the first entry
in each column in the tables in [72]. We then check directly whether it is possible for A∩G0 or B ∩G0 to
be non-maximal. The proof follows with a case-by-case analysis or with a magma computation.



Chapter 3

Exceptional Groups

In this chapter we prove the following theorem.

Theorem 3.1. Let G be an almost simple primitive permutation group with socle an exceptional group of
Lie type. Then G is not binary.

Note that the Suzuki and Ree groups 2B2(q) and 2G2(q) have been dealt with in [45], so we do not
consider them here. Note, too, that the groups with socle 2F4(2)

′ were dealt with in [34], hence these too
are excluded from what follows.

Our notation for finite groups of Lie type is in line with standard references such as [47]. Dynkin
diagrams are labelled as in [9].

3.1 Maximal subgroups of exceptional groups of Lie type

We shall need a substantial amount of information about maximal subgroups of finite exceptional groups
of Lie type, taken from many sources. A summary follows; note that we write Lie(p) to mean the set of
simple groups of Lie type that are defined over a field of characteristic p. By the rank of a finite group of
Lie type G(q), we mean the Lie rank of the corresponding simple algebraic group.

Theorem 3.1.1. ([78, Theorem 8]) Let G be an almost simple group with socle G(q), an exceptional group
of Lie type over Fq, q = pa, and let H be a maximal subgroup of G. Then one of the following holds:

(I) H is a parabolic subgroup;

(II) H is reductive of maximal rank: the possibilities for H are determined in [74, Tables 5.1,5.2];

(III) G(q) = E7(q), p > 2 and H ∩G(q) = (22 × PΩ+
8 (q).2

2).Sym(3) or H ∩G(q) = 3D4(q).3;

(IV) G(q) = E8(q), p > 5 and H ∩G(q) = PGL2(q)× Sym(5);

(V) H ∩G(q) is as in Table 3.1.1 below;

(VI) H is of the same type as G – that is, H ′ ∩G(q) = G(q0) or a twisted version, where Fq0 is a subfield
of Fq;

(VII) H is an exotic local subgroup, as in Table 3.1.2;

(VIII) G(q) = E8(q), p > 5 and H = (Alt(5)×Alt(6)).22;

(IX) F ∗(H) = H0 is simple, and not in Lie(p): the possibilities for H0 are given up to isomorphism by
[77];

55
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(X) F ∗(H) = H(q0) is simple and in Lie(p); moreover rank(H(q0)) ≤ 1
2rank(G), and one of the following

holds:

(a) q0 ≤ 9;

(b) H(q0) = Aǫ2(16);

(c) H(q0) = A1(q0),
2B2(q0) or

2G2(q0), and q0 ≤ t(G) where t(G) is as in Table 3.1.3 (given by [67]).

In cases (I)-(VIII), H is determined up to G(q)-conjugacy.

Note that Table 3.1.1 includes the subgroups F4(q) < E8(q) for q = 3a; these were omitted from the
list in [78], but discovered later in [30].

Recent work of Craven has eliminated many of the possibilities left in parts (IX) and (X) of the above
theorem:

Theorem 3.1.2. ([31, 32, 33]) Let G be as in Theorem 3.1.1, and let H be a maximal subgroup of G.

(i) Suppose F ∗(H) is an alternating group Alt(n). Then n ∈ {6, 7}. Moreover, if n = 7, then G is of
type E7 or E8.

(ii) Suppose H is as in part (X) of Theorem 3.1.1 (and not in any of the other parts), and H(q0) 6= A1(q0).
Then one of the following holds:

(a) G(q) = E8(q), q = 3a, and H(q0) = PSL3(3) or PSU3(3);

(b) G(q) = E8(q), q = 2a and H(q0) = PSL3(4), PSU3(4), PSU3(8), PSU4(2) or 2B2(8).

(iii) Suppose H is as in part (X) of Theorem 3.1.1 (and not in any of the other parts), and H(q0) = A1(q0).
Then one of the following holds:

(a) q0 = q;

(b) G(q) = E7(q) and q0 = 7, 8 or 25;

(c) G(q) = E8(q).

Table 3.1.1: Possibilities for H in (V) of Theorem 3.1.1

G(q) possibilities for F ∗(H ∩G(q))
G2(q) A1(q) (p ≥ 7)
3D4(q) G2(q)

′, A±
2 (q)

F4(q) A1(q) (p ≥ 13), G2(q) (p = 7), A1(q)G2(q) (p ≥ 3, q ≥ 5)

Eǫ6(q) A±
2 (q) (only for ǫ = + and p ≥ 5), G2(q)

′ (p 6= 7, (q, ǫ) 6= (2,−)),
C4(q) (p ≥ 3), F4(q), A

ǫ
2(q)G2(q)

′

E7(q) A1(q) (2 classes, p ≥ 17, 19), Aǫ2(q) (p ≥ 5), A1(q)A1(q) (p ≥ 5),
A1(q)G2(q) (p ≥ 3, q ≥ 5), A1(q)F4(q) (q ≥ 4), G2(q)

′C3(q)

E8(q) A1(q) (3 classes, p ≥ 23, 29, 31), B2(q) (p ≥ 5), F4(q) (p = 3), A1(q)A
ǫ
2(q) (p ≥ 5),

G2(q)
′F4(q), A1(q)G2(q)G2(q) (p ≥ 3, q ≥ 5),

A1(q)G2(q
2) (p ≥ 3, q ≥ 5)

Note that Table 3.1.1 contains a small refinement of the corresponding table in [78, Theorem 8] for
G(q) = Eǫ6(q) and the A±

2 (q) and Aǫ2(q)G2(q)
′ entries. This refinement is justified in Remark 5.2 of [16].

Note also that in Table 3.1.1, we write G2(q)
′ rather than G2(q) whenever q = 2 is allowed; this is because

G2(2) is not itself simple, but its derived subgroup is. There is another fact, concerning A−
2 (2), we need

to clarify in Table 3.1.1: there are two embeddings involving A−
2 (q) with q = 2, namely A−

2 (q) in
3D4(q),
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Table 3.1.2: Exotic local subgroups in (VII) of Theorem 3.1.1

23.SL3(2) < G2(p) p > 2
33.SL3(3) < F4(p) p ≥ 5
33+3.SL3(3) < Eǫ6(p) p ≡ ǫ mod 3, p ≥ 5
53.SL3(5) < E8(p

a) p 6= 2, 5; a = 1 or 2,
as p2 ≡ 1 or − 1 mod 5

25+10.SL5(2) < E8(p) p > 2

Table 3.1.3: Values of t(G) in (X)(c) of Theorem 3.1.1: notation d = (2, p − 1)

G G2(q) F4(q) Eǫ6(q) E7(q) E8(q)

t(G) 12d 68d 124d 388d 1312d

and A−
2 (q)G2(q)

′ in E−
6 (q). Since A−

2 (2) is not simple and not nilpotent for q = 2, the listed groups are
not equal to F ∗(H ∩G(q)) in these cases; instead one should replace A−

2 (2) by 32.
We shall divide the proof of Theorem 3.1 according to the various parts of Theorem 3.1.1. Note for

future reference that by Proposition 2.5.1, the maximal subgroups in the theorem that centralize field,
graph-field or graph automorphisms of G(q) are as follows:

(i) subfield or twisted subgroups as in part (VI);

(ii) the following subgroups in part (V):

C4(q), F4(q) < G(q) = Eǫ6(q),
G2(q), A

ǫ
2(q) < G(q) = 3D4(q).

3.2 Small exceptional groups of Lie type

In this section, we deal with some small exceptional groups of Lie type; this will allow us to avoid some
degeneracies in later arguments.

Proposition 3.2.1. Theorem 3.1 holds when the socle of G is one of the following exceptional groups of
Lie type:

2B2(q),
2G2(q),

2F4(2)
′, 3D4(2), F4(2),

G2(3), G2(4), G2(5).

Proof. The groups with socle 2B2(q),
2G2(q) were dealt with in [45]; groups with socle 2F4(2)

′ were dealt
with in [34]. The other possibilities have been handled using computational methods, and we describe
these in turn.

Socle 3D4(2). Let G be an almost simple group with socle 3D4(2). We have computed all the core-free
maximal subgroups M of G and we have checked that the action of G on (G : M) is not binary. Except
when M = 32 : 2Alt(4) or M = 13 : 4 and G = 3D4(2), or M = 32 : 2Alt(4) × 3 or M = 13 : 12 and
G = 3D4(2) : 3, we have used the permutation character method, a.k.a. Lemma 1.8.1. In the remaining
cases, where the permutation character method does not work, we have used Lemma 1.8.4.

Socle F4(2). Note that |F4(2)| = 224 · 36 · 52 · 72 · 13 · 17 and G = F4(2) or F4(2).2. In Table 3.2.1 we
list the maximal subgroups of G and their indices in G, as given in [85]. Let M be a core-free maximal
subgroup of G.

Observe that G has a unique conjugacy class of elements of order 5. Moreover, F4(2).2 has a unique
conjugacy class of elements of order 7. In F4(2) this conjugacy class of 7-elements splits into two distinct
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Line Max. subgroups F4(2) Index Max. subgroups of F4(2).2 Index

1 (21+8
+ × 26) : Sp6(2) 32 · 5 · 7 · 13 · 17 [220] : Alt(6) · 22 34 · 5 · 72 · 13 · 17

2 Sp8(2) 28 · 3 · 7 · 13 Sp4(4) : 4 215 · 34 · 72 · 13
3 [220] : (Sym(3)× PSL3(2)) 34 · 52 · 7 · 13 · 17 (Sym(6)wr 2).2 215 · 32 · 72 · 13 · 17
4 O+

8 (2) : Sym(3) 211 · 7 · 13 · 17 [222](Sym(3)wr 2) 34 · 52 · 72 · 13 · 17
5 3D4(2) : 3 212 · 3 · 52 · 17 72 : (3× 2 Sym(4)) 221 · 34 · 52 · 13 · 17
6 2F4(2) 212 · 33 · 72 · 17 2F4(2)× 2 212 · 33 · 72 · 17
7 PSL4(3).2 216 · 5 · 72 · 17 [PSL4(3).2].2 216 · 5 · 72 · 17
8 (PSL3(2)× L3(2)) : 2 217 · 34 · 52 · 13 · 17 [(PSL3(2)× PSL3(2)) : 2].2 217 · 34 · 52 · 13 · 17
9 3.(32 : Q8 × 32 : Q8).Sym(3) 217 · 52 · 72 · 13 · 17 [3.(32 : Q8 × 32 : Q8).Sym(3)].2 217 · 52 · 72 · 13 · 17

Table 3.2.1: Maximal subgroups of F4(2) and F4(2).2

F4(2)-conjugacy classes; furthermore, F4(2) has two conjugacy classes of cyclic subgroups of order 7. This
information can be deduced from [85].

Let p ∈ {5, 7}. From the information in the previous paragraph and from Lemma 1.6.15, we deduce
that, if p | |M | and p | |G : M |, then the action of G on the cosets of M is not binary. In particular, it
remains to consider the case that, for each p ∈ {5, 7}, p2 divides |M | or p2 divides |G :M |.

When M ∈ {3D4(2) : 3, 2F4(2), (PSL3(2) × PSL3(2)) : 2} and G = F4(2), or when M ∈ {Sp4(4) :
4, (Sym(6)wr 2).2, 2F4(2) × 2, [(PSL3(2) × PSL3(2)) : 2].2} and G = F4(2).2, we have verified that the
hypothesis of Lemma 1.8.3 with d = 2 holds true (by computing all proper subgroups X of M with |M : X|
odd). Thus, we deduce that either G is not binary in its action on (G : M) or 2 divides |G : M | − 1.
However, the second possibility yields a contradiction (in each case under consideration |G : M | − 1 is
odd). Therefore, G is not binary on (G : M). (Observe that for this computation we only need M as an
abstract group and we do not require the embedding of M in G.)

When M = 3.(32 : Q8× 32 : Q8).Sym(3) and G = F4(2), or when M = [3.(32 : Q8× 32 : Q8).Sym(3)].2
and G = F4(2).2, since there is not enough information in Table 3.2.1 to determine the isomorphism class
of M , we have used magma to construct M inside G. For this we used the fact that M is the normalizer
of a cyclic group of order 3 generated by an element in the conjugacy class 3C. This was possible because
generators of G and an element in the class 3C are available in the online atlas webpage. Then, we have
argued as in the previous paragraph applying Lemma 1.8.3. The group M contains a unique subgroup X
(up to conjugacy), such that

• |M : X| is odd,

• the permutation group MX induced by M on (M : X) is binary and

• every section of M is isomorphic to some section of MX .

This subgroup X has index 3 in M and MX
∼= Sym(3). As M is maximal in G, we obtain that G in its

action on (G : M) is primitive. If G acting on (G : M) has a suborbit of cardinality 3, then it follows
from [97] that |M | divides 48, which is clearly a contradiction. Therefore, G in its action on (G :M) has no
suborbits of cardinality 3. Thus, if G is binary in its action on (G :M), then, from the magma computation
above, G has no non-trivial suborbits of odd size in its action on (G : M). However, this implies that
|G :M | − 1 is even, which is clearly a contradiction.

Using Table 3.2.1, we see that it remains to deal with the action of G = F4(2).2 on the right cosets
of M = [222] : (Sym(3)wr 2). First, we work with the restriction of this action to G′ := F4(2). Using the
generators of G′, we may construct M ∩ G′ using the fact that it is a local subgroup (first by finding a
Sylow 2-subgroup P of G′ and then by computing the normalizer of a suitable subgroup of P having index
4). Let K be a Sylow 3-subgroup of M ∩G′. We see that K contains four 3-elements in the class 3C, two
3-elements in the class 3A and two more 3-elements in the class 3B. Thus we may write K = 〈g, h〉, where
g and h are 3A and 3B elements (respectively) and gh is a 3C element. Using the formula |xG∩M |/|xG| we
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may compute the number of fixed points of x ∈ M without constructing the permutation representation
explicitly. We see that g and h both fix 945 points, gh fixes 81 points and K fixes 9 points. Using
this information, we see that there exists a K-invariant subset Λ ⊆ (G : M) having cardinality 10, say
Λ = {λ0, λ1, . . . , λ9}, such that

gΛ := (λ0)(λ1, λ2, λ3)(λ4, λ5, λ6)(λ7)(λ8)(λ9),

hΛ := (λ0)(λ1, λ2, λ3)(λ4)(λ5)(λ6)(λ7, λ8, λ9),

where gΛ and hΛ are the restrictions of g and h to Λ. It is now easy to verify that the two 10-tuples

(λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9) and (λ0, λ2, λ3, λ1, λ4, λ5, λ6, λ7, λ8, λ9)

are 2-subtuple complete for the action of G on (G : M). If the action of G on (G : M) is binary, then
there exists a ∈ G mapping the first 10-tuple into the second 10-tuple. As a fixes λ0, we get a ∈ Gλ0 =M .
Moreover, a fixes set-wise Λ and aΛ = (λ1, λ2, λ3). Therefore, GΛ ∩ Gλ0 has a Sylow 3-subgroup of
cardinality divisible by 33, but this contradicts the fact that a Sylow 3-subgroup of M has cardinality
|K| = 9. (This construction is inspired from Example 2.2 in [45].)

Socle G2(q) (q ≤ 5). These groups (and their automorphism groups) are available in magma . For each
possible group G we have computed its maximal subgroups. When q = 3, we have then constructed the
permutation representations and checked that the group is not binary by witnessing non-binary triples.
When q ∈ {4, 5}, we have computed the permutation characters and used Lemma 1.8.1: this test was
always successful for proving that the action was not binary except when q = 5 and M ∼= 23.PSL3(2). In
this last case we generated, for 106 times, two cosets Mg1 and Mg2 of M in G, and we tested whether
Lemma 1.8.4 applies with ω0 := M , ω1 := Mg1 and ω2 := Mg2. After a few iterations we have found a
suitable g1 and g2 and hence the action of G on (G :M) is not binary.

In light of Proposition 3.2.1, we assume for the remainder of this section that the socle of G is not one
of the groups listed in the proposition.

3.3 Parabolic subgroups

In this section we prove Theorem 3.1 for parabolic actions of exceptional groups of Lie type. We use the
notation Pi (resp. Pij) for a parabolic subgroup which corresponds to deleting node i (resp. nodes i, j etc.)
from the Dynkin diagram. For twisted groups we shall adopt a similar convention using the untwisted
Dynkin diagram: for example for 3D4(q) the maximal parabolic subgroups are denoted by P2 and P134,
and so on.

Here is the main result of the section. The cases excluded in the proposition (those in Table 3.3.1) will
be dealt with in Lemma 3.3.2.

Proposition 3.3.1. Assume G is almost simple with socle G(q), an exceptional group of Lie type over
Fq, and suppose G(q) is not as in Proposition 3.2.1. Let H be a maximal parabolic subgroup of G, and
Ω = (G : H). Suppose further that (G(q),H) is not as in Table 3.3.1. Then (G,Ω) is not binary.

Table 3.3.1: Exceptions in Prop. 3.3.1

G(q) H
3D4(q), q ∈ {3, 4, 5} P2

E6(2) P2
2E6(2) P2, P4, P16
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Proof. Let H = Pi (or Pij in cases where G contains a graph automorphism of G(q)). Inspection of
extended Dynkin diagrams shows that there exist subgroups A ∼= SLr(q) in H, and S ∼= SLr+1(q)/Z in
G (where Z is central), such that A ≤ S and S 6≤ H, where r is as in Table 3.3.2. Hence Lemma 1.6.10
produces a subset ∆ of Ω for which G∆ contains the 2-transitive group ASLr(q) of degree q

r. If G∆ does
not contain Alt(∆), this implies that G is not binary by Lemma 1.6.12, as required. So assume that
G∆ ≥ Alt(∆). Then qr ≤ NG, where NG is as defined in Lemma 2.1.2. Also Alt(qr − 1) must be a section
of H. This implies that (G,H, q) is either as in Table 3.3.1, or is one of the following:

G(q) G2(q)
3D4(q)

2F4(q)

H P1, Borel P2 any parabolic

Consider G2(q). Here H contains T1 = {hα1(c) : c ∈ Fq} ∼= Cq−1, and this acts fixed-point-freely on
the root group U = U−α0 , where α0 is the longest root. Observe that T1U ∩ H = T1. Hence, if we set
∆ = {Hu : u ∈ U} ⊆ Ω, then |∆| = q and G∆ ≥ (T1U)∆ = AGL1(q). Hence, if q > NG = 6 + δp,5 (which
is the case, as q 6= 3, 4, 5 by hypothesis), then as above, G is not binary. A similar proof applies to the
case G(q) = 3D4(q): here q = 3, 4, 5 are not excluded in the hypothesis, so these cases are included in
Table 3.3.1.

Finally, consider G(q) = 2F4(q), and note that q > 2 here, by hypothesis. In this case, the maximal
parabolics are Pi = QiLi for i = 1, 2, where Qi is the unipotent radical and

L1 = GL2(q), L2 =
2B2(q)× (q − 1).

Let H = Pi and Ω = (G : H), and suppose (G,Ω) is binary. Let S ∼= Fq be the root subgroup corresponding
to the highest root, and S− its negative. For i = 1, 2 there is a torus T1 < Li of order q − 1 acting fixed-
point-freely on both S and S−. Since S− 6≤ Pi, the Frobenius group F = S−T1 satisfies F ∩ Pi = T1, and
so we obtain in the usual way a subset ∆ of Ω with G∆ ≥ AGL1(q), forcing q ≤ 8 by Lemma 2.1.2. If
q = 8 and G∆ ≥ Alt(8), then H = Pi must contain a section isomorphic to Alt(7), which is not the case.
This final contradiction completes the proof.

Table 3.3.2: Values of r in proof of Prop. 3.3.1

G(q) = E8(q) H = Pi, i = 1 2 3 4 5 6 7 8
r = 7 8 7 5 5 5 6 7

G(q) = E7(q) H = Pi, i = 1 2 3 4 5 6 7
r = 6 7 5 4 4 5 6

G(q) = E6(q) H = Pi, i = 1 2 3 4 16 35
r = 5 2 4 3 4 3

G(q) = 2E6(q) H = Pi, i = 16 2 35 4
r = 3 2 3 2

G(q) = F4(q) H = Pi, i = 1 2 3 4 14 23
r = 2 2 3 3 2 2

G(q) = G2(q) H = Pi, i = 2
r = 2

G(q) = 3D4(q) H = Pi, i = 134
r = 2

The remaining cases are resolved by magma computations:

Lemma 3.3.2. Let G be as in Proposition 3.3.1, and let H be a maximal parabolic subgroup of G as listed
in Table 3.3.1. Let Ω = (G : H). Then (G,Ω) is not binary.
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Proof. Suppose first that G(q) = 3D4(q); we refer to [43] for a description of the parabolic subgroup H
here (note that, although [43] assumes that q is odd, [49] confirms that the same description applies for q
even). Let T be a maximal torus contained in H ∩ G(q) that is isomorphic to Cq−1 × Cq3−1. We assume
that H ∩ G(q) contains the Borel subgroup generated by all positive root subgroups. Let α (resp. β) be
the short (resp. long) fundamental root, and let U be the short root group X−2α−β ; then |U | = q3 and U
is not contained in H. What is more, [43, Table 2.3] confirms that T acts transitively on the non-identity
elements of U . Define Γ = {Hu : u ∈ U}, a subset of Ω of order q3. Then U ⋊ T stabilizes Γ and acts
2-transitively on Γ. Since q ≥ 3, G(q) does not contain a section isomorphic to Alt(q3) by Lemma 2.1.1.
Therefore, Γ is a beautiful subset and Lemma 1.6.12 yields the conclusion.

In the case where G = E6(2) or E6(2).2 and H = P2, we compute the index |G : H| and we select the
complex irreducible characters of G having degree at most |G : H|. Then we find all non-negative integer
linear combinations of these irreducible characters having degree |G : H|. These combinations are our
putative permutation characters. Then, for each of these characters, we use Lemma 1.8.1 to prove that
the action under consideration is not binary.

Finally, for G(q) := 2E6(2), let H be one of the parabolic subgroups in Table 3.3.1. Then we see that 5
divides both |G : H| and |H|, but 52 does not divide |H|. Moreover, G contains a unique conjugacy class
of elements of order 5 (see [28]). Therefore Lemma 1.6.15 implies that the action of G on (G : H) is not
binary.

3.4 Maximal rank subgroups

In this section we prove Theorem 3.1 in the case where the point stabilizer H is a subgroup of maximal
rank that is not the normalizer of a maximal torus in G. Such maximal subgroups are listed in Table 5.1
of [74]. They will be listed in Tables 3.4.2 - 3.4.8 below, where for notational convenience we list each
possibility for H as a “type”, which is a subgroup (usually equal to H(∞)) of small index in H.

Here is the main result of this section. The cases excluded in the proposition (those in Table 3.4.1 and
also the case of socle 2F4(q)) will be handled later in Lemmas 3.4.2, 3.4.3 and 3.4.4.

Proposition 3.4.1. Assume G is almost simple with socle G(q), an exceptional group of Lie type over Fq.
Suppose G(q) is not as in Proposition 3.2.1, and suppose also that G(q) 6= 2F4(q). Let H be a maximal
subgroup of maximal rank in G, as in [74,Table 5.1], and let Ω = (G : H). Then either (G,Ω) is not
binary, or (G(q),H) is as in Table 3.4.1.

Table 3.4.1: Exceptions in Prop. 3.4.1

G(q) type of H

E7(q) A1(q
7)

Eǫ6(q) Aǫ2(q
3)

E8(2) A−
2 (2)

4, A−
2 (2

4)
2E6(2) A−

2 (2)
3,D4(2)T2

Proof. We adopt the same method as in the previous section, using Lemma 1.6.10. In Tables 3.4.2 - 3.4.8
we have listed the possibilities for H, together with a subgroup A ∼= SLr(q

u) of H (where u = 1 or 2), such
that A is contained in a subgroup S ∼= SLr+1(q

u)/Z of G that does not lie in H. We shall justify these
assertions below.

Given the assertions on the tables, the argument proceeds as in the proof of Proposition 3.3.1: Lemma 1.6.10
produces a subset ∆ of Ω of size qru, for which G∆ contains ASLr(q

u). If G∆ ≥ Alt(∆), then qru ≤ NG
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Table 3.4.2: Subgroups H and A for E8(q)

type of H D8(q) A1(q)E7(q) A8(q) A2(q)E6(q) A4(q)
2 D4(q)

2 A2(q)
4

A SL8(q) SL7(q) SL7(q) SL6(q) SL5(q) SL4(q) SL3(q)

type of H A1(q)
8(q > 2) A−

8 (q) A−
2 (q)E

−
6 (q) A−

4 (q)
2 A−

4 (q
2) D4(q

2) 3D4(q)
2

A SL2(q) SL3(q
2) SL3(q

2) SL2(q
2) SL2(q

2) SL2(q
2) SL3(q)

type of H 3D4(q
2) A−

2 (q)
4 A−

2 (q
2)2 A−

2 (q
4)

A SL3(q
2) SL2(q) SL2(q

2) SL2(q)

Table 3.4.3: Subgroups H and A for E7(q)

type of H A1(q)D6(q) A7(q) A2(q)A5(q) A1(q)
3D4(q) A1(q)

7(q > 2) E6(q)T1
A SL6(q) SL5(q) SL5(q) SL4(q) SL2(q) SL6(q)

type of H A−
7 (q) A−

2 (q)A
−
5 (q) A1(q

3) 3D4(q) E−
6 (q)T1

A SL2(q
2) SL3(q

2) SL3(q) SL3(q
2) −

Table 3.4.4: Subgroups H and A for E6(q)

type of H A1(q)A5(q) A2(q)
3 A2(q

2)A−
2 (q) D4(q)T2

3D4(q)T2 D5(q)T1
A SL4(q) SL3(q) SL2(q

2) SL4(q) SL3(q) SL5(q)

Table 3.4.5: Subgroups H and A for 2E6(q)

type of H A1(q)A
−
5 (q) A−

2 (q)
3 A2(q

2)A2(q) D4(q)T2 D−
5 (q)T1

A SL2(q
2) SL2(q) SL3(q) SL3(q) SL2(q

2)

Table 3.4.6: Subgroups H and A for F4(q)

type of H A1(q)C3(q) B4(q) D4(q)
3D4(q) A2(q)

2 A−
2 (q)

2

A SL2(q) SL2(q) SL2(q) SL3(q) SL3(q) SL2(q)

type of H B2(q)
2 B2(q

2)
A SL2(q) SL2(q)

Table 3.4.7: Subgroups H and A for G2(q)

type of H A1(q)
2 A2(q) A−

2 (q)
A SL2(q) SL2(q) SL2(q)

Table 3.4.8: Subgroups H and A for 3D4(q)

type of H A1(q)A1(q
3) A2(q) A−

2 (q)
A SL2(q) SL2(q) SL2(q)

(as defined in Lemma 2.1.2), and also Alt(qru − 1) must be a section of H. By Lemmas 2.1.1 and 2.1.2,
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this eliminates all possibilities except for the list in Table 3.4.1, together with the following cases:

G F4(q), q = 3

H B4(q),D4(q)
(3.4.1)

We shall handle the cases in (3.4.1) after first justifying the assertions in Tables 3.4.2 - 3.4.8. For the
cases in the tables where the maximal rank subgroup H is just an untwisted subsystem subgroup over Fq,
the existence of the subgroups A < S is clear from inspection of the extended Dynkin diagram of G. (The
cases (A,H) = (SL2(q),D4(q)) for F4(q), and also (A,H) = (SL2(q), A2(q)) for G2(q) and 3D4(q) require
some small additional observations: in the first case, D4(q) contains a subgroup A = SL2(q) corresponding
to a short root in the F4-system, and this lies in a short root S = SL3(q) which is not contained in D4(q);
and in the second case, there exists x ∈ CG(A) \H, and we can take S = Hx.)

Now consider cases in Tables 3.4.2 - 3.4.8 where H involves a twisted group, or a group over a proper
extension field of Fq.

Consider first Table 3.4.2, where G(q) = E8(q). In the cases where H is of type 3D4(q)
2 or A−

2 (q)
4,

we choose A to be a subsystem subgroup SL3(q) or SL2(q) of one of the factors. Now suppose H is of
type A−

8 (q). Then H has a Levi subgroup S = SL4(q
2), and we let A be a natural subgroup SL3(q

2) of
this. We use Lemma 2.6.1 to show that there is a conjugate Sx such that A < Sx 6≤ H. First observe
that the fusion control hypotheses of the lemma for A < S < H clearly hold. Now NG(A) contains a
subgroup A2(q)A

−
2 (q) (a subgroup A2(q

2)A2(q)A
−
2 (q) can be seen inside a subsystem subgroup of type

E6A2), whereas NH(A) normalizes a subgroup A−
2 (q)T2A of H, where T2 is a torus of order q2 − 1. The

factor A2(q) of NG(A) does not have a factorization with one of the factors being N(T2) (see [69]); hence
NG(A) 6= NH(A) (NG(S) ∩NG(A)) and the required conjugate of S exists by Lemma 2.6.1.

Next suppose H is of type A−
2 (q)E

−
6 (q). Here we choose A to be a subgroup SL3(q

2) of a Levi subgroup
SU6(q) of the E−

6 (q) factor; this is contained in a subgroup S = SL4(q
2) as defined in the previous

paragraph, and S 6≤ H. A similar argument applies to produce a suitable subgroup A = SL2(q
2) when H

has type A−
4 (q)

2, and also a subgroup A = SL3(q
2) when H has type 3D4(q

2). In the case whereH is of type
A−

4 (q
2), we choose A to be a subgroup SL2(q

2) corresponding to a natural subgroup SU2(q
2) of the unitary

group; this arises from a subsystem A1A1 of the ambient algebraic group, and is conjugate to the subgroup
SL2(q

2) of the previous case. The same subgroup A = SL2(q
2) pertains when H is of type A−

2 (q
2)2 or

D4(q
2). In the latter case, we also need to apply Lemma 2.6.1 to produce a subgroup S = SL3(q

2) such
that A < S 6≤ H: here NG(A) contains D

−
6 (q), which does not factorize as NH(A) (NG(S) ∩NG(A)).

Finally, for H of type A−
2 (q

4), let A be a natural subgroup SL2(q) of A−
2 (q

4) (acting as 2 ⊕ 1 on the
associated 3-dimensional unitary module). Then A is a diagonal subgroup of a subsystem subgroup of type
A1(q)

4 which lies in a subsystem A2(q)
4, and hence A lies in a diagonal A2(q) in the latter. This completes

the justification for Table 3.4.2.

For G(q) = E7(q), E
ǫ
6(q), F4(q) or G2(q) the justification for the existence of the subgroups A < S uses

the same arguments as above. Extra argument using Lemma 2.6.1 is needed just for the cases

(G(q),H) = (E7(q), A
−
7 (q)), (E6(q), A2(q

2)A−
2 (q)) and (2E6(q), A1(q)A

−
5 (q));

observe that CG(A) contains 2D4(q)A1(q),
2A3(q) or A3(q) in the respective cases, from which it can be

seen that NG(A) does not factorize as NH(A) (NG(S) ∩NG(A)), so that Lemma 2.6.1 applies.

We have now justified all the assertions in Tables 3.4.2 - 3.4.8.

It remains to handle the cases in (3.4.1). Let G = F4(3), and let H be a maximal rank subgroup
B4(3) or D4(3).Sym(3). First consider the case where H = D4(3).Sym(3). Let S = SL4(3) < H be
generated by root subgroups, and A = SL3(3) < S. Then A < S < H, and H controls fusion of S in G
(as all subgroups SL4(3) generated by root groups in H are H-conjugate). We claim that NG(A) does not
factorize as NH(A) (NG(S) ∩ NG(A)). To see this, observe that NG(A)/A contains Ã2(3) (generated by
short root groups); while |NH(A)/A|3 = 3 and |(NG(S)∩NG(A))/A|3 = |NA1(3)S(A)/A|3 = 3, proving the
claim. It then follows from Lemma 2.6.1 that there is a conjugate Sg such that A < Sg 6≤ H, so as usual
there is a subset ∆ with G∆ ≥ ASL3(3), showing that (G, (G : H)) is not binary.
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Now consider the case H = B4(3). Again take A < S < H with A = SL3(3), S = SL4(3) generated
by root subgroups. This time H does not control fusion of S in G, as there are two classes of subgroups
isomorphic to SL4(3) in B4(3) with representatives S1, S2 of types SL4(3) and Ω+

6 (3), respectively. We
again aim to find a conjugate Sg such that A < Sg 6≤ H, but we need to do this a little differently. Define

Λ = {R < G : A ≤ R,R conjugate to S in G},
Φ = {R ∈ Λ : R < H}.

We shall show that |Λ| > |Φ|, which will achieve our aim, completing the proof that the action of G on
(G : H) is not binary.

First observe that NG(A) acts transitively on Λ, since

R ∈ Λ ⇒ R = Sg (g ∈ G)
⇒ A,Ag

−1
< S

⇒ Ag
−1

= As (s ∈ S)
⇒ R = Ssg, sg ∈ NG(A).

Hence |Λ| = |NG(A) : NG(A) ∩NG(S)| = |Ã2(3).2 : T1A1(3).2|, which is divisible by 32.13.
In similar fashion, we see that NH(A) has two orbits Φ1, Φ2 on Φ, with orbit representatives S1 and

S2. The orbit sizes are |Φi| = |NH(A) : NH(A) ∩ NH(Si)| for i = 1, 2. Hence |Φ1| = |T1A1(3).2 : T2.2|
divides 24, while |Φ2| = 1. Therefore |Λ| > |Φ|, as required.

The next three results deal with the cases not covered by Proposition 3.4.1 (those in Table 3.4.1 and
also the 2F4(q) case).

Lemma 3.4.2. Let G be as in Proposition 3.4.1, and suppose that (G(q),H) is as in line 1 or 2 of
Table 3.4.1. If Ω = (G : H), then (G,Ω) is not binary.

Proof. In these cases G(q) = E7(q) or Eǫ6(q) (ǫ = ±), and H is of type A1(q
7) or Aǫ2(q

3), respectively.
In the first case, H ∩ G(q) = A1(q

7).7, and we choose a subfield subgroup X = A1(q) × 7 = X0 × 7 of
H. The factor X0 = A1(q) is contained diagonally in a subsystem subgroup A1(q)

7 of E7(q), which has
normalizer acting as L3(2) on the 7 factors (see [74, Table 5.1]). Hence NG(X) is not contained in H,
and so there is a suborbit here on which H acts as (H : Y ), where X ≤ Y ≤ NH(X0). If q > 2, then
Y is maximal in 〈H ∩ G(q), Y 〉, and we know, by [45] that the associated action on cosets is not binary.
Appealing to Lemma 1.6.2 if necessary, we conclude that the action of H on (H : Y ) is not binary, and
now Lemma 1.6.1 implies that the action of G on (G : H) is not binary. Suppose now q = 2. Let x be an
element of order 7 in H. From [6, Table 2], we see that there exists g ∈ CG(x) \H and hence H ∩Hg is
a proper subgroup of H containing x. We have calculated with magma the faithful transitive actions of H
having point stabiliser of order divisible by 7. We find that all such actions are not binary. Therefore, the
action of H on (H : H ∩Hg) is not binary, and hence by Lemma 1.6.1 so is the action of G on (G : Ω).

For the Eǫ6(q) cases, we argue similarly. Choose a subfield subgroup X = Aǫ2(q) × 3 of H. The
Aǫ2(q) factor is contained diagonally in a subsystem Aǫ2(q)

3, which has normalizer acting as Sym(3) on the
factors. Hence again NG(X) 6≤ H and so there is a suborbit here on which H acts as (H : Y ) where
X ≤ Y ≤ NH(A

ǫ
2(q)). It will be sufficient to show that this action is not binary.

If ǫ = +, then we take a subgroup S = SL2(q) of Y , and it is easy to verify that S normalizes and
acts transitively on an elementary abelian subgroup E = Eq2 of H that is not contained in Y . Defining
∆ = {Y e : e ∈ E}, we obtain, in the usual way, that either ∆ is a beautiful subset in the action of H
on (H : Y ) (and we are done), or else H∆ ≥ Alt(∆). But by Lemma 2.1.2, this is not possible unless
q = 2. When q = 2, for G with E6(2) ≤ G ≤ Aut(E6(2)) and for H := NG(A2(8)), we have computed the
subgroups K of H with |H : K| odd. For each such pair (H,K), we have checked that, if the action of
H on (H : K) is binary, then K contains A2(8). Hence there is no binary action of H of odd degree with
A2(8) acting non-trivially. From this we deduce that, if the action of G on (G : H) is binary, then each
non-trivial subdegree of G must be even, which implies that |G : H| is odd, a contradiction.
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If ǫ = −, then we argue similarly with a cyclic subgroup K of order q − 1 in Y . There is a subgroup
E = Eq that K normalizes and upon which it acts fixed-point-freely. The same line of argument rules out
all cases with q > 8. Also, using Lemma 2.1.1, we can rule out q = 8 (since Alt(7) is not a section of
SU3(8)) and q = 7 (since Alt(6) is not a section of SU3(7)). To deal with q < 7, we use magma as follows.

LetM be a maximal subgroup of G with socle 2A2(q
3). We consider the permutation action of G on the

right cosets Ω of M in G. Observe that q divides |Ω| = |G :M | and hence G has a suborbit of cardinality
relatively prime to q. Using magma, we have verified that all faithful transitive actions of M on a set of
cardinality relatively prime to q are non binary. Therefore, the action of M on each non-trivial suborbit is
non binary. From this, it follows that G is not binary on Ω.

Lemma 3.4.3. Let G be as in Proposition 3.4.1, and suppose that (G(q),H) is as in line 3 or 4 of
Table 3.4.1. If Ω = (G : H), then (G,Ω) is not binary.

Proof. Adopt the hypothesis of the lemma, and assume that (G,Ω) is binary.

Suppose, first, that G(q) = 2E6(2) and that H is of type A−
2 (2)

3. An inspection of extended Dynkin
diagrams confirms that H contains a subgroup K of type A−

2 (2)
2 that, in turn, is embedded in the natural

way inside a subgroup L = PSU6(2) in G(q). Now K has a “diagonal” subgroup Q ∼= Q8 which normalizes,
and acts fixed-point-freely upon an elementary abelian subgroup, E9, of L. Now we study the conjugates
of E9 under NL(Q) and observe that Q normalizes each of these conjugates. There are two possibilities:
first, one of these conjugate subgroups, say E, does not lie in H. In this case, E ∩H = {1} and setting
∆ = HE we see that the set-wise-stabilizer of ∆ acts 2-transitively on ∆. Hence, as (G,Ω) is binary, we
have G∆ ≥ Alt(∆). However |∆| = 9, and H does not have a section isomorphic to Alt(8), so this is
impossible. This possibility is, therefore, excluded, and we conclude that all of the conjugate subgroups lie
in H. But now direct calculation, using for instance GAP, confirms that 〈Eg9 | g ∈ NL(Q)〉 = L, which is a
contradiction. Thus this possibility is also excluded.

Consider, next, the situation where G(q) = E8(2) and H is of type A−
2 (2)

4. In this case a version of
the previous argument yields a contradiction, this time using a subgroup K of type A−

2 (2)
3 embedded in

a subgroup isomorphic to L = PSU9(2) in G(q).

Suppose, next, that G(q) = E8(2) and H has type A−
2 (2

4). In this case, G = E8(2) and H ∼=
Aut(PSU3(16)) = PSU3(16).8 (see [74]). We have computed all the core-free subgroups K of H with
|H : K| odd and shown that, for each of these subgroups, the action of H on (H : K) is not binary, by
witnessing a non-binary triple. Hence, as (G,Ω) is binary (by assumption), |G : H| must be odd, which is
clearly a contradiction.

Suppose, finally, that G(q) = 2E6(2) and that H is of type D4(2)T2. Consulting [105], we see that
H∩G(q) has shape (3×Ω+

8 (2) : 3) : 2, extending to (32 : 2×Ω+
8 (2)) : Sym(3) in G(q).Sym(3) = Aut(G(q)).

We have calculated the transitive actions of all groups of the relevant shapes on sets of odd cardinality
using magma. We find that the only binary actions for such groups occur when the set is of size 1, 3 or 9,
in which case the kernel of the action contains Ω+

8 (2). As (G,Ω) is binary, we conclude, therefore, that all
non-trivial subdegrees must be even. This contradicts the fact that |G : H| is even.

Lemma 3.4.4. Let G be as in Proposition 3.4.1, and suppose that G(q) = 2F4(q) (q > 2). If Ω = (G : H),
then (G,Ω) is not binary.

Proof. Here the possibilities for the maximal rank subgroup H(q) := H ∩G(q) are:

SU3(q).2, PGU3(q).2, (Sz(q)× Sz(q)).2, Sp4(q).2.

We write G = G(q)〈φ〉, where φ is a field automorphism of odd order f (possibly f = 1).

In the first two cases, let T < H(q) be a maximal torus of order (q+1)2. Then NH(q)(T ) = T.(Sym(3)×
2), while NG(q)(T ) = T.GL2(3). Hence NH(q)(T.2

2) = T.22 and NG(q)(T.2
2) = T.D8. It follows that there

exists x ∈ G \H such that H ∩Hx contains T.22 but does not contain H. We can chose φ to normalize all
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of the above subgroups, so that we also have H ∩Hx ≥ T.(22 × f). Now Lemma 2.2.13 implies that the
action of H on (H : H ∩Hx) is not binary, and the result follows from Lemma 1.6.1.

Next consider the possibility that H(q) = (Sz(q) × Sz(q)).2. Here, as we shall see, when we study
suborbits we find a primitive group via a product action hence we could appeal to [106]; nonetheless we
give a direct argument. First, let T < H(q) be the direct product of two maximal tori of Sz(q) of order
q − 1. Then NH(q)(T ) = T.[8], while NG(T )(T ) ≥ T.[16] (one can see this, for instance, by using the fact
that T is also a subgroup of Sp4(q).2). Again we obtain an x ∈ G \H such that H ∩Hx contains T.22 but
does not contain H. Choosing φ appropriately we have H ∩Hx ≥ T.([8] × f). Then it must be the case
that H ∩Hx = T.([8]× f). In particular, we can write H ∩Hx = (M ×M).(2× f), where M is a maximal
subgroup of Sz(q) of order 2(q − 1).

Identify (Sz(q) :M) with the set of conjugates of M in Sz(q) and identify (H : H ∩Hx) with the set

Γ := {(M1,M2) |M1,M2 ∈ (Sz(q) :M)}.

Now we fix M and define
Γ0 := {(M,M1) |M1 ∈ (Sz(q) :M)}.

Clearly HΓ0
∼= (M × S).f and HΓ0 is almost simple and isomorphic to Sz(q).f , with the action on Γ

being isomorphic to the action of Sz(q).f on (Sz(q) : M). We know that this action is not binary by
[45, Theorem 1.3]; thus there exist k-tuples I = (M1, . . . ,Mk) and J = (M ′

1, . . . ,M
′
k) such that (I, J) is

2-subtuple complete but not k-subtuple complete with respect to the action of Sz(q).f . Now the same is
true for the pair of elements of Γk,

((
(M,M1), (M,M2), . . . , (M,Mk)

)
,
(
(M,M ′

1), (M,M ′
2), . . . , (M,M ′

k)
))

,

with respect to the action of H. Now, the result follows from Lemma 1.6.1.
Consider, finally, the possibility that H(q) = Sp4(q).2. In this case we use the fact that H(q) contains

an element g of order q−1 that is centralized in G(q) by a subgroup isomorphic to 2B2(q). In [96, Table IV]
a parametrization of such elements g is given: they are conjugate to the element t1 in the table. Working
in the F4 root system, it can be seen that there is a conjugate g of t1 that can be written in H ′ = Sp4(q)
as a diagonal matrix with all its eigenvalues of order q − 1. In particular, there is an element x ∈ G \H
that centralizes g and so we conclude that there is a suborbit of G on which the action of H is isomorphic
to the action of H on (H : M), where M is a subgroup of H containing g. Since, by assumption, q ≥ 8,
Lemma 2.2.12 implies that this action is not binary, and the result follows by Lemma 1.6.1.

3.5 Maximal torus normalizers

In this section we prove Theorem 3.1 in the case where the point stabilizer H is the normalizer of a maximal
torus. Such maximal subgroups are listed in Table 5.2 of [74]. The main result of the section follows. The
cases excluded in the proposition (those in Table 3.5.1) will be dealt with in Lemma 3.5.3.

Proposition 3.5.1. Assume G is almost simple with socle G(q), an exceptional group of Lie type over Fq,
and suppose G(q) is not as in Proposition 3.2.1. Let H be a maximal subgroup of G that is the normalizer
of a maximal torus T , as in [74,Table 5.2], and let Ω = (G : H). Then either (G,Ω) is not binary, or
(G(q), |T ∩G(q)|) is as in Table 3.5.1.

For the proof we need the following lemma. In the statement, by a semisimple group we mean a perfect
group that is a central product of quasisimple groups.

Lemma 3.5.2. Let G be an almost simple group with socle of Lie type, and let H = NG(T ) be a maximal
subgroup of G that is the normalizer of a maximal torus T . Write Ω = (G : H).

(A) Suppose there exist subgroups A,D of G with the following properties:
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Table 3.5.1: Exceptions in Prop. 3.5.1

G(q) |T ∩G(q)|
E7(2) 37
2E6(2) 35

(i) A is quasisimple, D is either semisimple or a torus containing Z(A), [A,D] = 1 and CG(A) =
DZ(A);

(ii) T ≤ NG(A) and T ∩AD = T1T0, where T1 = T ∩A, T0 = T ∩D;

(iii) CG(T0)
′ = A.

Define
∆ = {T g : g ∈ ND(T0)A} ⊆ Ω.

Then G∆ has socle A/Z(A) acting on (A : NA(T1)).

(B) Suppose that in addition to (i)-(iii) above, the following hold:

(iv) CG(T1T0) = T ;

(v) for any distinct T ′, T ′′ ∈ ∆ we have T ′ ∩ T ′′ =
⋂

a∈A T
a;

(vi) for any g ∈ NG(A), there exists a ∈ A such that T g1 = T a1 ;

(vii) the action of G∆ on ∆ is not binary.

Then the action of G on Ω = (G : H) is not binary.

Proof. (A) Write K = G(∆), the point-wise stabilizer of ∆. We claim first that K normalizes A. To
see this, observe first that K normalizes X := ∩a∈AT a. Since X is A-invariant and A is quasisimple,
X ∩ A = Z(A). Also, X ≤ T and so X normalizes A by (ii). Hence [X,A] ≤ X ∩ A ≤ Z(A). As A is
perfect, this implies that [X,A] = 1, and hence X ≤ DZ(A) by (i). It follows that X = T0Z(A). By (iii)
we have CG(X)′ = A, and hence K normalizes A, as claimed.

Next, we claim that
CG(K)′ = A. (3.5.1)

Clearly T0 ≤ K, so CG(K)′ ≤ CG(T0)
′ = A, by (iv). For the reverse containment, let x ∈ K. Then

T ax = T a for all a ∈ A. Now x normalizes A, hence normalizes T a ∩A = T a1 for all a ∈ A. In other words,
x induces an automorphism of A that lies in the kernel, L say, of the action on the set of A-conjugates of T1.
As A is quasisimple, either L ≤ Z(A) or A ≤ L. If L ≤ Z(A), then x commutes with A and hence (3.5.1)
holds. So assume the latter. Since the action in question is on A-conjugates of T1 and A ≤ L, we get
T1 E A. As A is quasisimple, this means that T1 ≤ Z(A). Therefore, A centralizes T , a maximal torus
of G. But then A must be in the centre of G which is a contradiction to the fact that A is quasisimple.
Summing up, in all cases x commutes with A and hence (3.5.1) holds.

Now G∆ normalizes K = G(∆), hence normalizes A, by (3.5.1). Therefore by (i), G∆ also normalizes
DA. Let g ∈ G∆. Then T

g ∈ ∆, so by definition of ∆, intersecting with DA gives (T0T1)
g = T0T

a
1 for some

a ∈ A, and since g ∈ NG(DA) this implies that T g0 = T0. Hence G∆ ≤ NG(T0) and G∆ ∩DA = ND(T0)A.
As K ≥ ND(T0)Z(A), it follows that G∆ = G∆/K has socle A/Z(A) acting on the conjugates of T1, as
required (note that NA(T1) ≤ NA(T ) since NA(T1) normalizes T1T0, hence normalizes CG(T1T0) = T ).

(B) By condition (vii), there is a non-binary witness (δ, λ) for G∆, where δ = (δ1, δ2, . . .), λ =
(λ1, λ2, . . .). Suppose there exists g ∈ G sending δ → λ. Then g sends δ1 ∩ δ2 → λ1 ∩ λ2, and so by
condition (v), g normalizes the group X = T0Z(A). Hence as above, g normalizes A, hence also D and T0.
Now for x ∈ ND(T0)A we have T x ∩DA = T0T

a
1 for some a ∈ A, and hence using (vi),

T xg ∩DA = (T x ∩DA)g = T0T
ag
1 = T0T

a′
1 ,
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for some a′ ∈ A. Hence by (iv) we see that T xg ∈ ∆. This shows that g ∈ G∆, contradicting the fact that
(δ, λ) is a non-binary witness for G∆. Hence δ and λ are in different G-orbits, showing that (G,Ω) is not
binary.

Remark The proof shows that condition (v) could be replaced by

(v’) there exists a non-binary witness (δ, λ) for G∆ such that

k⋂

i=1

δi =

k⋂

i=1

λi =
⋂

a∈A

T a

Table 3.5.2: Possibilities for T,A,D

G(q) |T | A D Maximality Comment
condition

E8(q) (q − 1)8 A1(q) E7(q) q ≥ 5
(q + 1)8 A1(q) E7(q) q > 3
(q + 1)8 A−

4 (q) A−
4 (q) q ≤ 3

(q2 + ǫq + 1)4 Aǫ2(q) Eǫ6(q) (q, ǫ) 6= (2,−)
(q2 + 1)4 A1(q

2) D−
6 (q) AD < D8(q)

(q4 + ǫq3 + q2 + ǫq + 1)2 Aǫ4(q) Aǫ4(q)

E7(q) (q − 1)7 A1(q) D6(q) q ≥ 5
(q + 1)7 A1(q) D6(q) q > 3
(q + 1)7 A−

2 (q) A−
5 (q) q ≤ 3

Eǫ6(q) (q − 1)6 (ǫ = +) A1(q) A5(q) q ≥ 5
(q + 1)6 (ǫ = −) A1(q) A−

5 (q) q > 3
(q + 1)6 (ǫ = −) A−

2 (q) A−
2 (q)

2 q ≤ 3
(q2 + ǫq + 1)3 Aǫ2(q) Aǫ2(q)

2 (q, ǫ) 6= (2,−)

F4(q), (q − ǫ)4 A1(q) C3(q) q ≥ 4
q even (q2 + ǫq + 1)2 Aǫ2(q) Aǫ2(q) (q, ǫ) 6= (2,−)

(q2 + 1)2 A1(q
2) B2(q) AD < B4(q)

G2(q), (q − ǫ)2 A1(q) A1(q) q ≥ 9
q = 3a

2F4(q)
′, (q + 1)2 A1(q) A1(q) q ≥ 8

(q + ǫ
√
2q + 1)2 2B2(q)

2B2(q) (q, ǫ) 6= (2,−)
3D4(q) (q2 + ǫq + 1)2 Aǫ2(q) q2 + ǫq + 1

Table 3.5.3: Remaining possibilities for T

G(q) |T | NG(q)(T )/T

E8(q) q8 + ǫq7 − ǫq5 − q4 − ǫq3 + ǫq + 1 Z30

F4(q), q = 2a > 2 q4 − q2 + 1 Z12

G2(q), q = 3a > 3 q2 + ǫq + 1 Z6
2F4(q)

′ q2 + ǫ
√

2q3 + q + ǫ
√
2q + 1 Z12

3D4(q) q4 − q2 + 1 Z4

Proof of Proposition 3.5.1. Let G be almost simple with socle G(q) an exceptional group of Lie type, and
let H = NG(T ) be a maximal subgroup of G normalizing a maximal torus T , as in [74, Table 5.2]. We aim
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to apply Lemma 3.5.2. Tables 3.5.2 and 3.5.3 together list all possibilities for T , and the first table also
lists a pair of subgroups A,D that, as we shall see, satisfy the hypotheses of Lemma 3.5.2 (there are no
such subgroups for the cases in Table 3.5.3). Note that in the tables, the values for |T | are those for the
relevant maximal torus in the inner-diagonal group InnDiag(G(q)) rather than in the simple group G(q)
itself.

Suppose T,A,D are as in Table 3.5.2. The cases where A is not quasisimple are those listed in
Table 3.5.1, and so are excluded from further consideration here. Thus A is quasisimple, and we must
check that A,D satisfy the first three hypotheses of Lemma 3.5.2. In all cases except the two with entries
in the “Comment” column of the table, AD is a subsystem subgroup with maximal normalizer in G(q) as in
[74, Table 5.1], so condition (i) holds. Moreover, NG(AD) contains a maximal torus T = T1T0 of order as in
column 2 of the table, giving (ii). Finally, we can check that condition (iii) holds by computing the action
of T0 on the Lie algebra L(Ḡ) (where Ḡ is the ambient algebraic group) and seeing that the zero-weight
space has dimension equal to that of A. Hence, by Lemma 3.5.2, there is a subset ∆ of Ω = (G : H) such
that G∆ has socle A/Z(A) acting on (A : NA(T1)), where T1 = T ∩A.

SupposeA is of type A1. We check that the further conditions (iv) - (vii) of Lemma 3.5.2 hold. Condition
(vii) holds, since the group G∆ is not binary, by [45]; and to verify (iv), we compute the action of T1T0
on L(Ḡ) again to see that CG(T1T0) is a maximal torus, which must be T . For (v), let T ′, T ′′ ∈ ∆. Then
T ′∩DA = T0T

a′
1 and T ′′∩DA = T0T

a′′
1 , for some a′, a′′ ∈ A. Since A = SL2(q), we have T

a′
1 ∩T a′′1 = Z(A),

and so T ′∩T ′′ ∩DA = T0Z(A). As in the proof of Lemma 3.5.2(A), it follows that T ′ ∩T ′′ = T0Z(A), and
this is equal to ∩a∈AT a, giving (v). Finally, (vi) is a standard property of tori in SL2(q). Hence conditions
(iv) - (vii) in Lemma 3.5.2 hold, and so the lemma shows that G is not binary.

If A is not of type A1, then we have three families of examples and three sporadic examples. Let us
consider the families first: we find that

(A, |T1|) = (Aǫ2(q), q
2 + ǫq + 1), (Aǫ4(q), q

4 + ǫq3 + q2 + ǫq + 1) or (2B2(q), q + ǫ
√

2q + 1).

Lemma 1.7.2 implies that G∆ is not binary and we again check that Lemma 3.5.2 applies to show that G
is not binary.

Finally we must deal with the remaining sporadic examples: here

(A, |T1|) = (A−
4 (q), (q + 1)4) (q = 2, 3) or (A−

2 (q), (q + 1)2) (q = 3).

A magma calculation verifies that, in each case, the action of an almost simple group X with socle A
on ∆ = (X : NX(T1)) is not binary and, what is more, there exists a non-binary witness (δ, λ) =
((δ1, δ2, δ3, δ4), (λ1, λ2, λ3, λ4)) of length 4 for X∆ such that

4⋂

i=1

δi =

4⋂

i=1

λi =
⋂

a∈A

T a.

Note that the computation here is straightforward: we have constructed the permutation representations
under consideration and then we have checked 4-tuples until we found one satisfying the required property.
Thus condition (vii), and also condition (v’) of the Remark following Lemma 3.5.2 hold. Conditions (iv) is
verified as before, and (vi) is straightforward, as T1 is the unique maximal torus of its order up to conjugacy
in A. Hence Lemma 3.5.2 gives the conclusion in these cases also.

Suppose finally that T is as in Table 3.5.3. In these cases T is cyclic. One can check that for each prime
t dividing |T |, T contains a Sylow t-subgroup of G. Now [35, 36, 39, 95] imply that, for every g ∈ T \ {1},
CG(g) = T , and we conclude that N = NG(q)(T ) is a Frobenius group, with T the Frobenius kernel. Let
C be a Frobenius complement; observe that C is cyclic, and let c be a generator of C. Now Lemma 2.4.2
implies that CG(c) > C and so we can choose an element x ∈ CG(c) \ NG(T ). Then the action of N on
(N : N ∩ Nx) is a Frobenius action and, since |C| > 2 in every case, and, since N ∩ Nx = N ∩H ∩Hx,
Lemma 1.7.2 implies that the action of H on (H : H ∩ Hx) is not binary; hence G is not binary by
Lemma 1.6.1.
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The remaining cases are resolved by calculations with magma:

Lemma 3.5.3. Let G be as in Proposition 3.5.1, and suppose that H = NG(T ) where (G(q), |T |) is as
listed in Table 3.5.1. If Ω = (G : H), then (G,Ω) is not binary.

Proof. For the group G(q) := 2E6(2), observe that NG(q)(T ) ∼= 35.SO5(3) and also that G(q) has a unique
conjugacy class of elements of order 5 (see [28]). Hence Lemma 1.6.15, applied with the prime p := 5, gives
the conclusion.

When G(q) := E7(2), we gain use Lemma 1.6.15 with the prime p := 7. Using information from
[81], we see that there exists a unique conjugacy class of elements of order 7. Furthermore, from [74], we
have H ∼= 37.2.Sp6(2). Since the Sylow 7-subgroup of G(q) is elementary-abelian of order 73 and a Sylow
7-subgroup of H is of order 7, Lemma 1.6.15 implies that G(q) is not binary.

3.6 Maximal subgroups in (V) of Theorem 3.1.1

The main result of this section is the following proposition. The cases excluded in the proposition (those
in Table 3.6.1) will be dealt with in Lemma 3.6.2.

Proposition 3.6.1. Assume G is almost simple with socle G(q), an exceptional group of Lie type over
Fq, and suppose G(q) is not as in Proposition 3.2.1. Let H be a maximal subgroup of G as in part (V) of
Theorem 3.1.1. Let Ω = (G : H). Then either (G,Ω) is not binary, or (G,H) is as in Table 3.6.1.

Table 3.6.1: Exceptions in Prop. 3.6.1

G(q) H ∩G(q)
E6(2) G2(2)
2E−

6 (2) F4(2)
E7(2) G2(q)C3(2)

Proof. Here H is one of the subgroups given in Table 3.1.1.

If H has socle A1(q), then q > 5 and we consider an element x ∈ H of order q−1
(2,q−1) , as given in

Table 2.2.1. As CG(x) contains a maximal torus of G(q), there exists g ∈ CG(x) \H. Now Lemmas 2.2.5
and 2.2.6 imply that the action of H on (H : H∩Hg) is not binary. The result then follows by Lemma 1.6.1.

If H has socle B2(q) then q ≥ 5 and we proceed in the same way, using an element of order q−1 together
with Lemma 2.2.8 in place of Lemma 2.2.5. A similar argument applies in the case where F ∗(H ∩G(q)) =
C4(q) ∼= PSp8(q).

Now consider the cases listed in Table 3.6.2. In each of these cases F ∗(H) has a factor that is generated
by long root subgroups of G, from which it follows easily that there are subgroups A ∼= SLr(q) of H, and
S ∼= SLr+1(q)/Z of G, satisfying the hypotheses of Lemma 1.6.10, where r is as indicated in Table 3.6.2.
Thus Lemmas 1.6.10 provides a subset ∆ of Ω of size qr, and this is a beautiful subset unless Alt(qr) and
Alt(qr − 1) are sections of G(q) and H, respectively. Hence Lemmas 2.1.1 and 2.1.2 show that if (G,Ω) is
binary, the only possibility for (G(q),H) is (E7(2), G2(2)C3(2)), as in Table 3.6.1.

Similarly, the subgroup A1(q)G2(q
2) of E8(q) in Table 3.1.1 is a twisted version of the subgroup A1G2G2

in the algebraic group E8; hence this contains a subgroup A ∼= SL3(q
2) which lies in a subgroup S ∼= SL4(q

2)
of G, and again Lemmas 1.6.10 and 2.1.2 give the conclusion.

It remains to deal with the following subgroups from Table 3.1.1:

(1) E8(q): F
∗(H) = F4(q) (p = 3) or A1(q)A

ǫ
2(q) (p ≥ 5)

(2) E7(q): F
∗(H) = Aǫ2(q) (p ≥ 5), A1(q)A1(q) (p ≥ 5), or A1(q)G2(q) (p ≥ 3, q ≥ 5)
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Table 3.6.2: Subgroups in Table 3.1.1 with a long root factor

G(q) H A

E8(q) G2(q)F4(q) SL4(q)
A1(q)G2(q)G2(q) SL3(q)

E7(q) G2(q)C3(q) SL3(q)
A1(q)F4(q) SL4(q)

E6(q) F4(q) SL4(q)
A2(q)G2(q) SL3(q)

E−
6 (q) A−

2 (q)G2(q) SL3(q)
F4(q) A1(q)G2(q) SL3(q)

(3) Eǫ6(q): F
∗(H) = A±

2 (q) (ǫ = +, p ≥ 5) or G2(q) (p 6= 7)

(4) E−
6 (q): F

∗(H) = F4(q)

(5) F4(q): F
∗(H) = G2(q) (p = 7)

(6) 3D4(q): F
∗(H) = G2(q) or A

ǫ
2(q).

Case (1) Here G(q) = E8(q). First consider F
∗(H) = F4(q) with q = 3a. If q > 3, let x ∈ F ∗(H) be the

semisimple element defined in Lemma 2.2.15. Then CG(x) contains a maximal torus of G(q), hence there
exists g ∈ CG(x)\H, and so x ∈ H ∩Hg, a core-free subgroup of H. By Lemma 2.2.15, the action of H on
(H : H ∩Hg) is not binary, giving the conclusion. If q = 3, we use the result of Lemma 2.3.1 for the group
H = F4(3): since |G : H| is even, there exists a non-trivial orbit of H on Ω of odd size, and the action of
H on this orbit is not binary by Lemma 2.3.1, giving the conclusion.

Now consider the other possibility F ∗(H) = A1(q)A
ǫ
2(q) (p ≥ 5). Let R be the Aǫ2(q) factor of F ∗(H).

From the construction of the corresponding maximal subgroup A1A2 in the algebraic group E8 given in
[93, p.46], we see that R lies in a Levi subgroup L = A7(q) of G, with embedding given by the adjoint
representation. Let A be a natural subgroup SL2(q) of R (i.e. acting as 1⊕ 0 on the natural 3-dimensional
module, where we denote by a non-negative integer r the irreducible FqA-module of highest weight r).
The restriction of the natural 8-dimensional L-module to A is 2⊕ 12 ⊕ 0, so in particular CL(A) contains
a subgroup SL2(q) and also A lies in a subgroup S = A2(q) of L. Hence there exists x ∈ CL(A) \H such
that A < Sx 6≤ H. Now an application of Lemma 1.6.10 yields a subset ∆ of Ω such that G∆ ≥ ASL2(q),
giving the conclusion in the usual way using Lemma 2.1.2.

Case (2) Here G(q) = E7(q). First consider F
∗(H) = Aǫ2(q). Again let A be a natural SL2(q) in F

∗(H).
Since maximal subgroups Aǫ2(q) exist for both ǫ = + and ǫ = −, and each of these arises from a fixed
maximal A2 in the algebraic group E7, it follows that there is a subgroup S ∼= A2(q) of G containing A (it
could be that S = F ∗(H)). From [93, p.83], it follows that A is contained in a Levi subgroup L of G of
type A1A4T2. The torus T2 centralizes A, and so there exists x ∈ CG(A) \H. Then A < Sx 6≤ H, and the
conclusion follows as in Case (1) above.

Next consider F ∗(H) = A1(q)G2(q). Let A be an SL3(q) subgroup of the G2(q) factor. From [93, 3.12]
we see that the G2(q) factor lies in a Levi subgroup L = A6(q) of G, acting irreducibly on the natural
7-dimensional L-module V7. Then V7 ↓ A = 10⊕ 01⊕ 00. Now L lies in a subsystem subgroup M = A7(q)
of G, and so we see that A is contained in a subgroup S ∼= A3(q) of M acting on the natural M -module as
100 ⊕ 001. Hence A < S 6≤ H, and now Lemmas 1.6.10 and 2.1.2 give the conclusion.

Finally consider F ∗(H) = A1(q)A1(q) = A
(1)
1 A

(2)
1

∼= PSL2(q)
2 (p ≥ 5). We assume that the action is

binary, and for i = 1, 2 let T (i) be a torus in A
(i)
1 of order q−1

2 . Write T = T
(1)
1 T

(2)
1 and observe that

NF ∗(H)(T ) contains Dq−1 × Dq−1. From [93, p.37], we see that (re-labelling the A
(i)
1 if necessary), we

have CG(T
(1)) ≥ T (1)A2(q)A4(q), and A

(2)
1 is embedded in this via the irreducibles of highest weight 2 and
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4. Hence T
(2)
1 is diagonal in A2(q)A4(q), and so CG(q)(T ) contains a maximal torus of order (q − 1)7/2.

Hence a Sylow 2-subgroup of CG(q)(T ) is strictly larger than the Sylow 2-subgroup of T . This means, in
particular, that the group (Dq−1 × Dq−1)/T , which is a Klein 4-group, is a proper subgroup of a Sylow
2-subgroup of NG(q)(T )/T . The group H∩G(q) is (PSL2(q)×PSL2(q)).2, of index 2 in PGL2(q)×PGL2(q).
Now, observe that |CG(q)(T )|2 is strictly larger than |CH∩G(q)(T )|2. We conclude that there exists x in
G(q)\H such that Hx∩H contains Dq−1×Dq−1. We therefore obtain a suborbit of G on which the action
of the stabiliser H is isomorphic to the action of H on (H : M) where M is a subgroup of H containing
Dq−1 × Dq−1. But now, when q > 5, Lemma 1.6.1 and Lemma 2.2.2 imply that if (G,Ω) is binary then
M must contain F ∗(H); this would mean that x ∈ H, a contradiction, as required. Suppose now q = 5.
We have F ∗(H) ∼= Alt(5) × Alt(5). Write F ∗(H) = A × B, with A ∼= Alt(5) ∼= B. Pick F < H with F
elementary abelian of order 52. Clearly, there exists x in NG(F ) \H, so F ≤ Hx ∩H. Suppose one of the
factors, say A, of F ∗(H) is contained in Hx∩H. Then A and Ax

−1
are contained in H. Hence Ax

−1
is equal

to A, to B or to a diagonal subgroup of A×B. Unipotent elements of order 5 in B or a diagonal subgroup
are in different classes to those in A (see [66, Table 34]). Hence Ax

−1
= A and so x ∈ NG(A) = H, a

contradiction. We conclude that neither factor A or B is contained in Hx ∩ H. Now, the proof follows
with a magma computation: we have verified that, for every group H with F ∗(H) = Alt(5)×Alt(5) and for
every subgroup X of H, the action of H on (H : X) is binary only when X contains the whole of F ∗(H)
or one of the two simple factors Alt(5) of F ∗(H).

Case (3) Let G(q) = Eǫ6(q). First consider F ∗(H) = A±
2 (q). Here ǫ = +. Let A be a natural SL2(q) in

F ∗(H). Since maximal subgroups A+
2 (q) and A

−
2 (q) both exist (actually just for q ≡ ǫ mod 4), and each of

these arises from a fixed maximal A2 in the algebraic group E6, it follows that there is a subgroup S ∼= A2(q)
of G containing A (it could be that S = F ∗(H)). From [93, 5.5] we know that L(E6) ↓ A2 = 11⊕ 41⊕ 14.
Hence we can work out L(E6) ↓ A, and in particular compute that, if t denotes the central involution of A,
then dimCL(E6)(t) = 38, whence CE6(t) = A1A5. Also using L(E6) ↓ A, the only possible embedding of A
in A1A5 is via the representations 1, 22. Hence CA5(A) = A1, and so CG(A) 6≤ H. If we pick x ∈ CG(A)\H,
then A < Sx 6≤ H, and the conclusion follows in the usual way.

Now consider F ∗(H) = G2(q) (p 6= 7). First suppose that p 6= 2. Then G2(q) has an involution t with
centralizer AÃ, where A and Ã are long and short SL2(q) subgroups (respectively) in G2(q). Arguing as
above using L(E6) ↓ G2 (given in [79, Table 10.1]), we see that AÃ < CE6(t) = A1A5, with embedding
given by 0⊗ 1, 1 ⊗ 2. Hence CA5(A) = A2, and so NG(A) contains a subgroup Aǫ2(q)A.

Now G2(q) has a subgroup S ∼= SL3(q) containing A. The composition factors of S on L(E6) are given
in [99, Table 5 and Lemma 5.5], from which we can deduce that the only subsystem subgroup containing
S is A3

2 (this is CE6(Z(S)) unless p = 3). It follows that CG(S) = Z(S), and so NG(q)(S) = S.2 < H. In
particular, it follows that NG(A) 6= NH(A) (NG(S) ∩ NG(A)). Therefore Lemma 2.6.1 implies that there
exists x ∈ NG(A) such that Sx 6≤ H. Hence A < Sx 6≤ H, giving the conclusion in the usual way.

It remains to consider the case where p = 2. Again let SL3(q) ∼= S < G2(q), let A be a natural subgroup
SL2(q) of S, and let Ã = CG2(q)(A)

∼= SL2(q). Now [99, 5.5] shows that S lies in a subsystem subgroup A3
2

of the algebraic group E6, and so A < A3
1 < A5. Therefore CA5(A) contains an A1 subgroup, and so CG(A)

contains A1(q)
2. Hence we see as in the previous paragraph that NG(A) 6= NH(A) (NG(S) ∩NG(A)), and

now the argument goes through as before, the only difference being that this time Lemma 2.1.2 does not
give a contradiction when q = 2, leaving that possibility in Table 3.6.1.

Case (4) Let G(q) = E−
6 (q) and F

∗(H) = F4(q). There are long root subsystem subgroups A < S < H
with A ∼= SL3(q), S ∼= SL4(q)/Z. Their centralizers can be read off using [75, Sec. 4], and we have
CG(A) = A2(q

2), CG(S) = A1(q
2)T1 and CH(A) = A1(q)T1. Hence NG(A) 6= NH(A) (NG(S) ∩ NG(A)),

and so Lemma 2.6.1 yields an element x ∈ G such that A < Sx 6≤ H. Now Lemmas 1.6.10 and 2.1.2 give
a contradiction, except when q = 2, leaving that possibility in Table 3.6.1.

Case (5) Let G(q) = F4(q) and F ∗(H) = G2(q) with p = 7. We argue as for G2(q) in case (3) above.
For an involution t ∈ G2(q) we have CG2(q)(t) = AÃ where A and Ã are long and short SL2(q) subgroups,

and also A < S < G2(q) with S ∼= SL3(q). Then AÃ < CF4(t) = A1C3 with embedding 0 ⊗ 1, 1 ⊗ 2, and
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so CC3(A) = A1. Again NG(S) < H, and hence NG(A) 6= NH(A) (NG(S) ∩ NG(A)). Now Lemma 2.6.1
yields an element x ∈ G such that A < Sx 6≤ H and we proceed as before.

Case (6) Here G(q) = 3D4(q) and F
∗(H) = G2(q) or A

ǫ
2(q). Consider the first case. Let A < S < G2(q)

with A ∼= SL2(q), S ∼= SL3(q) generated by long root subgroups of H (and of G). Then CG(A) = A1(q
3),

CH(A) = A1(q) and NG(q)(S) = S.(q2 + q + 1).2. There is no factorization of a group with socle A1(q
3)

with one of the factors being N(A1(q)) (see Lemma 2.6.2), and so Lemma 2.6.1 applies to give an element
x ∈ G such that A < Sx 6≤ H. Now Lemmas 1.6.10 and 2.1.2 give a contradiction (except when q = 2, in
which case G(q) = 3D4(2), excluded by hypothesis).

Now let F ∗(H) = Aǫ2(q). From [57], we see that H ∩ G(q) = PGLǫ3(q) with q ≡ ǫ mod 3 and q > 2.
First assume that ǫ = +, and let A be a natural SL2(q) subgroup of H. Then A centralizes an element g
of order q − 1 in H, and from the list of centralizers in G (see for example [57, p.184]), we see that CG(g)

′

must be SL2(q
3), or possibly SL3(q) when q = 4. Excluding the latter possibility, it follows that CG(A)

contains the centralizer of SL2(q
3), which is a root subgroup SL2(q). Hence in any case (including the

extra q = 4 possibility), there is a group S ∼= A2(q) such that A < S 6≤ H, giving the result in the usual
way.

This leaves the case where ǫ = −, so that H ∩ G(q) = PGU3(q) with q ≡ −1 mod 3. We refer to
Lemma 2.2.10, and let g be the element of H ∩G(q) defined in that lemma. Observe that g is semisimple
in G(q), hence, using the list of maximal tori of G(q) given in [53], we can conclude that there exists
x ∈ G(q) \ H such that x ∈ CG(g). Now consider the action of H on the cosets of H ∩ Hx, a subgroup
containing the element g and not containing PSU3(q). If q ≤ 5, we use magma to show that this action is
not binary, giving the conclusion. And if q ≥ 7, Lemma 2.1.1 shows that H has no section Sym(q), and so
Lemma 2.2.10 shows that the action (H, (H : H ∩Hx)) is not binary, again giving the conclusion.

The remaining cases are resolved with the aid of magma:

Lemma 3.6.2. Let G be as in Proposition 3.6.1, and suppose that (G(q),H) is listed in Table 3.6.1. Then
(G,Ω) is not binary.

Proof. Suppose that G(q) = E6(2) and H ∩G(q) = G2(2). Referring to [58], we see that H is maximal in
G only when G = G(q) = E6(2), thus we assume this from here on. Now, using magma, we have computed
all the binary transitive actions of G2(2), and we have found that these have degree 1, 2, 4032, 6048 and
12096. Now Lemma 1.6.1 implies that, if the action of G on (G : H) is binary, then the action of H on each
of its suborbits must be binary – thus all suborbits must have size one of the five listed numbers. There is
precisely one suborbit of size 1 (by maximality), the other suborbits are of even size, hence |E6(2) : G2(2)|
is odd, a contradiction.

Next assume that G(q) = 2E6(2) and H ∩ G(q) = F4(2). Here H is either F4(2) or F4(2) × 2. Now
F4(2) has a maximal subgroup isomorphic to D4(2).Sym(3); let X be the subgroup D4(2) of this. Then
X is centralized by an element g of order 3 in G(q) \H (see [28]). Hence X ⊳ H ∩Hg. At this point we
can argue as in the proof of Proposition 3.2.1 (the F4(2) case); indeed, Lemma 1.6.15 applied with p = 7
shows that (H, (H : H ∩Hg)) is not binary. The conclusion follows.

Finally, assume that G = E7(2) and H = G2(2)C3(2). Choose x ∈ G \ H normalizing a Sylow 2-
subgroup of H, so that |H : H ∩ Hx| is odd and greater than 1. A magma computation show that all
transitive actions of H of odd degree greater than 1 are not binary, so the conclusion follows.

3.7 Maximal subgroups in (VI) of Theorem 3.1.1

In this section we prove

Proposition 3.7.1. Assume G is almost simple with socle G(q), an exceptional group of Lie type over
Fq, and suppose G(q) is not as in Proposition 3.2.1. Let H be a maximal subgroup of G as in part (VI) of
Theorem 3.1.1. Let Ω = (G : H). Then either (G,Ω) is not binary, or (G,H) is as in Table 3.7.1.
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Table 3.7.1: Exceptions in Prop. 3.7.1

G(q) H ∩G(q)
G2(2

e), e prime G2(2)
F4(2

e), e prime F4(2)
Eǫ6(2

e), e prime Eǫ6(2)

Proof. Here H is of the same type as G – that is, one of the following holds:

(i) H ∩G(q) = G(q0), where Fq0 ⊂ Fq;

(ii) H ∩G(q) < G(q) is a twisted subgroup, namely one of

2E6(q
1/2) < E6(q),

2F4(q) < F4(q),
2G2(q) < G2(q).

Consider first case (i). Here for each possible G(q), we define subgroups A < S < G(q0) with A ∼=
SLr(q0) and S ∼= SLr+1(q0), both subsystem subgroups of G(q0), as in Table 3.7.2. In each case CG(A)

′

and CG(S)
′ are as indicated in Table 3.7.2 and CH(A) is of the same type as CG(A) over the subfield Fq0 .

It then follows from Lemma 2.6.2 that NG(A) 6= NH(A) (NG(S) ∩NG(A)), and so Lemma 2.6.1 yields an
element x ∈ G such that A < Sx 6≤ H. Now Lemmas 1.6.10 and 2.1.2 give a contradiction, except in the
cases with q0 = 2 in Table 3.7.1.

Table 3.7.2

G(q) r CG(A) CH(A) CG(S)

G2(q) 2 A1(q) A1(q0) (3, q0 − 1)
F4(q) 3 A2(q) A2(q0) A1(q)
E6(q) 3 A2(q)

2 A2(q0)
2 A1(q)

2

2E6(q) 3 A2(q
2) A2(q

2
0) A1(q

2)
E7(q) 4 A3(q)A1(q) A3(q0)A1(q0) A2(q)T1
E8(q) 5 A4(q) A4(q0) A2(q)A1(q)

Now consider case (ii). In the first case, F ∗(H) = 2E6(q
1/2) < E6(q), and as above we pick A < S with

A ∼= SL4(q
1/2) and S ∼= SL5(q

1/2). Then S 6≤ H as H has no subgroup of type A4(q
1/2), and the conclusion

follows as usual.
Next let F ∗(H) = 2F4(q) < F4(q) with q = 22a+1, and note that q > 2 by hypothesis. Regard F ∗(H)

as the centralizer in F4(q) of a graph automorphism τ . Then H has a subgroup A ∼= SL2(q) arising as the
fixed point group of τ on a subsystem subgroup A1(q)Ã1(q) in F4(q), and this lies in a subgroup S = A2(q)
of F4(q) that is a diagonal subgroup of a subsystem A2(q)Ã2(q). As H has no subgroup A2(q), we have
A < S 6≤ H, giving the conclusion.

Now consider the case where H ∩G(q) = 2G2(q) < G2(q), and note that q > 3 by hypothesis. Choose
x ∈ H ∩ G(q) of order q − 1, as in Lemma 2.2.16. Since CG(q)(x) is a torus of order (q − 1)2, there exists
g ∈ CG(x) \H. Then x ∈ H ∩Hg, and the action of H on (H : H ∩Hg) is not binary by Lemma 2.2.16,
giving the conclusion.

The treatment of groups of type (VI) is completed with the following result.

Lemma 3.7.2. Let G be as in Proposition 3.7.1, and suppose that (G(q),H) is listed in Table 3.7.1. Then
(G,Ω) is not binary.
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Proof. Consider the action in Line 1 of the table. Here G = G2(2
e)〈φ〉 where φ is a field automorphism of

order 1 or e, and H = G2(2) × 〈φ〉. Choose x ∈ G \H normalizing a Sylow 2-subgroup P of H ∩ G2(2),
and let X = H ∩Hx ∩ G2(2), so that P ≤ X. The subgroups of H ∩ G(q) = G2(2) containing P are the
Borel subgroup P itself, and two maximal parabolics of shape [25].Sym(3). These are all self-normalizing
in G2(2), so it follows that H ∩Hx = X ×〈σ〉, where σ = φ or 1. Note that σ is in the kernel of the action
of H on (H : H ∩Hx). Thus the latter action is either (G2(2), (G2(2) : X)) or (G2(2)× e, (G2(2)× e : X)).
Using magma we check that the action (G2(2), (G2(2) : X)) is not binary for each of the three possibilities
for X. Hence also (G2(2) × e, (G2(2) × e : X)) is not binary, by Lemma 1.6.2. It follows that the action
of H on (H : H ∩Hx) is not binary, giving the conclusion.

Now consider Line 3 of Table 3.7.1. First suppose H ∩ G(q) = 2E6(2), with G(q) = 2E6(2
e). Let

D0 =
2D5(2) be a subsystem subgroup of H ∩G(q). Then D < 2D5(q) < G(q), a subgroup centralized by a

torus of order q+1
3 . Choosing g ∈ CG(q)(D0) \H, we have H ∩Hg ⊲D. As in the proof of Proposition 3.4.1,

there is a subgroup A = SL2(4) of D and a subgroup S = PSL3(4) of H such that A < S 6≤ H ∩Hg. Hence
it follows in the usual way using Lemmas 1.6.10 and 2.1.2 that the action of H on (H : H ∩ Hg) is not
binary, giving the conclusion in this case. A similar argument handles the case where H = E6(2): here we
take D = A5(2) and again choose g ∈ CG(q)(D0) \H, so that H ∩Hg ⊲D. There is a subgroup A = SL4(2)
of D and a subgroup S = SL5(2) of H such that A < S 6≤ H, and the conclusion again follows.

Finally, consider H ∩ G(q) = F4(2) with G(q) = F4(2
e). Choose a subgroup D = A2(2) × 7 lying in a

subsystem subgroup A2(2)×Ã2(2) of H, where the factor Ã2(2) is generated by short root elements. There
is an element x ∈ NG(D) \H, and so D ≤ H ∩Hx < H. From [85], it follows that H ∩Hx is contained in
a subsystem subgroup (A2(2) × Ã2(2)).2 of H. The factor A2(2) of D lies in a subgroup A3(2) of H that
is not contained in H ∩Hx, and so it follows, using Lemma 1.6.10 in the usual way, that the action of H
on the suborbit (H : H ∩Hx) is not binary. This completes the proof.

3.8 The remaining families in Theorem 3.1.1

We proceed family by family.

3.8.1 Type (III)

Lemma 3.8.1. Assume G is almost simple with socle G(q), an exceptional group of Lie type over Fq, and
let H be a maximal subgroup of G as in part (III) of Theorem 3.1.1. If Ω = (G : H), then (G,Ω) is not
binary.

Proof. Here G(q) = E7(q), p > 2 and H ∩G(q) = (22 ×D4(q).2
2).Sym(3) or 3D4(q).3. Let D := D4(q) or

3D4(q) in H, and let A be a subsystem subgroup SL3(q) of D. Here D arises from a subgroup D4 of the
algebraic group E7(F̄q) that lies in a subsystem A7 (see the discussion after [78, Theorems 1,7]), and we see
that A lies in a subgroup A7(q) of G(q), acting on the natural 8-dimensional module as 10⊕01⊕002. Then
A lies in a subgroup A3(q) of this A7(q) that does not lie in D. At this point we can apply Lemma 1.6.10
to see that there is a subset ∆ of Ω such that G∆ ≥ ASL3(q). This shows that G is not binary in the usual
way using Lemma 2.1.2.

3.8.2 Type (IV)

Lemma 3.8.2. Assume G is almost simple with socle G(q), an exceptional group of Lie type over Fq, and
let H be a maximal subgroup of G as in part (IV) of Theorem 3.1.1. If Ω = (G : H), then (G,Ω) is not
binary.

Proof. In this case G(q) = E8(q) with p > 5 and H ∩ G(q) = PGL2(q) × Sym(5). Let L be the factor
PGL2(q) and let g be an element of order q − 1 in L. A consideration of the centralizers of semisimple
elements in E8(q) implies that there exists x ∈ CG(q)(g)\H. Note that x 6∈ NG(L) because the maximality
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of H ∩G(q) requires that NG(q)(L) = H ∩G(q). Then H ∩Hx contains the element g but does not contain
the subgroup L, and now Lemma 2.2.1 implies that the action of H on (H : H ∩Hx) is not binary. The
result follows by Lemma 1.6.1.

3.8.3 Type (VII)

Lemma 3.8.3. Assume G is almost simple with socle G(q), an exceptional group of Lie type over Fq, and
let H be a maximal subgroup of G as in part (VII) of Theorem 3.1.1. If Ω = (G : H), then (G,Ω) is not
binary.

Proof. Here H is an exotic local subgroup as listed in Table 3.1.2. When H ∩G(q) = 23.SL3(2), let r = 3;
and when H ∩G(q) ∈ {33.SL3(3), 3

3+3.SL3(3), 5
3.SL3(5), 2

5+10.SL5(2)}, let r = 2. We have verified with
magma that every non-trivial transitive action of H of degree coprime to r is not binary. In particular, if
the action of G on (G : H) is binary, then every non-trivial suborbit of G has cardinality divisible by r and
hence r divides |G : H|−1. However in all cases r divides |G : H|, and hence we reach a contradiction.

3.8.4 Type (VIII)

Lemma 3.8.4. Assume G is almost simple with socle G(q), an exceptional group of Lie type over Fq, and
let H be a maximal subgroup of G as in part (VIII) of Theorem 3.1.1. If Ω = (G : H), then (G,Ω) is not
binary.

Proof. Here H = (Alt(5) × Alt(6)).22 < E8(q), where the Klein 4-group acts faithfully on F ∗(H) =
Alt(5) × Alt(6). There are several non-isomorphic groups having this shape, but a magma calculation
confirms that if H is any such group, and M is a subgroup of H of odd index, then either the action of H
on cosets of M is not binary or M contains the simple factor Alt(6) of H. Now let x be any member of
G \H that normalizes a Sylow 2-subgroup of H. If the action of H on (H : H ∩Hx) is binary, then by
the previous sentence, H ∩Hx contains Alt(6), and hence x ∈ NG(Alt(6)) = H, a contradiction.

3.8.5 Type (IX)

Lemma 3.8.5. Assume G is almost simple with socle G(q), an exceptional group of Lie type over Fq, and
let H be a maximal subgroup of G as in part (IX) of Theorem 3.1.1. If Ω = (G : H), then (G,Ω) is not
binary.

Proof. Here F ∗(H) is a simple group not in Lie(p), as listed in Tables 10.1–10.4 of [77]. Using also
Theorem 3.1.2(i), we see that the possibilities for F ∗(H) are:

(1) Alt(6), Alt(7);

(2) M11, M12, M22, J1, J2, J3, Ru, Fi22, HS, Th;

(3) PSL2(r) for r ≤ 61;

(4) PSL3(3), PSL3(4), PSL3(5), PSL4(3), PSL4(5), PSU3(3), PSU3(8), PSU4(2), PSU4(3), PSp4(5),
Sp6(2), Ω7(3), Ω

+
8 (2), G2(3),

3D4(2),
2F4(2)

′, 2B2(8),
2B2(32).

Suppose first that F ∗(H) is not Alt(6), Alt(7) or PSL2(r), so that H is as in (2) or (4). Observe that
|G : H| is even (see [73]), so there must be a non-trivial odd subdegree. However Lemmas 2.3.1 and 2.3.2
imply that if M is any core-free subgroup of H of odd index, then the action of H on cosets of M is not
binary. Now Lemma 1.6.1 implies that (G,Ω) is not binary.

Suppose next that F ∗(H) ∼= Alt(7). Then G(q) = E7(q) or E8(q) by Theorem 3.1.2(i), and hence |G|
is divisible by 72. Therefore there is an element g ∈ G \ H such that H ∩ Hg has order divisible by 7.
However a magma computation shows that all faithful transitive actions of H of degree coprime to 7 are
not binary, completing the proof in this case.
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Suppose next that F ∗(H) ∼= PSL2(r) for some r ≤ 61. If r = 4 or 5 then F ∗(H) ∼= Alt(5), contrary to
Theorem 3.1.2(i). Hence r ≥ 7. Let g be an element of H of order r−1

(2,r−1) . Note that g has order at most

31. We claim that CG(g) 6≤ H: for if CG(g) ≤ H, then CG(g) = CH(g) is a cyclic maximal torus of G(q) of
order either r−1

(2,r−1) or r− 1 (the latter only if H contains PGL2(r)). The orders of cyclic maximal tori are

given in [53, Sec. 2]. Recalling that G(q) is not as in Proposition 3.2.1, we see that the only possibility is
that G(q) = 2E6(2) and g has order 13, 19 or 21. However, PSL2(r) is not a subgroup of 2E6(2) for r = 27,
39 or 43, as shown in [105, Sec. 12]. Thus CG(g) 6≤ H, as claimed. Hence there exists x ∈ CG(g) \H, and
so H ∩Hx is a core-free subgroup of H containing g. Now Lemma 2.2.3 implies that (H, (H : H ∩Hx)) is
not binary and the conclusion follows from Lemma 1.6.1.

3.8.6 Type (X)

Lemma 3.8.6. Assume G is almost simple with socle G(q), an exceptional group of Lie type over Fq, and
let H be a maximal subgroup of G as in part (X) of Theorem 3.1.1. If Ω = (G : H), then (G,Ω) is not
binary.

Proof. Here F ∗(H) is a simple group in Lie(p). By Theorem 3.1.2(ii),(iii), the possibilities for F ∗(H) are

(1) PSL2(q0), q0 ≤ t(G) and as in Theorem 3.1.2(iii);

(2) PSL3(3), PSU3(3) (with G(q) = E8(q), q = 3a);

(3) PSL3(4), PSU3(4), PSU3(8), PSU4(2),
2B2(8) (with G(q) = E8(q), q = 2a).

Suppose first that F ∗(H) is as in (2) or (3). Using similar magma computations to those described
in the proof of Lemma 3.8.5, we verify that if M is any core-free subgroup of H of index coprime to p,
then the action of H on (H : M) is not binary. Since |G : H| is divisible by p, there exists x ∈ G \ H
normalizing a Sylow p-subgroup of H. Hence H ∩Hx is a core-free subgroup of H of index coprime to p,
and so (H, (H : H ∩Hx)) is not binary, completing the proof in cases (2) and (3).

Suppose finally that F ∗(H) is isomorphic to PSL2(q0) as in (1), and note that q0 6= 4, 5 by Theo-
rem 3.1.2(i). Let g be an element ofH of order q0−1

(2,q0−1) . As in the last paragraph of the proof of Lemma 3.8.5,

it is enough to show that CG(g) 6≤ H. So assume that CG(g) ≤ H, in which case CG(g) = CH(g) is a cyclic
maximal torus of G of order q0−1

(2,q0−1) or q0 − 1. Also, by Theorem 3.1.2(iii), if G(q) 6= E8(q), then either

q0 = q or G(q) = E7(q) and q0 = 7, 8 or 25. The orders of cyclic maximal tori of G(q) are given in [53,
Sec. 2], and there are none of order q0− 1 or (q0− 1)/2 with q0 as in the previous sentence. Hence we may
assume that G(q) = E8(q). Here the only possible cyclic maximal tori of order q0 − 1 or (q0 − 1)/2 (and
also with q0 ≤ t(G)) have q = 2 and q0 = 27 or 28. However, PSL2(2

8) 6≤ E8(2), as E8(2) has no torus of
order 28 + 1. And if F ∗(H) = PSL2(2

7), then the element g ∈ H of order 27 − 1 lies in a subgroup E7(2)
of G, and is centralized by an element of order 3 in G \H, so CG(g) 6≤ H and the conclusion follows.

This completes the proof of Theorem 3.1.



Chapter 4

Classical Groups

In this chapter we prove Theorem 1.3 for classical groups:

Theorem 4.1. Let G be an almost simple group with socle a classical group, and assume that G has a
primitive and binary action on a set Ω. Then |Ω| ∈ {5, 6, 8} and G ∼= Sym(Ω).

The examples with |Ω| ∈ {5, 6, 8} arise via the isomorphisms listed after the statement of Theorem 1.3.

The case where G has socle isomorphic to PSL2(q) or PSU3(q) has been dealt with in [45], so Theo-
rem 4.1 is already proved in this case.

4.1 Background on classical groups

Let us set up the group-theoretic notation that we need to prove Theorem 4.1. We assume throughout
that our group G is almost simple with socle a finite simple classical group. We write M for the stabilizer
in G of a point in the action on Ω. Since the action is primitive, M is a maximal subgroup of G, and so
we can use the classification of the maximal subgroups of the almost simple finite classical groups due to
Aschbacher [1]. This classification divides the maximal subgroups into nine families, labelled C1-C8 and
S. We shall give rough descriptions of these families at the beginning of each section of this chapter; full
details can be found in [54, Chapter 4], to which we will often refer. The case where M is in family C1
has been handled in [46]. In this chapter we deal with the families C2-C8 and S, in Sections 4.2- 4.9. Some
almost simple groups with socle PΩ+

8 (q) or Sp4(2
a) have extra families of maximal subgroups, and these

are handled in the last Section 4.10.

In what follows we shall take S to be a certain quasisimple classical group for which S/Z(S) is isomorphic
to the socle of G: namely, S will be one of SLn(q), Spn(q), SUn(q), Ωn(q) (with nq odd) or Ωεn(q) (with
n even and ε ∈ {+,−}). As in [54], we denote these cases by L, S, U and O. Sometimes, for uniformity
of notation, we shall allow ourselves to write Ωεn(q) also in the case where n is odd – in which case it just
denotes Ωn(q). Note that we can think of S as acting on the set Ω – although we emphasise that this
action is not necessarily primitive, and not necessarily faithful. We shall always write S̄ for the simple
group S/Z(S).

The group S is a subgroup of the group of isometries of some fixed bilinear, quadratic or sesquilinear
form ϕ. We will write V for the associated vector space of dimension n over the field K where K = Fqu
with u = 2 in case U, and u = 1 otherwise. The form ϕ is either non-degenerate or the zero form (in the
case S = SLn(q)).

When ϕ is non-degenerate, we will make use of a hyperbolic basis B of V of form

{e1, . . . , ek, f1, . . . , fk} ∪ A,

where k is the Witt index of ϕ, 〈ei, fi〉 are hyperbolic lines for i = 1, . . . , k and either A is empty, or S is
orthogonal and A has size at most 2 and spans an anisotropic subspace of V .

78
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4.1.1 Basic assumptions

We make use of isomorphisms between classical groups of small dimension, as well as known results on
Cherlin’s conjecture to make the following assumptions.

1. If S = SLn(q), then n ≥ 3 (using the main result of [45]).

2. If S = SUn(q), then n ≥ 4 (using the main result of [45]).

3. If S = Spn(q), then n ≥ 4.

4. If S = Ωn(q) with n odd, then q is odd and n ≥ 7.

5. If S = Ωεn(q) with n even and with ε ∈ {+,−}, then n ≥ 8.

Notice that, under these assumptions, S is quasisimple, unless S = Sp4(2), in which case S ∼= Sym(6).

In addition, by [46], we can assume that M does not lie in Aschbacher’s family C1. We also use magma
to exclude some small cases:

Lemma 4.1.1. Let G be an almost simple primitive group with socle one of the following groups

1. PSL3(q) with q ≤ 25, PSL4(q) with 2 < q ≤ 9 or q ∈ {16, 25}, PSL5(q) with q ≤ 7, PSL6(q) with
q ≤ 4, PSL7(3), PSL8(q) with q ≤ 3;

2. PSU4(q) with q ≤ 7, PSU5(q) with q ≤ 5, PSU6(q) with q ≤ 3, PSU7(q) with q ≤ 3, PSU8(2);

3. PSp4(q) with q ∈ {4, 5, 8, 16}, PSp6(q) with q ≤ 5, PSp8(q) with q ≤ 3;

4. PΩ7(3), PΩ
−
8 (2), PΩ

+
8 (2), PΩ

+
8 (3), PΩ

+
8 (4), PΩ9(5), PΩ

−
10(2), PΩ

+
12(2).

Then the action of G is not binary.

Proof. The magma computations here are all rather similar. We give an indication of what we have done
in the unitary case only.

We have computed all the possible almost simple groups G and all of their (faithful) primitive actions
on a set Ω. We have tested that each of these actions is not binary. Indeed, except when S = SU4(2)
and |Ω| = 27, or S = SU4(3) and |Ω| = 112, or S = SU4(4) and |Ω| = 325, we can witness that G is non
binary by applying Lemmas 1.6.15, 1.6.16, 1.8.1, 1.8.4, or by finding a suitable non-binary triple. When
S = SU4(3) and |Ω| = 112, or S = SU4(4) and |Ω| = 325, we can witness that G is not binary by finding a
suitable non-binary 4-tuple. The case S = SU4(2) and |Ω| = 27 requires a little more care because triples
and 4-tuples are not enough to witness that G is not binary. We have proved that this group is non-binary
using longer tuples (of length 7).

Finally, from here on, except for the final two sections (§4.9 and §4.10), we will assume that

• if S = Sp4(2
a), then G ≤ ΓSp4(2

a) (and so does not contain a graph automorphism); and

• if S = Ω+
8 (q), then G ≤ PΓO+

8 (q) (and so does not contain a triality automorphism).

These assumptions ensure that if V denotes the natural n-dimensional module for S, then G ≤ PΓL(V ),
except for the case where S = SL(V ), in which case G ≤ PΓL(V ).2 (where the .2 denotes a graph
automorphism).

Note also, for future reference, that by Proposition 2.5.1, the maximal subgroups of G that centralize
field, graph-field or graph automorphisms are in families C5 (subfield subgroups) and C8 (classical sub-
groups).
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4.2 Family C2
In this caseM is the projective image of the stabilizer of a direct sum decomposition D of V into t subspaces
W1, . . . ,Wt, each of dimension m, as described in [54, §4.2]. In particular, n = mt. The possibilities are
summarized in Table 4.2.1.

case type conditions

L GLm(q)wr Sym(t)
U GUm(q)wr Sym(t) Wi non-degenerate
S Spm(q)wr Sym(t) Wi non-degenerate
O Oδ

m(q)wr Sym(t) Wi non-degenerate
U,S,O+ GLn/2(q

u).2 Wi totally singular,

q odd in case S

Table 4.2.1: Maximal subgroups in family C2

The main result of this section is the following. The result will be proved in a series of lemmas.

Proposition 4.2.1. Suppose that G is an almost simple group with socle S̄ = Cln(q), and assume that

(i) n ≥ 3, 4, 4, 7 in cases L,U, S,O respectively, and

(ii) Cln(q) is not one of the groups listed in Lemma 4.1.1.

Let M be a maximal subgroup of G in the family C2. Then the action of G on (G :M) is not binary.

4.2.1 Case S = SLn(q)

Assume that S = SLn(q) with n ≥ 3, and the socle of G is not as in Lemma 4.1.1(1). Assume also that
Ω = (G :M), where M is in the family C2 (as in the first row of Table 4.2.1).

Lemma 4.2.2. In this case, Ω contains a beautiful subset.

Proof. There is a basis B = {v1, . . . , vmt} of V such that M stabilizes the deomposition V =W1⊕· · ·⊕Wt,
where

Wi = 〈vm(i−1)+1, vm(i−1)+2, . . . , vmi〉.
First, assume that q ≥ 5. We let U be the subgroup whose elements fix all elements of B except v1 and

satisfy
v1 7→ v1 + k1vm+1,

for some k1 ∈ Fq, and we define Λ = DU . For k ∈ Fq, we define

W1(k) = 〈v1 + kvm+1, v2, . . . , vm〉,

and observe that Λ = {D(k) | k ∈ Fq}, where

D(k) =W1(k) ⊕W2 ⊕ · · · ⊕Wt.

Note, in particular, that D(0) = D.
Let T be the maximal split torus whose elements are diagonal when written with respect to B. Then

U ⋊ T is 2-transitive on Λ = DU .
Now suppose that g ∈ SΛ and suppose that g maps Wi to W1(k) for some i > 1 and some k ∈ Fq.

This implies that there exists v ∈Wi such that vg = v1 + kvm+1. But v1 + kvm+1 lies in W1(k) and not in
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W1(ℓ) for all ℓ 6= k and, similarly, v1 + kvm+1 does not lie in Wj for all j > 1. Thus g does not preserve
Λ, a contradiction. We conclude that g preserves {W1(k) | k ∈ Fq} set-wise, and preserves {W2, . . . ,Wt}
set-wise.

Our aim now is to show that Λ is an S-beautiful subset; to do this, we will show that SΛ ∼= U ⋊T . For
this, we suppose that g ∈ SΛ fixes both D(0) and D(1) and we will show that g ∈ S(Λ). Observe first that,
since g fixes D(0), it follows that g fixes W1 and so

vg1 ∈ 〈v1, v2, . . . , vm〉.

Similarly, since g fixes D(1), we conclude that g fixes W1(1) and so

(v1 + vm+1)
g ∈ 〈v1 + vm+1, v2, . . . , vm〉.

Hence vgm+1 ∈ 〈v1, v2, . . . , vm, vm+1〉.
On the other hand g preserves {W2, . . . ,Wt} set-wise, and so

vgm+1 ∈ 〈vm+1, . . . , vmt〉

which implies that vgm+1 ∈ 〈vm+1〉. In other words, for some ℓ1 ∈ Fq, we have

vgm+1 = ℓ1vm+1. (4.2.1)

Now, since g fixes W1, we conclude that there exist ℓ2, c2, . . . , cm such that

vg1 = ℓ2v1 +

m∑

i=2

civi. (4.2.2)

Finally, since g fixes W1(1), there exist ℓ3, d2, . . . , dm such that

(v1 + vm+1)
g = ℓ3(v1 + vm+1) +

m∑

i=2

divi. (4.2.3)

From, (4.2.1), (4.2.2) and (4.2.3), we conclude that ci = di for all i = 2, . . . ,m and that ℓ1 = ℓ2 = ℓ3 = ℓ.

We finally obtain that, for each k ∈ Fq,

(v1 + kvm+1)
g = (v1 + vm+1)

g + (k − 1)vgm+1

= ℓ(v1 + vm+1) +

m∑

i=2

civi + (k − 1)ℓvm+1

= ℓ(v1 + kvm+1) +
m∑

i=2

civi ∈W1(k).

Thus g fixes W1(k) for each k ∈ Fq, and so g fixes D(k) for each k ∈ Fq. We conclude that g ∈ S(Λ), as
required.

Next, assume that q ∈ {3, 4}; then [54, Tables 3.5.A and 3.5.H] allows us to assume that m ≥ 2. We
let U be the subgroup whose elements fix all elements of B except v1 and satisfy

v1 7→ v1 + k1vm+1 + k2vm+2,

for some k1, k2 ∈ Fq, and we define Λ = DU . For k1, k2 ∈ Fq, we define

W1(k1, k2) = 〈v1 + k1vm+1 + k2vm+2, v2, . . . , vm〉,
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and observe that Λ = {D(k1, k2) | k1, k2 ∈ Fq}, where

D(k1, k2) =W1(k1, k2)⊕W2 ⊕ · · · ⊕Wt.

Note, in particular, that D(0, 0) = D. Let X be the stabilizer of the subspaces

〈v1〉, . . . , 〈vm〉, 〈vm+1, vm+2〉, 〈vm+3〉, . . . , 〈vmt〉.

Then U ⋊X is 2-transitive on Λ = DU . Our aim now is to show that Λ is a beautiful subset.
Take g ∈ SΛ and suppose that Λ is not beautiful. An analogous argument to the previous case allows

us to conclude that g preserves {W1(k1, k2) | k1, k2 ∈ Fq} set-wise, and preserves {W2, . . . ,Wt} set-wise.
This implies, moreover, that g preserves the subspaces

Y1 := spanFq
{W1(k1, k2) | k1, k2 ∈ Fq} and Y0 :=

⋂

k1,k2∈Fq

W1(k1, k2).

Thus there is a homomorphism θ : SΛ → GL(Y1/Y0) ∼= GL3(q). Since GL3(q) does not contain a subgroup
with a composition factor isomorphic to Alt(s) for s ≥ 8, we conclude that the action of ker(θ) on Λ must
induce Alt(Λ) or Sym(Λ). However ker(θ) is not transitive on Λ so we have a contradiction.

Next, assume that q = 2; then [54, Tables 3.5.A and 3.5.H] allows us to assume that m ≥ 3. We let U
be the subgroup whose elements fix all elements of B except v1 and satisfy

v1 7→ v1 + k1vm+1 + k2vm+2 + k3vm+3,

for some k1, k2, k3 ∈ Fq, and we define Λ = DU . For k1, k2, k3 ∈ Fq, we define

W1(k1, k2, k3) = 〈v1 + k1vm+1 + k2vm+2 + k3vm+3, v2, . . . , vm〉,

and observe that Λ = {D(k1, k2, k3) | k ∈ Fq}, where

D(k1, k2, k3) =W1(k1, k2, k3)⊕W2 ⊕ · · · ⊕Wt.

Note, in particular, that D(0, 0, 0) = D. Let X be the stabilizer of the subspaces

〈v1〉, . . . , 〈vm〉, 〈vm+1, vm+2, vm+3〉, 〈vm+4〉, . . . , 〈vmt〉.

Then U ⋊X is 2-transitive on Λ = DU . Suppose that g ∈ SΛ fixes both D(0, 0, 0) and D(1, 0, 0). Observe
first that, since g fixes D(0, 0, 0), it follows that g fixes W1 and so

vg1 ∈ 〈v1, v2, . . . , vm〉.

Similarly, since g fixes D(1, 0, 0), it also fixes W1(1, 0, 0) and so

(v1 + vm+1)
g ∈ 〈v1 + vm+1, v2, . . . , vm〉.

We conclude that vgm+1 ∈ 〈v1, v2, . . . , vm, vm+1〉.
On the other hand g preserves {W2, . . . ,Wt} set-wise, and so

vgm+1 ∈ 〈vm+1, . . . , vmt〉,

which implies that vgm+1 ∈ 〈vm+1〉. Since we are working over F2, we conclude that vgm+1 = vm+1. Now,
we can repeat this same argument assuming that g also fixes D(0, 1, 0) and D(0, 0, 1) and we see that
vgm+2 = vm+2 and vgm+3 = vm+3. But in this case g clearly fixes W1(k1, k2, k3) for all k1, k2, k3 ∈ F2, and
so g fixes D(k1, k2, k3) for all k1, k2, k3 ∈ F2. Thus if g ∈ SΛ and fixes the four points D(0, 0, 0), D(1, 0, 0),
D(0, 1, 0) and D(0, 0, 1) of Λ, then g fixes all of Λ. Since |Λ| = 8, we conclude that SΛ does not contain
Alt(Λ), and so Λ is a beautiful subset.
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4.2.2 The totally singular case

In this section we deal with the case when S preserves a non-degenerate form on V , t = 2 and W1 and W2

are both totally singular. This occurs when S is unitary, symplectic with q odd, or of type O+ (as in the
last row of Table 4.2.1). So assume that S is one of these types, and also that the socle of G is not as in
Lemma 4.1.1.

Lemma 4.2.3. In this case Ω contains a beautiful subset.

Proof. We can assume that W1 = 〈e1, . . . , em〉 and W2 = 〈f1, . . . , fm〉, where B = {e1, . . . , em, f1, . . . , fm}
is a hyperbolic basis for V (and m ≥ 2). Note that, with respect to the basis B, M contains the group of
matrices {(

A
A−T

)

| A ∈ GLm(Fq)

}

, (4.2.4)

except in the O+ case with q odd, when we need to add the requirement that det(A) is a square in Fq
for such matrices. Notice that in the unitary case we have written A−T rather than A−Tσ (where σ is the
involutory automorphism of the field Fq2) since we are only considering matrices with entries from the field
Fq.

First, assume that q ≥ 5. We let U be the subgroup whose elements fix all elements of B except e1 and
e2 and satisfy

e1 7→ e1 + kf2 and e2 7→ e2 ± kf1,

for some k ∈ Fq. (The choice of sign for the image of e2 will depend on the type of form preserved by S.)
We define Λ = DU and, for k ∈ Fq, we define

W1(k) = 〈e1 + kf2, e2 ± kf1, e3, . . . , em〉.

Observe that Λ = {D(k) | k ∈ Fq}, where

D(k) =W1(k)⊕W2.

Note, in particular, that D(0) = D.

Let T be the maximal split torus whose elements are diagonal when written with respect to B. Then
U ⋊ T is 2-transitive on Λ = DU . Our aim now is to show that Λ is an S-beautiful subset; to do this, we
will show that SΛ ∼= U ⋊ T . For this, we suppose that g ∈ SΛ fixes both D(0) and D(1) and we will show
that g ∈ S(Λ).

Observe that, since g fixes D(0) and D(1), g must fix W2 and hence must fix W1 and W1(1). The fact
that g fixes W1 implies that

eg1 ∈ 〈e1, e2, . . . , em〉.
Similarly, the fact that g fixes W1(1) implies that

(e1 + f2)
g ∈ 〈e1 + f2, e2 ± f1, e3, . . . , em〉.

We conclude that f g2 ∈ 〈e1, e2, . . . , em, f1, f2〉.
On the other hand g also fixes W2, and so f g2 ∈W2 and we conclude that f g2 ∈ 〈f1, f2〉; in other words,

there exist ℓ1, ℓ
′
1 ∈ Fq such that

f g2 = ℓ′1f1 ± ℓ1f2. (4.2.5)

Now, since g fixes W1, we conclude that there exist ℓ2, ℓ
′
2, c3, . . . , cm such that

eg1 = ℓ2e1 + ℓ′2e2 +

m∑

i=3

ciei. (4.2.6)
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Finally, since g fixes W1(1), we conclude that there exist ℓ3, ℓ
′
3, d3, . . . , dm such that

(e1 + f2)
g = ℓ3(e1 + f2) + ℓ′3(e2 ± f1) +

m∑

i=3

diei. (4.2.7)

From (4.2.5), (4.2.6) and (4.2.7), we conclude that ci = di for all i = 3, . . . ,m, ℓ1 = ℓ2 = ℓ3 and ℓ
′
1 = ℓ′2 = ℓ′3.

Set ℓ := ℓ1 and ℓ′ := ℓ′1.
We finally obtain that, for each k ∈ Fq,

(e1 + kf2)
g = (e1 + f2)

g + (k − 1)f g2

= ℓ(e1 + f2) + ℓ′(e2 ± f1) +
m∑

i=3

ciei + (k − 1)(±ℓ′f1 + ℓf2)

= ℓ(e1 + kf2) + ℓ′(e2 ± kf1) +

m∑

i=3

ciei ∈W1(k).

Thus g fixes W1(k) for each k ∈ Fq, and so g fixes D(k) for each k ∈ Fq. We conclude that g ∈ S(Λ), as
required.

Next assume that q ∈ {3, 4}. Since SU4(3),SU4(4) and Sp4(3) were dealt with at the start (recall that
in the symplectic case, q is odd), we require n ≥ 6. Our argument is similar to before. We let U be the
subgroup whose elements fix all elements of B except e1, e2 and e3 and satisfy

e1 7→ e1 + k2f2 + k3f3,

for some k2, k3 ∈ Fq, and we define Λ = DU . For k2, k3 ∈ Fq, we define

W1(k2, k3) = 〈e1 + k2f2 + k3f3, e2, . . . , em〉,

and observe that Λ = {D(k2, k3) | k2, k3 ∈ Fq} where

D(k2, k3) =W1(k2, k3)⊕W2.

Note, in particular, that D(0, 0) = D. Let X be the stabilizer of the subspaces

〈e1〉, 〈e2, e3〉, 〈e4〉, . . . , 〈em〉, 〈f1〉, 〈f2, f3〉, 〈f4〉, . . . , 〈fm〉.

Then U ⋊ X is 2-transitive on Λ = DU (making use of Lemma 1.6.9 and the fact that M contains the
matrices in (4.2.4)). Our aim now is to show that Λ is a beautiful subset of size q2.

Take g ∈ SΛ and suppose that Λ is not beautiful. An analogous argument to the previous case allows us
to conclude that g preserves {W1(k2, k3) | k2, k3 ∈ Fq} set-wise. This implies that g preserves the subspaces

Y1 := spanK{W1(k2, k3) | k2, k3 ∈ Fq} and Y0 :=
⋂

k2,k3∈Fq

W1(k2, k3).

Thus there is a homomorphism θ : SΛ → GL(Y1/Y0) ∼= GL3(K). Since GL3(K) does not contain a subgroup
with a composition factor isomorphic to Alt(s) for s > 7, we conclude that the action of ker(θ) on Λ must
induce Alt(Λ) or Sym(Λ). However ker(θ) is not transitive on Λ so we have a contradiction.

Finally, assume that q = 2. In this case, we require that n ≥ 8. This requirement excludes the groups
SU4(2) and SU6(2) which were dealt with at the start. In addition Lemma 4.1.1 allows us to exclude the
case when S = Ω+

8 (2) (notice that, in the proof, we prove that there is a beautiful subset). If n ≥ 10, then
our method here is similar to the previous case, but we start with a subgroup U whose elements fix all
elements of B except e1, e2, e3, e4 and e5 and satisfy

e1 7→ e1 + k2f2 + k3f3 + k4f4 + k5f5,
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for some k2, k3, k4, k5 ∈ Fq. We obtain a beautiful subset of cardinality 16; we leave the details to the
reader. For the case when S = SU8(2), we use a subgroup U whose elements fix all elements of B except
e1, e2 and e3 and satisfy

e1 7→ e1 + k2f2 + k3f3,

for some k2, k3 ∈ F4. Again we obtain a beautiful subset of cardinality 16.

4.2.3 A general reduction

In light of the previous subsections, we can now assume that we are in the case when S preserves a non-
degenerate form on V and W1, . . . ,Wt are all non-degenerate subspaces of V of dimension m. In the end
we will need to split into separate cases, depending on the type of the form, but before we do that we give
three general lemmas that significantly reduce the subsequent case work.

Lemma 4.2.4. If q ≥ 5, then either Ω contains a beautiful subset or else one of the following holds:

1. m = 1;

2. m = 2, S = Ωεn(q) for some ε ∈ {+,−}, and W1, . . . ,Wt are all of type O−
2 .

Proof. Suppose that neither of the listed outcomes occurs – we must show that Ω contains a beautiful
subset. Choose a hyperbolic basis for each of W1, . . . ,Wt and let B be the union of these bases.

Since we have excluded the two listed outcomes, we can let (e1, f1) (resp. (e2, f2)) be hyperbolic pairs
whose elements are in B ∩W1 (resp. B ∩W2). Let U be the subgroup whose elements fix all elements of
B except e1 and f2 and satisfy

e1 7→ e1 + ke2, f2 7→ f2 ± kf1,

for some k ∈ Fq, and we let Λ = MU . (The choice of sign for the image of f2 will depend on the type of
form preserved by S.) For k ∈ Fq, we define

W1(k) = 〈e1 + ke2, f1, x1 . . . , xm−2〉,
W2(k) = 〈e2, f2 ± kf1, y1, . . . , ym−2〉,

where B ∩W1 = {e1, f1, x1, . . . , xm−2} and B ∩W2 = {e2, f2, y1, . . . , ym−2}. Observe that Λ = {D(k) | k ∈
Fq}, where

D(k) =W1(k)⊕W2(k)⊕W3 ⊕ · · · ⊕Wt.

Note, in particular, that D(0) = D. Now we follow the argument of Lemma 4.2.3 with some slight
adjustments. As before, we are able to conclude that, if g ∈ SΛ, then g preserves the set {W3, . . . ,Wt} as
well as the set

{W1(k) | k ∈ Fq} ∪ {W2(k) | k ∈ Fq}.
Now suppose that g ∈ SΛ and g fixes both D(0) and D(1). We study the image of the spacesW1,W2,W1(1)
and W2(1).

Suppose thatW g
1 =W1 andW1(1)

g =W2(1). This implies that f g1 ∈W1∩W2(1) = {0}, a contradiction.
Similarly, we cannot have W g

1 =W2 and W1(1)
g =W1(1).

Suppose next that W g
1 =W1 and W1(1)

g =W1(1). Then there exist a, b, c1, . . . , cm−2 such that

eg1 = ae1 + bf1 +
m−2∑

i=1

cixi.

Similarly there exist a′, b′, c′1, . . . , c
′
m−2 such that

(e1 + e2)
g = a′(e1 + e2) + b′f1 +

m−2∑

i=1

c′ixi.
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We obtain that

eg2 = (a′ − a)e1 + a′e2 + (b′ − b)f1 +
m−2∑

i=1

(c′i − ci)xi.

But, since e2 ∈W2∩W2(1) and since g fixesD(0) andD(1), we deduce eg2 ∈W2∩W2(1) = spanK{e2, y1, . . . , ym−2}.
Now, we conclude eg2 ∈ spanK{e2}. This implies, in particular, that a′ = a, b′ = b, c′1 = c1, . . . , c

′
m−2 = cm−2

and, in particular eg2 = ae2.

But now observe that

(e1 + ke2)
g = (e1 + e2)

g + (k − 1)eg2

= a(e1 + e2) + bf1 +
m−2∑

i=1

cixi + (k − 1)ae2

= a(e1 + ke2) + bf1 +

m−2∑

i=1

cixi ∈W1(k).

This shows that W1(k)
g =W1(k), for every k ∈ Fq. We conclude that D(k)g = D(k) for all k ∈ Fq.

So let us consider the remaining case, when W g
1 = W2 and W1(1)

g = W2(1). Then there exist
a, b, c1, . . . , cm−2 such that

eg1 = ae2 + bf2 +

m−2∑

i=1

ciyi.

Similarly there exist a′, b′, c′1, . . . , c
′
m−2 such that

(e1 + e2)
g = a′e2 + b′(f2 ± f1) +

m−2∑

i=1

c′iyi.

We obtain that

eg2 = (a′ − a)e2 + b′(f2 ± f1)− bf2 +

m−2∑

i=1

(c′i − ci)yi.

But, since e2 ∈W2∩W2(1) and since g fixesD(0) andD(1), we deduce eg2 ∈W1∩W1(1) = spanK{f1, x1, . . . , xm−2},
and we conclude that eg2 ∈ spanK{f1}. This implies, in particular, that a′ = a, b′ = b, c′1 = c1, . . . , c

′
m−2 =

cm−2 and, in particular eg2 = ±bf1.
But now observe that

(e1 + ke2)
g = (e1 + e2)

g + (k − 1)eg2

= ae2 + b(f2 ± f1) +

m−2∑

i=1

ciyi + (k − 1)(±b)f1

= ae2 + b(f2 ± kf1) +
m−2∑

i=1

ciyi ∈W2(k).

This shows that W1(k)
g =W2(k), for every k ∈ Fq. We conclude that D(k)g = D(k) for all k ∈ Fq.

In all cases, then, we conclude that, if g ∈ SΛ and g fixes the two points D(0) and D(1) of Λ, then g
fixes all elements of Λ. But this implies that SΛ does not contain Alt(Λ) and we are done.

The next case deals with the first outcome of the preceding lemma, but also applies when q = 4.

Lemma 4.2.5. If m = 1 and q ≥ 4, then either the action is not binary or else S is orthogonal and q = 5.
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Proof. Our method is based on the treatment of this case for PSU3(q) in [45]. Note that m = 1 cannot
occur if S is symplectic – thus we may assume that S is either unitary or orthogonal. In the orthogonal
case, m = 1 implies that q is an odd prime number by [54, §4.2].

The action of G on Ω is permutation equivalent to the natural action of G on

{

{X1,X2, . . . ,Xn}
∣
∣
∣
∣

dimK(X1) = dimK(X2) = · · · = dimK(Xn) = 1;
V = X1 ⊥ X2 ⊥ · · · ⊥ Xn; X1,X2, . . . ,Xn non-degenerate

}

.

Let {v1, . . . , vn} be an orthonormal basis for V ; thus ω0 := {〈v1〉, 〈v2〉, . . . , 〈vn〉} ∈ Ω. If S is unitary, then
define n0 = 3; if S is orthogonal, then define n0 = 4.

Now consider

Λ := {{X1,X2, . . . ,Xn} ∈ Ω | Xi = 〈vi〉 for i = n0, . . . , n}.

Then GΛ is equal to the stabilizer of {〈vn0〉, . . . , 〈vn〉}. In the unitary case GΛ is almost simple with socle
PSU2(q); in the orthogonal case, GΛ is almost simple with socle Ω3(q) (here we are using q ≥ 4). In both
cases the socle is isomorphic to PSL2(q), and the action of GΛ on Λ is permutation equivalent to the action
of G{〈vn0 〉,...,〈vn〉}

on

Λ′ := {{X1, · · · ,Xn0−1} |dim(X1) = · · · = dim(Xn0−1),

〈vn0 , . . . , vn〉⊥ = X1 ⊥ · · · ⊥ Xn0−1,X1, . . . ,Xn0−1 non-degenerate}.

Suppose first that S is unitary. Then, this action of GΛ has degree |Λ| = q(q − 1)/2. By consulting the
table of the maximal subgroups of almost simple groups with socle PSL2(q) in [10], we see that provided
q /∈ {7, 9} this action is primitive and hence by applying [45, Theorem 1.1] to GΛ, we obtain that GΛ is
not binary. Moreover, when q ∈ {7, 9}, it can be easily checked with magma that the action of GΛ is not
binary.

Suppose now that S is orthogonal. (Recall that q is a prime number.) In particular, GΛ ∼= PSL2(q)
or GΛ ∼= PGL2(q). Let us denote by X the socle of GΛ and by Y the stabilizer in GΛ of an element of
Λ. By consulting the table of the maximal subgroups of almost simple groups with socle PSL2(q) in [10,
Table 8.7], we have

X ∩ Y ∼=
{

Sym(4), when q ≡ ±1 (mod 8)

Alt(4), when q ≡ ±3, 5,±11,±13,±19 (mod 40).

From the same table we infer that X ∩ Y is a maximal subgroup of X unless

GΛ = X and q ≡ ±11,±19 (mod 40).

Therefore, except for the cases where q = p ≡ ±11,±19 (mod 40) and GΛ = X ∼= PSL2(q), by applying [45,
Theorem 1.1] to GΛ we obtain that GΛ is not binary for q 6= 5. (Observe that q = 5 is the exception listed
in the statement of the lemma.) We claim that this is the case also when q = p ≡ ±11,±19 (mod 40) and
GΛ = X ∼= PSL2(q). To see this, observe that from [10, Table 8.7], there exists a subgroup Z of X = GΛ

with Y < Z, Z ∼= Alt(5) and with Z maximal in X = GΛ. Now, the action of Z on (Z : Y ) is not binary
because it is permutation isomorphic to the non-binary degree 5 action of Alt(5). Hence GΛ is not binary
by Lemma 1.6.2, as claimed.

Summing up, for the rest of the proof we may suppose that GΛ is not binary. In particular there exist
two ℓ-tuples

({W1,1, . . . ,W1,n0−1}, . . . , {Wℓ,1, . . . ,Wℓ,n0−1})

and

({W ′
1,1, . . . ,W

′
1,n0−1}, . . . , {W ′

ℓ,1, . . . ,W
′
ℓ,n0−1})
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in Λ′ℓ which are 2-subtuple complete for the action of GΛ but not in the same GΛ-orbit. By construction
the two ℓ-tuples

I :=({W1,1, . . . ,W1,n0−1, 〈vn0〉, . . . , 〈vn〉}, {W2,1, . . . ,W2,n0−1, 〈vn0〉, . . . , 〈vn〉}, . . . ,
{Wℓ,1, . . . ,Wℓ,n0−1, 〈vn0〉, . . . , 〈vn〉}),

J :=({W ′
1,1, . . . ,W

′
1,n0−1, 〈vn0〉, . . . , 〈vn〉}, {W ′

2,1, . . . ,W
′
2,n0−1, 〈vn0〉, . . . , 〈vn〉}, . . . ,

{W ′
ℓ,1, . . . ,W

′
ℓ,n0−1, 〈vn0〉, . . . , 〈vn〉})

are in Ωℓ and are 2-subtuple complete. Furthermore it is easy to see that I and J are not in the same
G-orbit. Thus G is not binary.

In the next lemma we write Xn(q) to represent one of the three families of classical groups associated
with non-degenerate forms. So, for instance, to get the result in the unitary case, the reader should read
“PSU” wherever X occurs.

Lemma 4.2.6. Let m be a fixed positive integer, and let n0 be a multiple of m such that Xn0(q) is almost
simple. If the primitive C2-action of Xn0(q) on m-decompositions of fixed type is not binary, then the same
is true of Xn(q), for all n that are multiples of m and that exceed n0.

Note that the caveat “of fixed type” is included to account for the orthogonal case with m even, where
we have decompositions of type O+ and O−.

Proof. We assume that n > n0 and we proceed similarly to the previous lemma. First we identify Ω with
the set

{

{X1,X2, . . . ,Xt}
∣
∣
∣
∣

dimK(X1) = dimK(X2) = · · · = dimK(Xt) = m;
V = X1 ⊥ X2 ⊥ · · · ⊥ Xt; X1,X2, . . . ,Xt non-degenerate

}

.

Now, fix an element {W1, . . . ,Wt} of Ω and consider

Λ :=
{

{X1,X2, . . . ,Xt} ∈ Ω
∣
∣
∣Xi =Wi for i =

n0
m

+ 1, . . . , t
}

.

Clearly, GΛ is equal to the stabilizer of {Wn0/m+1, . . . ,Wt} and GΛ is almost simple with socle isomorphic
to Xn0(q), and the action of GΛ on Λ is permutation equivalent to the action of G{Wn0/m+1,...,Wt} on

Λ′ :=

{

{W1, . . . ,Wn0/m}
∣
∣
∣
∣

dim(W1) = · · · = dim(Wn0/m); W1, . . . ,Wn0/m non-degenerate;

〈Wn0/m+1, . . . ,Wt〉⊥ =W1 ⊥ · · · ⊥Wn0/m

}

.

Therefore GΛ is an almost simple primitive group with socle isomorphic to Xn0(q) in a C2-action on
m-decompositions of given type. By assumption, GΛ is not binary and hence there exist two ℓ-tuples
({W1,1, . . . ,W1,n0/m}, . . . , {Wℓ,1, . . .Wℓ,n0/m}) and ({W ′

1,1, . . .W
′
1,n0/m

}, . . . , {W ′
ℓ,1, . . .W

′
ℓ,n0/m

}) in Λℓ which
are 2-subtuple complete for the action of GΛ but not in the same GΛ-orbit. By construction the two ℓ-tuples

I := ({W1,1, . . . ,W1,n0/m,Wn0/m+1, . . . ,Wt}, {W2,1, . . . ,W2,n0/m,Wn0/m+1, . . . ,Wt}, . . . ,
{Wℓ,1, . . . ,Wℓ,n0/m,Wn0/m+1, . . . ,Wt}),
J := ({W ′

1,1, . . . ,W
′
1,n0/m

,Wn0/m+1, . . . ,Wt}, {W ′
2,1, . . . ,W

′
2,n0/m

,Wn0/m+1, . . . ,Wt}, . . . ,
{W ′

ℓ,1, . . . ,W
′
ℓ,n0/m

,Wn0/m+1, . . . ,Wt})

are in Ωℓ and are 2-subtuple complete. As before, I and J are not in the same G-orbit. Thus G is not
binary.
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Group Details of action

SUn(q) m = 1
SU4(3), SU4(4) m = 2

SUn(2) m = 3

Table 4.2.2: C2 – S = SUn(q) and the Wi are non-degenerate.

4.2.4 Case where S = SUn(q) and the Wi are non-degenerate

Assume that S = SUn(q), the Wi are non-degenerate, and the socle of G is not as in Lemma 4.1.1. Here
V = Vn(K) where K = Fq2 , and we denote by σ the involutory field automorphism of K.

Lemma 4.2.7. In this case either Ω contains a beautiful subset or else S is listed in Table 4.2.2.

Proof. Lemma 4.2.4 implies that when q ≥ 5, either Ω contains a beautiful subset or else we obtain the
first line of Table 4.2.2. Now assume that q ≤ 4 and m ≥ 2.

If q ∈ {3, 4}, then we repeat the same set-up as Lemma 4.2.4, except that this time U is the subgroup
whose elements fix all elements of B except e1 and f2 and satisfy

e1 7→ e1 + ke2,

f2 7→ f2 − kσf1,

for some k ∈ K = Fq2 , and we let Λ = MU . Notice that Λ is of size q2 rather than q as in Lemma 4.2.4.
Now the same argument as before allows us to conclude that Λ is a beautiful subset of order q2, provided
that n > 4. (When n = 4, we cannot conclude that GΛ acts 2-transitively on Λ; notice that the groups
SU4(3) and SU4(4) are listed as exceptions in Table 4.2.2.) Now the argument of Lemma 4.2.4 implies that
Λ is a beautiful subset, as required.

If q = 2 and m ≥ 2, then [54, Table 3.5.H] implies that m ≥ 3; if m = 3, the action is listed in
Table 4.2.2, hence we assume that m ≥ 4. We consider hyperbolic pairs from B as before; this time assume
that e1, f1, e2, f2 ∈W1 and e3, f3, e4, f4 ∈W2. Let x1, . . . , xm−4, y1, . . . , ym−4 ∈ B be such that

W1 = spanK{e1, e2, f1, f2, x1, . . . , xm−4} and W2 = spanK{e3, e4, f3, f4, y1, . . . , ym−4}.

We let U be the subgroup whose elements fix all elements of B except e1, f3 and f4 and satisfy

e1 7→ e1 + k3e3 + k4e4,

f3 7→ f3 − kσ3 f1,

f4 7→ f4 − kσ4 f1,

for some k3, k4 ∈ K, and we define Λ = DU . For k1, k2 ∈ K, we define

W1(k1, k2) = 〈e1 + k1e3 + k2e4, e2, f1, f2, x1, . . . , xm−4〉 and
W2(k1, k2) = 〈e3, e4, f3 − kσ1 f1, f4 − kσ2 f1, y1, . . . , ym−4〉.

Observe that Λ = {D(k1, k2) | k1, k2 ∈ K}, where

D(k1, k2) =W1(k1, k2)⊕W2(k1, k2)⊕W3 ⊕ · · · ⊕Wt.

Note, in particular, that D(0, 0) = D. Let X be the stabilizer of the subspaces

〈e1〉, 〈e2〉, 〈e3, e4〉, 〈f1〉, 〈f2〉, 〈f3, f4〉, 〈x1, . . . , xm−4〉, 〈y1, . . . , ym−4〉, W3, . . . , Wt.
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Group Details of action

Spn(2), Spn(3), Spn(4) m = 2

Table 4.2.3: C2 – S = Spn(q) and the Wi are non-degenerate.

Then U ⋊ X is 2-transitive on Λ = DU , a set of size 16. Our aim now is to show that Λ is a beautiful
subset. Let g ∈ SΛ. As in Lemma 4.2.4 we can see that g preserves the set

{W1(k1, k2) | k1, k2 ∈ K} ∪ {W2(k1, k2) | k1, k2 ∈ K}.

Now suppose that there exist k1, k2, k
′
1, k

′
2 ∈ K such thatW1(k1, k2)

g =W2(k
′
1, k

′
2); then, by considering the

vectors eg2, f
g
1 , f

g
2 , it is clear that for all k1, k2 ∈ K, there exist k′1, k

′
2 ∈ K such thatW1(k1, k2)

g =W2(k
′
1, k

′
2).

We conclude that SΛ has a subgroup H of index at most 2 such that, if g ∈ H, then for all k1, k2 ∈ K there
exist k′1, k

′
2 ∈ K (which may depend upon g, k1, k2) such that W1(k1, k2)

g =W1(k
′
1, k

′
2).

This implies that H preserves the subspaces

Y1 := spanK{W1(k1, k2) | k1, k2 ∈ K} and Y0 :=
⋂

k1,k2∈K

W1(k1, k2).

Thus there is a homomorphism θ : H → GL(Y1/Y0) ∼= GL3(K). Since GL3(K) does not contain a subgroup
with a composition factor isomorphic to Alt(s) for s > 7, we conclude that either Λ is beautiful or the
action of ker(θ) on Λ must induce Alt(Λ) or Sym(Λ). However ker(θ) is not transitive on Λ and the result
follows.

We need to deal with the cases listed in Table 4.2.2. Lemma 4.1.1 deals with the second line of the table.
Now Lemma 4.2.5 means that, to deal with the first line of Table 4.2.2, we may assume that q ∈ {2, 3}.
Thus the next lemma deals with what remains.

Lemma 4.2.8. Suppose that (q,m) is one of (2, 3), (2, 1) or (3, 1). Then the action is not binary.

Proof. By Lemma 4.1.1 we have n ≥ 7. Now Lemma 4.2.6 implies that the result holds for n ≥ 7.

4.2.5 Case where S = Spn(q) and the Wi are non-degenerate

Assume that S = Spn(q) with n ≥ 4, theWi are non-degenerate, and the socle ofG is not as in Lemma 4.1.1.

Lemma 4.2.9. In this case either Ω contains a beautiful subset or else S is listed in Table 4.2.3.

Proof. Lemma 4.2.4 implies that, when q ≥ 5, Ω contains a beautiful subset. Now assume that q ≤ 4.
Choose a hyperbolic basis for each of W1, . . . ,Wt and let B be the union of these bases. Write m = 2ℓ and
order the hyperbolic basis so that e1, f1, . . . , eℓ, fℓ ∈W1; eℓ+1, fℓ+1, . . . , e2ℓ, f2ℓ ∈W2 and so on.

We exclude the case m = 2, since this is listed in Table 4.2.3 and we assume that m ≥ 4. Now let U
be the subgroup whose elements fix all elements of B except e1, eℓ+1, eℓ+2, fℓ+1 and fℓ+2 and satisfy

e1 7→ e1 + k1eℓ+1 + k2eℓ+2 + k3fℓ+1 + k4fℓ+2,
eℓ+1 7→ eℓ+1 + k3f1,
eℓ+2 7→ eℓ+2 + k4f1,
fℓ+1 7→ fℓ+1 − k1f1,
fℓ+2 7→ fℓ+2 − k2f1,

for some k1, k2, k3, k4 ∈ Fq, and we define Λ = DU . For k1, k2, k3, k4 ∈ Fq, we define

W1(k1, k2, k3, k4) = 〈e1 + k1eℓ+1 + k2eℓ+2 + k3fℓ+1 + k4fℓ+2, e2, . . . , eℓ, f1, . . . , fℓ〉 and
W2(k1, k2, k3, k4) = 〈eℓ+1 + k3f1, eℓ+2 + k4f1, eℓ+3, . . . , e2ℓ, fℓ+1 − k1f1, fℓ+2 − k2f1, fℓ+3, . . . , f2ℓ〉,
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Group Details of action

Ωn(p) m = 1
Ωn(3) m = 3

Table 4.2.4: C2 – S = Ωn(q) with nq odd and the Wi are non-degenerate.

and observe that Λ = {D(k1, k2, k3, k4) | k1, k2, k3, k4 ∈ Fq}, where

D(k1, k2, k3, k4) =W1(k1, k2, k3, k4)⊕W2(k1, k2, k3, k4)⊕W3 ⊕ · · · ⊕Wt.

Note, in particular, that D(0, 0, 0, 0) = D. Let X be the stabilizer of the subspaces

〈eℓ+1, eℓ+2, fℓ+1, fℓ+2〉, 〈e1〉, . . . , 〈eℓ〉, 〈eℓ+3〉, . . . , 〈eℓt〉, 〈f1〉, . . . , 〈fℓ〉, 〈fℓ+3〉, . . . , 〈fℓt〉.

Then U⋊X is 2-transitive on Λ = DU (making use of Lemma 1.6.9 and the fact that Sp4(q) acts transitively
on the set of non-zero vectors in the natural Fq-module), a set of size q4. Our aim now is to show that Λ
is a beautiful subset. Let g ∈ SΛ. As before we can see that g preserves the set

{W1(k1, k2, k3, k4) | k1, k2, k3, k4 ∈ Fq} ∪ {W1(k1, k2, k3, k4) | k1, k2, k3, k4 ∈ Fq}.

Now suppose that there exist k1, k2, k3, k4, k
′
1, k

′
2, k

′
3, k

′
4 ∈ Fq such thatW1(k1, k2, k3, k4)

g =W2(k
′
1, k

′
2, k

′
3, k

′
4);

then, by considering the vectors eg2, f
g
1 , f

g
2 , it is clear that, for all k1, k2, k3, k4 ∈ Fq, there exist k′1, k

′
2, k

′
3, k

′
4 ∈

Fq such that W1(k1, k2, k3, k4)
g = W2(k

′
1, k

′
2, k

′
3, k

′
4). We conclude that SΛ has a subgroup H of in-

dex at most 2 such that, if h ∈ H, then for all k1, k2, k3, k4 ∈ Fq there exist k′1, k
′
2, k

′
3, k

′
4 ∈ Fq with

W1(k1, k2, k3, k4)
g =W1(k

′
1, k

′
2, k

′
3, k

′
4).

We conclude that H preserves the subspaces

Y1 := spanK{W1(k1, k2, k3, k4) | k1, k2, k3, k4 ∈ Fq} and Y0 :=
⋂

k1,k2,k3,k4∈Fq

W1(k1, k2, k3, k4).

Thus there is a homomorphism θ : SΛ → GL(Y1/Y0) ∼= GL5(Fq). By Lemma 2.1.1, GL5(Fq) does not have
a section isomorphic to Alt(s) for s > 8, so we conclude that either Λ is a beautiful set, or the action of
ker(θ) on Λ must induce Alt(Λ) or Sym(Λ). However ker(θ) is not transitive on Λ, and we conclude that
Λ is beautiful as required.

We must show that the actions listed in Table 4.2.3 are not binary; the next lemma does the job.

Lemma 4.2.10. Suppose that (q,m) is one of (2, 2), (3, 2) or (4, 2). Then the action is not binary.

Proof. Lemma 4.1.1 gives the result for n = 4. Now Lemma 4.2.6 implies that the result holds for n > 4.

4.2.6 Case where S = Ωn(q) for nq odd, and the Wi are non-degenerate

Lemma 4.2.11. In this case either Ω contains a beautiful subset or else S is listed in Table 4.2.4.

Proof. Lemma 4.2.4 implies that when q ≥ 5, either Ω contains a beautiful subset or else m = 1; in the
latter case, [54, Table 3.5.D] implies that q = p, a prime, and we obtain the first line of Table 4.2.4. If
q = 3 and m = 3, then we obtain the second line of Table 4.2.4.

Assume, then, that q = 3 and m ≥ 5. The assumption on m means that each Wi contains at least two
hyperbolic pairs. Now the argument of Lemma 4.2.7 for q = 2 carries over here and we obtain a beautiful
subset of size 9.

We must show that the actions listed in Table 4.2.4 are not binary. Lemma 4.2.5 deals with the first
line, provided q > 5; the next lemma deals with what remains.
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Group Details of action

Ω+
n (p) p ≥ 3, m = 1

Ω+
n (q) Wi of type O−

2

Ω+
n (4) Wi of type O±

2 or O−
4

Ω+
n (3) Wi of type O±

2 , O3 or O−
4

Ω+
n (2) Wi of type O±

2 , O
±
4 or O−

6

Table 4.2.5: C2 – S = Ω+
n (q) – and the Wi are non-degenerate.

Group Details of action

Ω−
n (p) p ≥ 3, m = 1

Ω−
n (q) Wi of type O−

2

Ω−
n (4) Wi of type O−

2 or O−
4

Ω−
n (3) Wi of type O−

2 , O3 or O−
4

Ω−
n (2) Wi of type O−

2 , O
−
4 or O−

6

Table 4.2.6: C2 – S = Ω−
n (q) – and the Wi are non-degenerate.

Lemma 4.2.12. Suppose that (q,m) is one of (3, 1), (5, 1), (3, 3). Then the action is not binary.

Proof. We begin by checking the truth of this statement for S ∈ {Ω5(3),Ω5(5),Ω9(3)}. For the first two
cases it follows from Lemma 4.1.1. And when S = Ω9(3), we use the permutation character method. Let
M be a maximal subgroup of S in the Aschbacher class C2, let 1S be the principal character of S and let
πM be the permutation character for the action of S on the right cosets of M . We have verified that in all
cases

〈π(π − 1S)(π − 2 · 1S), 1S〉 > (|Out(S)|〈π(π − 1S), 1S〉)3.
In particular, all actions under consideration are not binary in view of Lemma 1.8.1.

Now Lemma 4.2.6 implies that the result holds for all n ≥ 7, as required.

4.2.7 Case where S = Ω±
n (q) and the Wi are non-degenerate

Lemma 4.2.13. In this case either Ω contains a beautiful subset or else S is listed in Table 4.2.5 or
Table 4.2.6.

Proof. If q ≥ 5, then Lemma 4.2.4 yields the first two lines of each table. We also use the fact, from [54,
Tables 3.5.E and 3.5.F], that if m = 1, then q = p ≥ 3, where p is prime. Assume, then, that q ≤ 4. Recall
that if q is even, then m is even. We consider the case where q ∈ {3, 4} first. We require that W1 contains
at least two orthogonal hyperbolic lines. All cases that do not satisfy this requirement are listed in the
tables.

Now we let e1, f1 be a hyperbolic pair in W1, and eℓ+1, fℓ+1, eℓ+2, fℓ+2 two hyperbolic pairs in W2. We
let U be the subgroup whose elements fix all elements of B except e1, fℓ+1 and fℓ+2 and satisfy

e1 7→ e1 + k1eℓ+1 + k2eℓ+2,
fℓ+1 7→ fℓ+1 − k1f1,
fℓ+2 7→ fℓ+2 − k2f1,

for some k1, k2 ∈ Fq, and we define Λ = DU . We now proceed using the argument for q = 2 in Lemma 4.2.7
to conclude that we have a beautiful subset of size q2. (Note that SΛ contains ASL2(q), hence the 2-
transitivity of SΛ is immediate.)
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If q = 2, then the argument is similar, but we require that W1 contains at least three orthogonal
hyperbolic lines. All cases that do not satisfy this requirement are listed in the tables. We let U be the
subgroup whose elements fix all elements of B except e1, fℓ+1, fℓ+2 and fℓ+3 and satisfy

e1 7→ e1 + k1eℓ+1 + k2eℓ+2 + k3eℓ+3,
fℓ+1 7→ fℓ+1 − k1f1,
fℓ+2 7→ fℓ+2 − k2f1,
fℓ+3 7→ fℓ+3 − k3f1,

for some k1, k2, k3 ∈ Fq, and we define Λ = DU . As before we get a homomorphism θ : SΛ 7→ GL(Y1/Y0) ∼=
GL4(2). Moreover, Λ corresponds to a set of 8 vectors in Y1/Y0, namely the set of vectors e1 + k1eℓ+1 +
k2eℓ+2 + k3eℓ+3 + Y0. Since the stabilizer in GL4(2) of this set does not induce Alt(8), it follows as before
that Λ is a beautiful subset of size 8, completing the proof.

We must show that the actions listed in Tables 4.2.5 and 4.2.6 are not binary. Lemma 4.2.5 deals with
the first line of each table, provided q > 5. The next lemma deals with the second line of each table.

Lemma 4.2.14. If the Wi are of type O−
2 , then the action is not binary.

Proof. The proof is similar to that of Lemma 4.2.5.

Note that the action of G on Ω is permutation equivalent to the natural action of G on

{

{X1,X2, . . . ,Xn/2}
∣
∣
∣
∣

X1, . . . ,Xn/2 of type O−
2 ;

V = X1 ⊥ X2 ⊥ · · · ⊥ Xn/2; X1,X2, . . . ,Xn/2 non-degenerate

}

.

Now consider

Λ := {{X1,X2, . . . ,Xn/2} ∈ Ω | Xi =Wi for i ∈ {4, . . . , n/2}}.

Then GΛ is equal to the stabilizer of {W4, . . . ,Wn/2} and GΛ is almost simple with socle PΩ−
6 (q); therefore,

the socle of GΛ is isomorphic to PSU4(q) and the action is isomorphic to a C2-action of an almost simple
group with socle PSU4(q) on non-degenerate 1-spaces of F4

q2 . We saw in §4.2.4 that this action is not

binary, thus there exist two ℓ-tuples ({W1,1,W1,2,W1,3}, . . . , {Wℓ,1,Wℓ,2,Wℓ,3}) and ({W ′
1,1,W

′
1,2,W

′
1,3}, . . .

,{W ′
ℓ,1,W

′
ℓ,2,W

′
ℓ,3}) in Λℓ which are 2-subtuple complete for the action of GΛ but not in the same GΛ-orbit.

By construction the two ℓ-tuples

I :=({W1,1,W1,2,W1,3,W4, . . . ,Wn/2}, {W2,1,W2,3,W2,3,W4, . . . ,Wn/2}, . . . ,
{Wℓ,1,Wℓ,2,Wℓ,3,W4, . . . ,Wn/2}),

J :=({W ′
1,1,W

′
1,2,W

′
1,3,W4, . . . ,Wn/2}, {W ′

2,1,W
′
2,2,W

′
2,3,W4, . . . ,Wn/2}, . . . ,

{W ′
ℓ,1,W

′
ℓ,2,W

′
ℓ,3,W4, . . . ,Wn/2})

are in Ωℓ and are 2-subtuple complete. Moreover, I and J are not in the same G-orbit. Thus G is not
binary.

The next lemma deals with the remaining lines of Tables 4.2.5 and 4.2.6.

Lemma 4.2.15. Suppose that (q,m) is in

{(3, 1), (5, 1), (2, 2), (3, 2), (4, 2), (3, 3), (2, 4), (3, 4), (4, 4), (2, 6)}.

Then the action is not binary.
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Proof. If m = 1, then we use the fact that we have already studied all C2 actions for n odd. In particular
Lemma 4.2.12 attends to the case where (m,n, q) ∈ {(1, 7, 3), (1, 7, 5)}. Now Lemma 4.2.6 yields the result
for (q,m) ∈ {(3, 1), (5, 1)} and n ≥ 8.

If m = 3, a similar argument works, using the fact that Lemma 4.2.12 attends to the case where
(m,n, q) = (3, 9, 3).

Ifm = 2 or 4, then we must deal with the cases where q ∈ {2, 3, 4} (note that whenm = 2, Lemma 4.2.14
allows us to assume that the Wi are of type O+

2 ). When n = 8, Lemma 4.1.1 gives the result for q = 2.
We use magma to verify that, when n = 8 and q ∈ {3, 4}, then the corresponding C2 actions are not binary.
Lemma 4.2.6 then implies the result for n > 8.

If m = 6, then we must deal with the case q = 2 and the situation where the Wi are of type O−
6 . We

consider first what happens when n = 12: note that, in this case, S = Ω+
12(2), since n/m is even. Now

we use magma, with the permutation character method (using Lemma 1.8.1), to confirm that, in the case
S = Ω+

12(2), the action is not binary. Now Lemma 4.2.6 implies the result for n > 12.

4.3 Family C3
In this section, the subgroup M is a “field extension subgroup”. Such subgroups are described in [54,
Section 4.3], and are listed in Table 4.3.1. In every case we start with a field extension K# of K of prime
degree. We will usually denote this degree by the letter “r”, although in a few subfamilies, the degree is
always equal to 2. We set m = n/r.

case type conditions

L GLm(q
r)

U GUm(q
r) r odd

S Spm(q
r)

Oǫ Oǫ
m(q

r) m ≥ 3
S,Oǫ GUn/2(q) r = 2, q odd in case S

Table 4.3.1: Maximal subgroups in family C3

In the case S = SLn(q), the group M is embedded in G by considering the group ΓLm(K#) acting on
an m-dimensional vector space V# over K# and then considering those K#-semilinear transformations of
V# that induce K-linear transformations on V , where V is simply V# viewed as a K-vector space. For the
other cases, one must also consider K#-forms defined on V#; full details are given in [54].

It is convenient to give a geometrical interpretation for the set of right cosets of M (which is the set on
which we are acting). To do this, we take K# to be a field extension of our field K and we wish to define
a K#-structure on V .

We start by considering a K-linear isomorphism φ : V# → V . Let Σ be the set of all such isomorphisms,
and we observe that two groups act naturally on Σ:

1. GLm(K#) acts on Σ via φg(v) = φ(vg
−1
);

2. GLn(K) acts on Σ via φh(v) = (φ(v))h.

Clearly these two actions commute. Thus we define a K#-structure on V to be an orbit of the group
GLm(K#) on Σ, and (using commutativity of the actions) we observe that GLn(K) acts on the set of all
K#-structures on V . What is more, the stabilizer of such an action is a field extension subgroup M , hence
we have the geometrical interpretation that we require.

Note that we can replace the word “linear” with the word “semilinear” in the previous paragraph to
extend this geometrical interpretation to subgroups of ΓLn(K).

The main result of this section is the following. The result will be proved in a series of lemmas.
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Proposition 4.3.1. Suppose that G is an almost simple group with socle S̄ = Cln(q), and assume that

(i) n ≥ 3, 4, 4, 7 in cases L,U, S,O respectively, and

(ii) Cln(q) is not one of the groups listed in Lemma 4.1.1.

Let M be a maximal subgroup of G in the family C3. Then the action of G on (G :M) is not binary.

4.3.1 Case S = SLn(q)

Lemma 4.3.2. Suppose that G is almost simple with socle equal to PSLn(q). Let M be a C3-maximal
subgroup such that F ∗(M) contains M1, a quasisimple cover of PSLm(q

r), where n = mr, r is prime and
m ≥ 3. Then the action of G on (G :M) is not binary.

Proof. We define

x̃ =





1
A

a−1



 ∈ SLm(q
r),

where A is an element of GLm−2(q
r) of order (qr)m−2 − 1 and a = det(A). We let x be the element in

F ∗(M) which is the projective image of x̃ in M1. Observe that x̃ has a 1-eigenspace over Fqr of dimension
1, and so has a 1-eigenspace over Fq of dimension r; we conclude that CM (x) is a proper subgroup of CG(x).
Thus there is a suborbit, ∆, on which the action of M is isomorphic to the action of M on (M : H), where
H is a subgroup of M that does not contain M1 and does contain x.

We now refer to Lemma 2.2.5. This shows that either the action of M on ∆ is not binary, or M has
a section Alt(qr(m−2)). In the former case, the conclusion of the lemma holds. In the latter case, Lemma
2.1.1 implies that the only possibility is m = 3, q = 2, r = 2. But then S = SL6(2), a case covered by
Lemma 4.1.1.

The remaining lemmas deal with the case when m ≤ 2.

Lemma 4.3.3. Suppose that G is an almost simple group with socle PSLn(q), where n = 2r for r a prime.
Suppose that M is a C3-maximal subgroup such that M ⊲ PSL2(q

r). Then the action of G on (G : M) is
not binary.

Proof. Let K# be the field Fqr , and let {v1, v2} be a K#-basis for V . Let λ be an element of K# such that

{λ, λq, . . . , λqr−1} is a basis for K# over K = Fq and observe that

B = {v1λ, v1λq, . . . , v1λq
r−1
, v2λ, v2λ

q, . . . , v2λ
qr−1}

is an Fq-basis for V . We take M ∩ PGL(V ) to be the subgroup that preserves the (semilinear) K#-vector
space structure of V .

Suppose first that r > 2 and q > 2. Then M ∩ PSL(V ) has the structure (C × PSL2(q
r)).r with C

cyclic (see [54, 4.3.6]). Let M0 be a subgroup of M ∩ PSLn(q) isomorphic to PSL2(q
r).r. Then M0 has a

subgroup H = H0 × 〈σ〉, where H0
∼= PSL2(q) and σ is a field automorphism of order r. Moreover H is

maximal in M0 (see [10, Table 8.1]).
Consider the direct sum Fq-decomposition

V = 〈v1λ, v2λ〉 ⊕ 〈v1λq, v2λq〉 ⊕ · · · ⊕ 〈v1λq
r−1
, v2λ

qr−1〉. (4.3.1)

Observe that H0 stabilizes each subspace in the decomposition, while the field automorphism σ : x 7→ xq

induces an r-cycle on the r subspaces in the decomposition. Thus H stabilizes the decomposition. Since
r > 2, there is an element g of order r − 1 stabilizing the decomposition that is not in M , centralizes H0

and normalizes 〈σ〉. Then H ≤ M ∩Mg, and so M ∩Mg is a maximal subgroup of M1 = (M ∩Mg)M ′
0.

Hence the action of M1 on (M1 : M ∩Mg) is isomorphic to the action of an almost simple group with
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socle PSL2(q
r) on a maximal C5-subgroup containing PSL2(q). By [45], this action is not binary, and now

Lemma 1.6.2 implies that the action of M on (M :M ∩Mg) is not binary. Then Lemma 1.6.1 implies that
the action of G on (G :M) is not binary.

Suppose, next, that r = 2. Again M has a subgroup M0
∼= PSL2(q

2) preserving the decomposition
(4.3.1), andM0 has a subgroup H0

∼= PGL2(q). Define U to be the set of elements in S that fix all elements
of B except v1λ and which satisfy

v1λ 7→ v1 + αv2λ (α ∈ Fq).

Then U is a group of order q with U ∩M = 1, and U is normalized by a torus T < H0 of order q − 1,
acting fixed-point-freely. In the usual way we obtain a subset ∆ of Ω of size q for which G∆ is 2-transitive.
Now, by Lemma 2.1.1, M does not have a section isomorphic to Alt(t) for t ≥ 7 and, by Lemma 1.6.12 the
conclusion of the lemma follows for q > 5. If q = 2, then S = SL4(2) ∼= Alt(8) and the result follows from
[46]. And if q ∈ {3, 4, 5}, then the result follows from Lemma 4.1.1.

Finally assume that q = 2 and r > 2. In this case, writing matrices with respect to B, M contains an
element

g =

(
Ir

A

)

,

where A ∈ GLr(2) is an element of order 2r − 1, and we let T = 〈g〉. Now let U be the subgroup of S
consisting of elements u that fix all elements of B except v1λ and for which

v1λ
u − v1λ ∈ spanFq

{v2λ, v2λq, . . . , v2λq
r−1}.

Then U is a group of order qr and U ⋊ T is a Frobenius group. Then the set Λ = MU is a set of size qr

on which GΛ acts 2-transitively. By Lemma 2.1.1, M does not contain a section isomorphic to Alt(t) for
t > 6. Thus, we conclude that Λ is a beautiful set, and Lemma 1.6.12 yields the result.

Lemma 4.3.4. Suppose that G is almost simple with socle equal to PSLn(q) and n is an odd prime. Let
M be the normalizer of a Singer cycle in G. Then the action of G on cosets of M is not binary.

Proof. We can write the group F = M ∩ PSLn(q) as a semidirect product T ⋊ C where T is cyclic of
order qn−1

(q−1)(q−1,n) and C is cyclic of order n, and acts fixed-point-freely on T . Choosing an appropriate
basis we may take C to be generated by a permutation matrix c corresponding to an n-cycle, and one
sees immediately that CPSLn(q)(c) > 〈c〉. Let x ∈ CPSLn(q)(c) \ 〈c〉 and observe that the group F acts as a
Frobenius group on the set (F : F ∩ F x).

Since n > 2, Lemma 1.7.2 implies that the action of M on (M : M ∩ Mx) is not binary. Now
Lemma 1.6.1 yields the result.

4.3.2 Case S = SUn(q)

Lemma 4.3.5. Suppose that G is almost simple with socle equal to PSUn(q). Let M be a C3-subgroup.
Then the action of G on (G :M) is not binary.

Proof. Note that F ∗(M) contains a normal subgroup M1 which is a quasisimple cover of PSUm(q
r) and,

by [54, Table 3.5.B], r ≥ 3.

First suppose that m ≥ 5. Here we refer to Lemma 2.2.8 and we write elements of M1 with respect to
the basis B of Vm(q

2r) in that lemma. Define j = ⌊m−1
2 ⌋ and y = (m, 2), so that m = 2j + y. Then let

x̃ =









1
A

1

A−T

Jy









,
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where A is an element of GLj−1(q
2r) of order (q2r)j−1 − 1 and Jy is a y-by-y matrix chosen so that x̃ is an

element of SUm(q
r). Observe that 1 is not an eigenvalue for Jy. Now we let x be the element of M1 that

is an image of x̃.
Observe that x̃ has a 1-eigenspace over Fqr of dimension 2, and so has a 1-eigenspace over Fq of

dimensions 2r. From this we conclude that CM (x) is a proper subgroup of CG(x). Let g ∈ CG(x) \CM (x)
and set H :=M ∩Mg. Then H contains x but does not contain M1, and there is a suborbit, ∆, on which
the action of M is isomorphic to the action of M on (M : H).

We now refer to Lemma 2.2.8. This shows that (M : H) has a subset ∆ of size q2r(j−1) such thatM∆ is
2-transitive. Since M does not have a section isomorphic to Alt(q2r(j−1)) by Lemma 2.1.1, it follows that
∆ is a beautiful subset, and the conclusion holds by Lemma 1.6.1.

If m = 4, then we use the same argument with Lemma 2.2.11 in place of Lemma 2.2.8. Now suppose
that m = 3. Choose a hyperbolic basis, B0 = {e1, x, f1}, for a 3-dimensional Hermitian space V over
K# = Fq2r associated with a form ϕ. We will use the fact that the isometry group of ϕ contains an element

g :=





a
1

a−1



 ,

where a is an element of Fqr of order qr−1. Now we can takeM to contain a projective image of the special
isometry group of ϕ, and let S be the special isometry group of the form TrK#/K(ϕ) on V , considered as
an Fq-space.

Set E = spanK#
{e1}, F = spanK#

{f1} andX = spanK#
{x} and observe that 〈E,F 〉 is a non-degenerate

2r-dimensional Fq-subspace of V , while X is a non-degenerate r-dimensional Fq-subspace of V . Choose
a hyperbolic Fq-basis for 〈E,F 〉, B1 = {e1, . . . , er, f1, . . . , fr}, where e1, . . . , er ∈ E and f1, . . . , fr ∈ F .
Let B2 be a hyperbolic basis Fq-basis for X and assume that B2 contains elements er+1, fr+1 such that
(er+1, fr+1) is a hyperbolic pair. Observe that B = B1 ∪ B2 is a hyperbolic Fq-basis for V .

Define a group U in S whose elements fix all elements in B except e1, . . . , er and fr+1, and which satisfy

ei 7→ ei + cier+1 for 1 ≤ i ≤ r,
fr+1 7→ fr+1 − c1f1 − c2f2 − · · · − crfr (c1, . . . , cr ∈ Fq).

Now U is of order qr and 〈g〉 normalizes and acts fixed-point-freely on U . What is more, U is not in M
(since it contains non-trivial elements with a 1-eigenspace of dimension at least 2r + 1 over Fq). Thus, in
the usual way, we obtain ∆, a set of size qr whose stabilizer is 2-transitive. By Lemma 4.1.1, M does not
have a section isomorphic to Alt(qr) (recall that r ≥ 3 here), so ∆ is a beautiful set and Lemma 1.6.12
yields the result.

Suppose now that m = 2 and q > 2. Here we proceed in a similar fashion to Lemma 4.3.3. In this case
we start with B1 = {e, f}, a hyperbolic K#-basis for V with respect to a unitary form ϕ#. Let λ be an

element of K# such that B2 = {λ, λq, . . . , λqr−1} is a basis for K# over K. Then taking tensor products of
elements of B1 and B2 we obtain a K-basis for V . We write V1 for the K-span of B1 and V2 for the K-span
of B2.

Now we take S to preserve the form ϕ = TrK#/K(ϕ#), and M to preserve ϕ#, so that M is a subgroup
of G. What is more we observe that

ϕ(e⊗ λq
i
, e⊗ λq

j
) = 0,

ϕ(f ⊗ λq
i
, f ⊗ λq

j
) = 0,

ϕ(e⊗ λq
i
, f ⊗ λq

j
) = TrK#/K(λ

qi+qr+j
).

In particular this means that ϕ can be written as a product ϕ = ϕ1ϕ2, where ϕ(u1 ⊗ u2, v1 ⊗ v2) =
ϕ1(u1, v1)ϕ2(u2, v2); here u1, v1 ∈ V1, u2, v2 ∈ V2, ϕ1 = ϕ|V1 and ϕ2 is defined by setting ϕ2(λ

qi , λq
j
) =

TrK#/K(λ
qi+qr+j

) and extending linearly on V2.



98 CHAPTER 4. CLASSICAL GROUPS

With this set-up we see that the group M contains a subfield subgroup isomorphic to the projective
image of a group H = SU2(q)×r which preserves this tensor product structure (observe that the Frobenius
automorphism on V2 preserves the form ϕ2). Then H lies in a group of the form K = SU2(q) × SUr(q),
and it is clear that H is not self-normalizing in K.

Now we proceed as before: we obtain a suborbit of M whose action is isomorphic to the action of
an almost simple group with socle PSL2(q

r) on a maximal C5-subgroup containing PSL2(q); by [45], this
action is not binary, and now Lemma 1.6.2 implies that the action of M on (M : M ∩Mg) is not binary.
Then Lemma 1.6.1 implies that the action of G on (G :M) is not binary, as required.

Suppose next that m = 2 and q = 2. Then S = SU2r(2). If r = 3, then the result follows from
Lemma 4.1.1. Assume, then, that r > 3 and notice that S is simple. For convenience we shall work with
the group X = GU2r(2) = Z × S, where the centre Z has order 3, and replace M by ZM ; the centre Z
will act trivially on all the sets we consider in the rest of the proof.

We have NX(M ∩ X) = GU2(q0).r, where q0 = 2r, and this contains a maximal torus T of order
(q0 + 1)2. Then

NX(T ) ≥ T.(r × r) and T.(r × r) 6≤M,

while NM (T ) ≥ T.r. Hence there exists g ∈ NX(T ) \ M such that T.r ≤ M ∩ Mg. Note also that
N := NM (T )∩X = T.2r. Since NX(N) ≤M , it follows that N 6≤M ∩Mg, and hence M ∩Mg ∩X = T.r.

Let H be the subgroup GU2(q0) of M , so that H ∩M ∩Mg = T . We consider the action of H on
(H : T ); the kernel of this action is the centre Z0 of H, of order q0 + 1. Let V be a 2-space over Fq20 with

unitary form ( , ) preserved by H, and let v1, v2 be an orthonormal basis of V . Replacing T by a conjugate
if necessary, we may take T to be the stabilizer in H of 〈v1〉 (hence also of 〈v2〉). So the action of H on
(H : T ) is equivalent to the action on the set Λ = {〈v〉 : (v, v) = 1}.

Write α→ ᾱ for the involutory automorphism of Fq20 . The orbits of the point-stabilizer H〈v1〉 on Λ are

the singletons 〈v1〉, 〈v2〉 and the sets Λλ, for λλ̄ /∈ {0, 1}, where λ ∈ Fq20 and

Λλ = {〈w〉 ∈ Λ : (w,w) = 1, (v1, w) = λ}.

Note that ∆λ = ∆αλ if and only if αᾱ = 1, so there are precisely q0 − 2 suborbits Λλ, all of size q0 + 1. In
particular, Hab = Z0, for any distinct a, b ∈ Λ such that b 6= a⊥.

We claim that there exist scalars λ1, λ2, β ∈ Fq20 with the following properties:

(i) λ1λ̄1 6= λ2λ̄2 and λiλ̄i 6= 0, 1 for i = 1, 2,

(ii) ββ̄ = 1 + λ1λ̄1,

(iii) λ1λ̄2β̄ = 1.

To see this, first choose λ1 and β such that λ1λ̄1 6= 0, 1 and ββ̄ = 1 + λ1λ̄1. Define λ2 = β−1λ̄−1
1 . Then

setting y = λ1λ̄1, we have

λ2λ̄2 = (ββ̄)−1(λ1λ̄1)
−1 =

y−1

1 + y
=

1

y + y2
.

If this is equal to y, then y3 + y2 + 1 = 0; but there is no such y ∈ Fq0 = F2r , as r ≥ 5 by assumption.
Similarly, λ2λ̄2 is not equal to 1 or 0. Thus (i)-(iii) hold.

Now choose γ ∈ Fq20 \ Fq0 such that γγ̄ = 1 + λ2λ̄2, and define the following four points a, b, c, d ∈ Λ:

a = 〈v1〉,
b = 〈λ1v1 + βv2〉,
c = 〈λ2v1 + γv2〉,
d = 〈λ2v1 + γ̄v2〉.

We shall show that the triples (a, b, c) and (a, b, d) are 2-subtuble complete, but not 3-subtuple complete
under the action of H.
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Since c, d ∈ Λλ2 , we have (a, c) ∼ (a, d). Also (b, c) ∼ (b, d) if and only if

(λ1v1 + βv2, λ2v1 + γv2) = ν(λ1v1 + βv2, λ2v1 + γ̄v2),

for some ν ∈ Fq20 satisfying νν̄ = 1. This is equivalent to the equation

(λ1λ̄2 + βγ̄)(λ̄1λ2 + β̄γ) = (λ1λ̄2 + βγ)(λ̄1λ2 + β̄γ̄),

which boils down to λ1λ̄2b̄(γ + γ̄) = λ̄1λ2β(γ + γ̄). This holds, since λ1λ̄2β̄ = 1 by (iii).
Hence (a, b, c) and (a, b, d) are 2-subtuple complete. They are clearly not 3-subtuple complete under

the action of H, since Hab = Z0 which is the kernel of the action on Λ.
Thus the action of H on Λ is non-binary. The same is true when we add field automorphisms to get

the group M = H.r or H.(2r) acting on Λ: for any non-trivial field automorphism does not fix any of
the suborbits Λλ, and hence Mab = Hab = Z0, so (a, b, c) and (a, b, d) are not in the same orbit under the
action of M .

We have now established that the action of M on (M :M ∩Mg) is not binary. Hence the result follows
by Lemma 1.6.1.

Suppose finally that m = 1. Here we use the method of Lemma 4.3.4: first we write the group
F = M ∩ PSUn(q) as a semidirect product T ⋊ C, where T is cyclic of order qn+1

(q+1)(q+1,n) and C is

cyclic of order n, and acts fixed-point-freely on T . Proposition 2.4.1 implies that CPSUn(q)(c) > 〈c〉
unless (n, q) = (5, 2), but this case can be excluded since M is not maximal, see [10, Table 8.20]. Let
x ∈ CPSUn(q)(c) \ 〈c〉 and observe that the group F acts as a Frobenius group on the set (F : F ∩ F x).
Since n > 2, Lemma 1.7.2 implies that the action of M on (M :M ∩Mx) is not binary. Now Lemma 1.6.1
yields the result.

4.3.3 Case S = Spn(q)

Lemma 4.3.6. Suppose that G is almost simple with socle equal to PSpn(q) with n ≥ 4 and (n, q) 6= (4, 2),
and let M be a C3-subgroup. Then the action of G on (G :M) is not binary.

Proof. There are two cases to consider here, namely M ⊲ PSpm(q
r) with mr = n, and M ⊲ SUn/2(q)/Z (q

odd).
Consider the first case, where M is almost simple with socle PSpm(q

r) and m is even, r is prime and
n = mr. If m ≥ 4, then we let x be the element in Lemma 2.2.8 (applied to the group M rather than
G). Since x has a 1-eigenspace of dimension 2 over Fqr , it is easy to see that CG(x) \CM (x) is non-empty,
and so we take an element g in CG(x) \CM (x) and appeal to Lemma 2.2.8 to see that the action of M on
(M :M ∩Mg) is not binary. Then Lemma 1.6.1 yields the result.

Now suppose that m = 2 and r > 2 (we will deal with the case where m = r = 2 in the last paragraph
of the proof). Here M ∩ S/Z(S) is the projective image of M0

∼= Sp2(q
r).r, and we let H0

∼= SL2(q)× 〈σ〉
be a subfield subgroup of M0, where σ is a field automorphism of order r; this is maximal in M0 for q > 2,
see for instance [10, Table 8.1]. We claim that there exists g ∈ S \M0 normalizing H0. Once we have
shown this, then in a similar manner to the previous paragraph, we obtain a suborbit for which the action
is isomorphic to the action of an almost simple group with socle PSL2(q

r) on a maximal subfield subgroup;
then [45] yields the result for q > 2.

To see the existence of the element g we note that the subfield subgroup H0 preserves a tensor product
structure on V and so lies in a maximal subgroup Sp2(q) ◦ Ir(q), where Ir(q) is the isometry group of a
symmetric bilinear form having matrix Ir, the identity. We can choose g in Ir(q) of order r−1 normalizing
the subgroup 〈σ〉 of order r in Ir(q). The claim follows.

We also need to deal with the case where m = 2, r > 2 and q = 2. In this case an element g as above
exists, but this time the group M ∩Mg is not necessarily maximal in M . However, in this case M ∩Mg

contains Sp2(2) and has order not divisible by 4, so the conditions for applying Lemma 1.6.15 to the action
(M, (M :M ∩Mg)) are met with the prime 2, and the result follows.
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Now consider the second case, where M ⊲ SUn/2(q)/Z with q odd. For n ≥ 6, we proceed as in
Lemma 4.3.5, taking x to be the element given in Lemma 2.2.8 (for n/2 ≥ 5), in Lemma 2.2.11 (for n/2 = 4)
and in Lemma 2.2.10 (for n/2 = 3). Lemma 1.6.1 implies that, choosing (as we may) g ∈ CG(x) \M , the
action of M on (M : M ∩Mg) is not binary and thus the listed lemmas imply that M must contain a
section isomorphic to Sym(s) where

s =

{
q, if n/2 = 3 or 4;

q2⌊(n−6)/4⌋, if n/2 ≥ 5.

By Lemma 2.1.1, this implies that one of the following holds:

(i) q = 7, n/2 = 3 or 4,

(ii) q ≤ 5, n/2 = 3 or 4.

Using [10, Table 8.5], we see that Alt(7) is not a section of PSU3(7). Hence the socle of G is PSp6(q) (q ≤ 5)
or PSp8(q) (q ≤ 7). All of these groups apart from PSp8(q) (5 ≤ q ≤ 7) are covered by Lemma 4.1.1; and the
C3-actions of the remaining groups were shown to be not binary by a computation using the permutation
character method of Lemma 1.8.1.

We are left with the situation when S = Sp4(q) and r = 2. Here we need to consider both the case
whereM is almost simple with socle PSp2(q

2) (the situation we have postponed above) and the case where
q is odd and M contains a subgroup isomorphic to GU2(q).2. Lemma 4.1.1 and [46] imply that we can
assume that q ≥ 7.

For the case where M has socle PSp2(q
2), we choose a hyperbolic basis, B0 = {e1, f1}, for a 2-

dimensional space V over K# = Fq2 associated with an alternating form ϕ. We will use the fact that
the isometry group of ϕ contains an element

g :=

(
a

a−1

)

,

where a is an element of Fq2 of order (q, 2)(q − 1). Now we can take M to contain a projective image of
the special isometry group of ϕ, and let S be the special isometry group of the form TrK#/K(ϕ) on V ,
considered as an Fq-space.

Set E = spanK#
{e1}, F = spanK#

{f1}. Choose a hyperbolic Fq-basis for V , B = {e1, e2, f2, f1}, where
e1, e2 ∈ E and f1, f2 ∈ F .

Define a group U in S whose elements can be written with respect to B as







1
1 b

1
1






,

for some b ∈ Fq. Now U is of size q and 〈g〉 normalizes, and acts transitively on the set of non-trivial
elements of, U . What is more, U is not in M (since it contains non-trivial elements with a 1-eigenspace of
dimension 3 over Fq). We therefore obtain ∆, a set of size q whose stabilizer is 2-transitive. Note that M
does not contain a section isomorphic to Alt(q − 1) for q ≥ 7, thus ∆ is a beautiful set and Lemma 1.6.12
yields the result.

The other case is handled very similarly: here q is odd and M contains GU2(q). As before we start
with a hyperbolic basis B0 = {e1, f1}, but this time for a 2-dimensional space V over K# = Fq2 associated
with a unitary σ-form ϕ. We use the same element g, and we let S be the special isometry group of the
form TrK#/K(ζϕ) on V , considered as an Fq-space; here ζ is an element of K# that satisfies ζσ = −ζ. Now
the proof proceeds as before.
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4.3.4 Case S = Ωεn(q)

Lemma 4.3.7. Suppose that G is almost simple with socle equal to PΩεn(q) (n ≥ 7), and let M be a
maximal C3-subgroup. Then the action of G on (G :M) is not binary.

Proof. First assume that n is odd, so q is odd. In this case M is almost simple with socle Ωm(q
r) where

n = mr. For m ≥ 7, let x ∈ M be as in Lemma 2.2.9; then there exists g ∈ CG(x) \ CM (x), and the
lemma shows that the action of M on (M : M ∩ Mg) is not binary, giving the conclusion. If m = 5
we use the isomorphism Ω5(q

r) ∼= PSp4(q
r): the element x ∈ PSp4(q

r) defined in Lemma 2.2.8 acts as
diag(1, a, a, a−1, a−1) in Ω5(q

r), so again there exists g ∈ CG(x)\CM (x), and the action (M, (M :M∩Mg))
is not binary by the lemma. Finally, if m = 3, the element x ∈ PSL2(q

r) defined in Lemma 2.2.3 acts as
diag(1, a2, a−2) ∈ Ω3(q

r), and so again there exists g for which (M, (M :M ∩Mg)) is not binary.

Next assume that n is even and S = Ωεn(q), where ε ∈ {+,−}. We refer to [54, Tables 3.5.E and 3.5.F]
and split into three cases:

(1) m = n/r ≥ 4 is even and M is of type Oε
m(q

r);

(2) qm = qn/2 is odd, r = 2 and M is of type On/2(q
2);

(3) m = n/2 ≥ 4, r = 2 and M is of type SUm(q).

Case (1) Assume that m = n/r ≥ 4 is even and M is of type Oε
m(q

r). Observe that provided
(m, ε) 6= (4,+), M is almost simple with socle PΩεm(q

r).

Proceeding as before, using Lemma 2.2.9, the conclusion follows directly for m ≥ 8, except for M of
type Ω−

8 (9) in S = Ω−
16(3). Therefore, we look closer at this embedding. Choose Sylow 13-subgroups Q

of M and P of S such that Q < P . Then |Q| = 13, P ∼= 132. Observe that a Sylow 13-subgroup of
the C1-subgroup Ω−

8 (3) × Ω+
8 (3) has order 132; therefore, we may assume that P ≤ Ω−

8 (3) × Ω+
8 (3) and

P = P− × P+, where P− is a Sylow 13-subgroup of Ω−
8 (3) and P+ is a Sylow 13-subgroup of Ω+

8 (3). Thus

13 = |P−| = |P+|. Write P− = 〈g−〉 and P+ = 〈g+〉. Now, as Q ≤ P , we may write Q = 〈gi−gj+〉, for some
positive integers i and j. Replacing the original generators of P− and P+ if necessary, we may suppose
that i = j = 1: observe that neither i nor j cannot be 0, because a Sylow 13-subgroup of Ω−

8 (9) cannot fix
an 8-dimensional subspace of the underlying vector space for Ω−

16(3). It can be easily verified (for instance
with [28] or with magma) that g4+ and g+ are in the same Ω+

8 (3)-conjgacy class. Therefore, h := g−g
4
+ and

g := g−g+ are conjugate in Ω−
8 (3) × Ω+

8 (3) and so also in S. Moreover, P = 〈g, h〉. Now, gh = g2−g
5
+ and

〈gh〉 = 〈(gh)2〉 = 〈g4−g10+ 〉. Again, it is easy to verify that g− and g4− are in the same Ω−
8 (3)-conjugacy

class and g+ and g10+ are in the same Ω+
8 (3)-conjugacy class. Therefore, 〈h〉 and 〈gh〉 are conjugate in

Ω−
8 (3)×Ω+

8 (3) and so also in S. Summing up, P = 〈g, h〉, Q = 〈g〉 and 〈g〉, 〈h〉 and 〈gh〉 are S-conjugate.
Hence (G,Ω) is not binary in this case by Lemma 1.6.15.

Now consider m = 6. Here M has socle PΩε6(q
r) ∼= PSLε4(q

r), and we use the usual argument using the
elements given in Lemma 2.2.7 (for ε = +) and Lemma 2.2.11 for ε = −. These give the conclusion unless
ε = + and qr = 4. In the latter case, S = Ω+

12(2), which is covered by Lemma 4.1.1.

If m = 4 and M has socle PΩ−
4 (q

r) ∼= PSL2(q
2r), then we use Lemma 2.2.4. The element x given in

that lemma acts in Ω−
4 (q

r) as diag(b, b−1,−1,−1) for some b, so has a larger centralizer in G than in M ,
and so the result follows as usual, unless qr = 4, in which case S = Ω−

8 (2), which is covered by Lemma
4.1.1.

Suppose now that m = 4 and M has socle PΩ+
4 (q

r) ∼= PSL2(q
r) × PSL2(q

r). Thus S ∼= Ω+
4r(q). Note

that, if r = 2, then [10] implies that M is conjugate by a triality automorphism to a maximal subgroup of
the C2-class, hence we know already that the action in this case is not binary. Assume, from here on, that
r ≥ 3. First assume that q is odd. Here M ∩ S = PΩ+

4 (q
r).r ∼= (PSL2(q

r)× PSL2(q
r)).r (see [54, 4.3.14]).

Write M0 =M ∩S, and let H be a maximal subgroup Ω3(q
r).r of M0. Then H < Ω3r(q) < S, and CS(H)

contains a subgroup Ωr(q). Picking g ∈ CS(H) \M , we have Mg
0 ∩M0 = H, a maximal subgroup of M0.

The action of M0 on (M0 : H) is a primitive permutation action of diagonal type, and is not binary by
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[106, Proposition 4.1]. Hence the action of S on (S : M0) is also not binary. To prove the same assertion
for (G : M), let G1 = 〈Mg ∩M,S〉, and M1 = M ∩ G1. Then M

g ∩M is maximal in M1, and the action
of M1 on (M1 :M

g ∩M) is not binary, again by [106, Proposition 4.1]. Hence (M, (M :Mg ∩M)) is also
not binary, by Lemma 1.6.2, and so (G, (G :M)) is not binary by Lemma 1.6.1.

Next consider the case where q is even. Again let H = Ω3(q
r) ∼= PSL2(q

r) be a diagonal subgroup
of M0 = soc(M) ∼= PSL2(q

r) × PSL2(q
r), and let T be a cyclic torus of order qr − 1 in H. Then T

lies in a subgroup Ω+
2 (q

r) of H, so is centralized by a subgroup Ω+
2r(q) of S. Pick g ∈ CS(T ) \ M , so

that T < Mg 6= M . As T centralizes a 2r-subspace of V = V4r(q), it must act on the natural module
V4(q

r) for Mg with eigenvalues (λ, λ−1, 1, 1) for some λ ∈ GF (qr), and so T lies in qr − 1 nonsingular
point-stabilizers Ω3(q

r) in Mg. These generate Mg, so not all of them can lie in M . Hence there exists
a subgroup H1 = Ω3(q

r) of Mg such that T < H1 6≤ M . Hence there is a Frobenius group UT < H1 of
order qr(qr − 1) with U 6≤M , and so in the usual way we obtain a subset ∆ of Ω = (G :M) such that G∆

contains the 2-transitive group AGL1(q
r). Then ∆ is a beautiful subset, unless possibly Alt(qr − 1) is a

section of M . Lemma 2.1.1 implies that qr− 1 ≤ 6 and, since r > 2, we obtain a contradiction as required.

Case (2) Next assume that r = 2 and qm = qn/2 is odd, and thatM has socle Ωn/2(q
2). Ifm ≥ 7, then

we proceed as before using Lemma 2.2.9: the result follows except for the embedding Ω7(9) in PΩε14(3).
For this embedding we observe that |G :M | is even and M is almost simple. Let P be a Sylow 2-subgroup
of M , let Q be a Sylow 2-subgroup of G that contains P , and let x be an element in G\M that normalizes
P . Then |M : M ∩Mx| is odd and M ∩Mx is core-free. Now Lemma 2.3.1 implies that the action of M
on (M : M ∩Mx) is not binary, and Lemma 1.6.1 yields the result. If m = 5, then we use the fact that
Ω5(q

2) ∼= Sp4(q
2) and the result follows using the same method replacing Lemma 2.2.9 with Lemma 2.2.8.

Case (3) Finally assume that r = 2 and m = n/2 ≥ 4, and that M contains a normal subgroup that
is a quotient of SUm(q). Note that when n = 8, [54] implies that ε = + while [10] implies that these
C3-subgroups of PΩ+

8 (q) are conjugate, via a triality automorphism, to C1-subgroups, hence are already
dealt with in [46]. Assume, then, that n ≥ 10.

We proceed as before: let x ∈ M be the element given in Lemma 2.2.8. As this has a non-trivial
1-eigenspace, there exists g ∈ CG(x) \ CM (x), and so in the action of M on (M : M ∩Mg), the stabilizer
is a subgroup of M containing x but not containing a homomorphic image of SUm(q). If the action of
G on (G : M) is binary, then Lemma 1.6.1 implies that the action of M on (M : M ∩ Mg) is binary
and Lemma 2.2.8 implies that M contains a section isomorphic to Sym(s) where s = q2(⌊(m−3)/2⌋) . Then
Lemma 2.1.1 implies that (m, q) = (5, 2) or (6, 2). In the former case S = Ω−

10(2), while in the latter case
S = Ω+

12(2); both are covered by Lemma 4.1.1. Thus in all cases the action of M on (M : M ∩Mg) is
non-binary, and hence the same is true of the action of G on (G :M), completing the proof.

4.4 Family C4
In this section, the subgroup M preserves a tensor product. We start with two K-vector spaces, W1 and
W2, of dimension n1 and n2, respectively, and satisfying n = n1n2. Roughly speaking, we identify V with
the tensor product W1 ⊗W2, and M is the subgroup of G that preserves this identification. The list of
subgroups is given in Table 4.4.1; the details of their precise structure and embeddings can be found in
[54, §4.4].

As in the C3-case we give a geometrical interpretation to the set of cosets of M (which is the set on
which we are acting); this will involve defining a tensor product structure on V . Let us start with the case
where S = SLn(q).

We begin with a K-linear isomorphism φ : W1 ⊗W2 → V . Let Σ be the set of all such isomorphisms,
and we observe that two groups act naturally on Σ:

1. GL(W1) ◦GL(W2) acts on Σ via φg(w1 ⊗w2) = φ(w1
g−1 ⊗w2

g−1
) (and extended linearly);

2. GLn(K) acts on Σ via φh(w1 ⊗w2) = (φ(w1 ⊗w2))
h (and extended linearly).
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case type conditions

Lǫ GLǫn1
(q)⊗GLǫn2

(q) n1 < n2
S Spn1

(q)⊗Oǫ
n2
(q) n2 ≥ 3, q odd

O+ Spn1
(q)⊗ Spn2

(q) n1 < n2
O Oǫ1

n1
(q)⊗Oǫ2

n2
(q) ni ≥ 3, q odd

Table 4.4.1: Maximal subgroups in family C4

As in the C3-case, these two actions commute. Thus we define a tensor product structure on V to be an
orbit of the group GL(W1) ◦ GL(W2) on Σ, and (using commutativity of the actions) we observe that
GLn(K) acts on the set of all tensor product structures on V . What is more the stabilizer of this action is
the subgroup M , hence we have the geometrical interpretation that we require.

Again, just as before, we can replace the word “linear” with the word “semilinear” in the previous
paragraph to extend this geometrical interpretation to subgroups of ΓLn(K).

For the remaining classical groups, we need to clarify what is meant by a tensor product structure on a
vector space equipped with a form. So let us assume that our two vector spaces, W1 and W2 are equipped
with forms 〈, 〉1 and 〈, 〉2, respectively. Now we define

〈·, ·〉 : (W1 ⊗W2)× (W1 ⊗W2) → K,



∑

i

vi1 ⊗ vi2,
∑

j

wj1 ⊗ wj2



 7→
∑

i,j

〈vi1, wj1〉1〈vi2, wj2〉2,

where vi1, w
j
1 ∈W1 and v

i
2, w

j
2 ∈W2 for all i and j. One can check that 〈, 〉 is a well-defined form onW1⊗W2.

Now our map φ :W1⊗W2 → V carries this form onto the vector space V , and we obtain a map to a formed
space. Following the same approach as above, we see that there are actions of Isom(〈, 〉1) ◦ Isom(〈, 〉2) and
of Isom(〈, 〉) acting on the set of all such maps; this yields a definition of a tensor product structure on a
formed space, and provides an embedding of Isom(〈, 〉1)◦Isom(〈, 〉2) in the group Isom(〈, 〉), as the stabilizer
of such a tensor product structure. Moreover, in the case where the characteristic p = 2 and both 〈, 〉1 and
〈, 〉2 are symplectic, the group Isom(〈, 〉1) ◦ Isom(〈, 〉2) also preserves a quadratic form on W1 ⊗W2 with
associated bilinear form 〈 , 〉, yielding an embedding into O+(V ). Thus we obtain all the embeddings listed
in Table 4.4.1.

In the formed space case, it is useful to observe that if we start with hyperbolic bases e1, . . . , f1, . . . for
W1 and u1, . . . , v1, . . . for W2, then, by taking pure tensors, we obtain a hyperbolic basis for W1 ⊗W2; the
hyperbolic pairs are

(ei ⊗ uj , fi ⊗ vj) and (ei ⊗ vj, fi ⊗ uj).

Similarly, if W1 contains a vector x such that 〈x, x〉1 = 1, then (x ⊗ ui, x ⊗ vi) is a hyperbolic pair in
W1⊗W2; and also if W2,0 is a non-degenerate subspace of W2, then x⊗W2,0 is a non-degenerate subspace
of the tensor product.

The main result of this section is the following. The result will be proved in a series of lemmas.

Proposition 4.4.1. Suppose that G is an almost simple group with socle S̄ = Cln(q), and assume that

(i) n ≥ 3, 4, 4, 7 in cases L,U, S,O respectively, and

(ii) Cln(q) is not one of the groups listed in Lemma 4.1.1.

Let M be a maximal subgroup of G in the family C4. Then the action of G on (G :M) is not binary.
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Group Details of action

SL6(q) q ∈ {3, 4, 5}, n1 = 2, n2 = 3: M ⊲ PSL2(q)× PSL3(q).
SL12(2) n1 = 3, n2 = 4: M ⊲ PSL3(2) × PSL4(2).

Table 4.4.2: C4 – SLn(q) – Cases where a beautiful subset was not found.

4.4.1 Case S = SLn(q)

Lemma 4.4.2. In this case either Ω contains a beautiful subset or else S is listed in Table 4.4.2.

Proof. In this case M contains a normal subgroup isomorphic to SLn1(q) ◦ SLn2(q) where n = n1n2 and
we may assume that 2 ≤ n1 < n2.

Let B1 = {u1, . . . , un1} be a basis for W1, B2 = {w1, . . . , wn2} a basis for W2. Now B = {ui ⊗ wj :
all i, j} is a basis for W1⊗W2, which is mapped to V via a map φ contained in a tensor product structure
P, which is stabilized by M .

Assume that q ≥ 7. Let T1 (resp. T2) be the maximal split torus in GL(W1) (resp. GL(W2)) that is
diagonal with respect to B1 (resp. B2). Let T be the intersection of the tensor product of T1 and T2 with
the group S.

Now we let U be the subgroup whose elements fix all elements of B except u1 ⊗ w1, where we require

u1 ⊗ w1 7→ u1 ⊗ w1 + αu1 ⊗ w2,

for some α ∈ Fq. Note that U 6≤M (consider, for instance, the 1-eigenspace of non-trivial elements of U),
and that n2 is necessarily greater than or equal to 3. Hence the group H = U ⋊ T acts 2-transitively on
the set Λ = PU := {Pu : u ∈ U}, and |Λ| = q.

Let G1
∼= GLn1−1(q) be the subgroup of GL(W1) fixing u1 and 〈u2, . . . , un1〉; and let G2

∼= GLn2−2(q)
be the subgroup of GL(W2) fixing w1, w2 and 〈w3, . . . , wn2〉. ThenM(Λ), the pointwise stabilizer of Λ inM ,
contains (G1 ⊗G2) ∩ S (since this subgroup commutes with U). It follows that any (non-abelian) simple
section of MΛ =MΛ/M(Λ) is isomorphic to a section of GL2(q). By Lemma 2.1.1, for q ≥ 7 this precludes

the possibility that MΛ ≥ Alt(q−1), and we obtain that Λ is a beautiful subset; now Lemma 1.6.12 allows
us to conclude that there are no such binary actions.

For q ∈ {3, 4, 5} we exclude the case (n1, n2) = (2, 3) (since this appears on the table), and so we
assume that n2 ≥ 4. Now we proceed as before, this time taking U to be the subgroup whose elements fix
all elements of B except u1 ⊗ w1 and

u1 ⊗ w1 7→ u1 ⊗ w1 + αu1 ⊗ w2 + βu1 ⊗ w3,

for some α, β ∈ Fq. Now we take T2 to be a maximal torus of GL(W2) that preserves the decomposition

〈w1〉 ⊕ 〈w2, w3〉 ⊕ 〈w4〉 ⊕ · · ·

and induces a Singer cycle on the subspace 〈w2, w3〉. Defining T as before, we obtain a beautiful set of size
q2 unless Alt(q2 − 1) is isomorphic to a section of GL3(q). By Lemma 2.1.1, Alt(q2 − 1) is not isomorphic
to a section of GL3(q) and hence the result follows.

For q = 2, [54, Table 3.5.A] allows us to assume that n1 > 2. Now we exclude the case (n1, n2) = (3, 4)
(this is in Table 4.4.2), and we conclude that n2 ≥ 5. The argument proceeds as before, taking U to be
the subgroup whose elements fix all elements of B except u1 ⊗ w1 and

u1 ⊗ w1 7→ u1 ⊗ w1 + αu1 ⊗ w2 + βu1 ⊗ w3 + γu1 ⊗ w4 + δu2 ⊗ w5

for some α, β, γ, δ ∈ Fq. We obtain a beautiful set of order 16 unless Alt(15) is a isomorphic to a section
of GL4(2). Again, by Lemma 2.1.1, Alt(15) is not isomorphic to a section of GL4(2) and hence the result
follows.
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Group Details of action

SU6(q), SU8(q) q ∈ {3, 4, 5}, n1 = 2: M ⊲ PSU2(q)× PSUn2(q).
SU12(q), q ∈ {3, 4, 5}, n1 = 3: M ⊲ PSU3(q)× PSU4(q).
SUn(2) 3 ≤ n1 < n2 ≤ 5: M ⊲ PSUn1(2) × PSUn2(2).

Table 4.4.3: C4 – SUn(q) – Cases where a beautiful subset was not found.

4.4.2 Case S = SUn(q)

Lemma 4.4.3. In this case either Ω contains a beautiful subset or else S is listed in Table 4.4.3.

Proof. In this case M contains a normal subgroup isomorphic to SUn1(q) ◦ SUn2(q) where n = n1n2 and
we may assume that 2 ≤ n1 < n2.

Assume first that q ≥ 7. Our method here exploits the existence of a Frobenius group inside SU3(q),
as follows: let W2,0 = 〈u1, x, v1〉 be a non-degenerate 3-dimensional subspace of W2 and observe that we
have two subgroups of SU3(q) consisting of elements of the form

U =











1 b c
1 −bq

1



 | b, c ∈ K with bq+1 + c+ cq = 0






; (4.4.1)

T =











r
rq−1

r−q



 | r ∈ K×






. (4.4.2)

Then U ⋊ T is a Borel subgroup of SU3(q).

Now, first, assume that q is odd. Take U0 to be the subgroup of U obtained by requiring that b ∈ Fq
and that c = −1

2b
2; take y ∈ W1 such that 〈y, y〉1 = 1. We now define an isomorphic group in S: let U1

consist of those elements for which there exists b ∈ Fq such that

y ⊗ u1 7→ y ⊗ u1 + by ⊗ x− 1

2
b2y ⊗ v1,

y ⊗ x 7→ y ⊗ x− by ⊗ v1,

y ⊗ v1 7→ y ⊗ v1,

and all elements of 〈y⊗u1, y⊗x, y⊗ v1〉⊥ are fixed. Then U1 is a subgroup of order q that is not contained
in M .

Similarly, think of T as a subgroup of SU(W2) by requiring that it fixes all elements in W⊥
2,0, and take

T0 to be the subgroup of T obtained by requiring that r ∈ Fq; let T1 be the subgroup in S obtained by
tensoring elements of T0 with 1 ∈ SU(W1). Then T1 is a group of order q − 1 that normalizes U1 and acts
transitively on the set of non-trivial elements in U1.

In the case when q is even, we do similarly; this time U0 is the subgroup of U obtained by setting b = 0
and letting c range through Fq, while T0 = T . Again, T0 acts transitively upon the non-trivial elements of
U0; the same is therefore true of U1.

In both cases in the usual way, we set Λ to be PU1 , where P is the tensor product structure stabilized
by M , and we see that SΛ acts 2-transitively upon Λ, with Λ a set of size q.

We wish to show that this set is beautiful. As before, we see that M(Λ) contains S ∩ (GUn1−1(q) ◦
GUn2−3(q)), where the first factor fixes y and the second fixes u1, x, v1. Hence we see that any non-abelian
simple section of MΛ is isomorphic to a section of GU3(q). Since q ≥ 7, by Lemma 2.1.1 this precludes
the possibility that MΛ ≥ Alt(q − 1), and hence Λ is a beautiful subset; now Lemma 1.6.12 allows us to
conclude that there are no such binary actions.
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For q ∈ {3, 4, 5} we assume that n2 ≥ 5 (the first two lines of Table 4.4.3 cover n2 ≤ 4). We proceed as
for q ≥ 7 but we use the existence of a Frobenius group in SU5(q) this time. We letW2,0 := 〈u1, u2, x, v2, v1〉
be a non-degenerate 5-subspace of W2, and consider the group:

U ⋊ T =

〈









1 a
1

1
1 −aq

1









,









r
1

rq−1

1
r−q









| a, r ∈ K, r 6= 0

〉

.

Now we define U1, the subgroup for which there exists a ∈ K such that

y ⊗ u1 7→ y ⊗ u1 + ay ⊗ u2,

y ⊗ v2 7→ y ⊗ v2 − aqy ⊗ v1,

and which fixes y⊗ u1, y⊗ v1, and the orthogonal complement of 〈y⊗u1, y⊗u2, y⊗ v1, y⊗ v2〉. Note that
this group is not contained in M , so we define Λ = PU1 as before, this time a set of size q2.

We take T1 to be the group obtained by tensoring elements of T0 with 1 ∈ SU(W1). Then T1 is a group
of order q2− 1 that normalizes U1 and acts transitively on U1 \ {1}, and as usual we conclude that SΛ acts
2-transitively on Λ.

Arguing as above we see that that any simple section of MΛ must appear as a section of GU5(q) and
so Λ is beautiful provided Alt(q2 − 1) is not a section of GU5(q) – this is true for q ≥ 3 by Lemma 2.1.1.

Finally for q = 2, we do as in the previous case, but we use the existence of a 2-transitive group in
SU6(q) this time. We require that n2 ≥ 6 and we let W2,0 = 〈u1, u2, u3, v1, v2, v3〉 be a non-degenerate
6-subspace of W2. Now consider the group

U ⋊ L =

〈











1 a b
1

1
1

−aq 1
−bq 1











,







1
A

1
Ā−T







| a, b ∈ K, A ∈ SL2(K)

〉

,

where we write Ā to denote the matrix obtained from A by raising each entry to the q-th power. Proceeding
as before we obtain a beautiful set provided Alt(24 − 1) does not appear as a section of GU6(2) – it does
not, so we are done.

4.4.3 Case where S is symplectic or orthogonal

In all of the remaining cases the formed spaces W1 and W2 are either symplectic or orthogonal. These
are the embeddings in the last three lines of Table 4.4.1. Our strategy is similar to the one already used,
namely:

1. We identify a subspace W2,0 in W2, and we identify a group U ⋊ T in Isom(W2,0) for which T acts
transitively on the non-identity elements of U .

2. If W1 is orthogonal, we choose a non-degenerate 1-space X = 〈x〉 ⊆W1, and identify a subgroup U1

of Isom(V ) whose action on X ⊗W2,0 is isomorphic to the action of U on W2,0, and which fixes the
vectors in (X ⊗W2,0)

⊥. In particular, since dim(W1) > 1, this means that U1 is not a subgroup of
M . If W1 is symplectic, we do soemthing similar, working with a non-degenerate 2-space X ⊆W1.

3. We define T1 to be 1⊗ T , and observe that T1 normalizes U1, and lies in M . This then allows us to
define Λ = PU1 , where P is the tensor product structure stabilized by M , and we observe that SΛ is
2-transitive.
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Group Details of action

Spn(q) q ∈ {3, 5, 7}, n1 ∈ {2, 4}, n2 ∈ {3, 4}: M ⊲ PSpn1
(q)× PΩεn2

(q).

Table 4.4.4: C4 – Spn(q) – Cases where a beautiful subset was not found.

Group Details of action

Ω15(q) q ∈ {5, 7}, M ⊲Ω3(q)× Ω5(q)

Table 4.4.5: C4 – Ωn(q) – Cases where a beautiful subset was not found.

4. We then identify MΛ and use this to define a monomorphism from MΛ into a small rank classical
group, H. The proof is complete, by Lemma 1.6.12, providedM does not contain a section isomorphic
to Alt(|Λ| − 1) .

We start by considering the possibilities forW2,0 for q not too small. First, suppose thatW2 is symplectic
and contains a subspaceW2,0 := 〈u1, u2, v2, v1〉, where 〈ui, vi〉 are mutually perpendicular hyperbolic pairs.
Then with respect to this basis we define

U ⋊ T :=

〈







1 a
1

1 −a
1






,







r
1

1
r−1







| a, r ∈ Fq, r 6= 0

〉

.

Observe that U ⋊ T < Sp(W2), where we take this subgroup to fix W⊥
2,0 pointwise.

Suppose next that W2 is orthogonal, in which case q is odd. In some cases we need U ⋊ T to lie in
Ω(W2), and in such cases we will assume that W2 has a non-degenerate subspace W2,0 with standard basis
u1, u2, x, v2, v1. With respect to this basis we define

U ⋊ T :=

〈









1 a −1
2a

2

1
1 −a

1
1









,









r
s

1
s−1

r−1









| a, r, s ∈ Fq, r, s 6= 0, rs a square in Fq

〉

.

Note that U ⋊ T < Ω(W2) by [12, Lemmas 2.5.7 and 2.5.9].

If we only need U ⋊T to lie in the special isometry group SO(W2), then we take W2,0 = 〈u1, x, v1〉, and
with respect to this basis we define

U ⋊ T :=

〈



1 a −1
2a

2

1 −a
1



 ,





r
1

r−1



 | a, r ∈ Fq, r 6= 0

〉

.

Observe that U ⋊ T < SO(W2).

Lemma 4.4.4. In this case, if q ≥ 8, then Ω contains a beautiful subset.

Proof. Suppose that (relabelling W1 and W2 if necessary) W2 satisfies one of the following possibilities:

1. W2 is symplectic of dimension at least 4;

2. W2 is orthogonal of dimension at least 5;
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Group Details of action

Ω+
24(2), Ω

+
32(2), Ω

+
48(2) 4 ≤ n1 < n2 ≤ 8: M ⊲ PSpn1

(2) × PSpn2
(2).

Ω+
16(q) q ∈ {3, 5, 7}, n1 = n2 = 4: M ⊲ PΩ−

4 (q)× PΩ+
4 (q).

Ω+
12(q) q ∈ {5, 7}, M ⊲ PΩ3(q)× PΩ+

4 (q)
Ω+
18(q) q ∈ {5, 7}, M ⊲ Ω3(q)× PΩ+

6 (q)

Table 4.4.6: C4 – Ω+
n (q) – Cases where a beautiful subset was not found.

Group Details of action

Ω−
12(q) q ∈ {5, 7}, M ⊲ Ω3(q)× PΩ−

4 (q)
Ω−
18(q) q ∈ {5, 7}, M ⊲ Ω3(q) ◦ PΩ−

6 (q)

Table 4.4.7: C4 – Ω−
n (q) – Cases where a beautiful subset was not found.

3. W2 is orthogonal of dimension 3 or 4, and there exists X ≤ Isom(W1) such that X⊗SO(W2) embeds
in S.

In each of these cases we take W2,0 to be the space described above, and U ⋊ T as defined above.
Suppose, first, that W1 is not symplectic. Then [54, §4.4] confirms that q is odd, and we take x to be

a non-isotropic element of W1. Then we proceed as detailed above: so U1 is a subgroup of S whose action
on x ⊗W2,0 is isomorphic to the action of U on W2,0, and T1 is the group 1 ⊗ T . Setting Λ = PU1 , we
observe that Λ is a set of size q such that SΛ is 2-transitive.

Now let Y2 be the subgroup of Isom(W2) that fixes point-wise the elements of W2,0, and let Y1 be the
subgroup of Isom(W1) that fixes the element x. Then M(Λ) contains S ∩ (Y1 ⊗ Y2); hence any non-abelian

simple section of MΛ is isomorphic to a section of Isom(W2,0). Now W2,0 is either symplectic of dimension
4, or orthogonal of dimension 3 or 5. By Lemma 2.1.1, for q ≥ 9, Isom(W2,0) does not have a section
Alt(q − 1). Thus Λ is a beautiful subset, and the action is not binary by Lemma 1.6.12.

This argument yields the result except when one of the following holds:

(a) both W1 and W2 are symplectic;

(b) both W1 and W2 are orthogonal, and cannot be labeled so that W2 satisfies the restrictions stated
at the start;

(c) labelling appropriately, W1 is symplectic, and W2 is orthogonal and does not satisfy the restrictions
stated at the start.

We see that situation (b) occurs only if ni = dim(Wi) ≤ 4 for i = 1, 2; however [54, 4.4.13] implies that
1 ⊗ SO(W2) < S for n2 = 3 or 4, so in fact case 3 above pertains and we are done. Situation (c) is
similarly ruled out, except when W1 is symplectic of dimension 2. Suppose, then, that we are in this
case: W1 is symplectic of dimension 2, and W2 is orthogonal. Again, q is odd here, S is symplectic, and
[54, Lemma 4.4.11] implies that 1 ⊗ O(W2) embeds in S. We write W1 = 〈e1, f1〉, and we take W2,0 to
be the 3-dimensional subspace of W2 described before the statement of the lemma. Then W1 ⊗W2,0 is a
6-dimensional non-degenerate symplectic space with a hyperbolic basis given as follows (we omit the tensor
sign for clarity, and we list hyperbolic pairs together, starting with the first two):

{e1u1, f1v1, e1v1, f1u1, e1x, f1x}.

Now if we consider the group T1 = 1⊗ T with respect to this basis, we see that it is diagonal with entries

[r, r−1, r−1, r, 1, 1].
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On the other hand, we can take U0 to be the set of elements given with respect to this basis by

















1 a
1

1
1

1
−a 1











| a ∈ Fq







,

and we take U1 to be the subgroup of S which acts like U0 on W1 ⊗W0,2, and fixes the elements in its
orthogonal complement. Then U1 is not a subgroup of M , and is normalized by T1, and so we obtain a
set Λ = PU1 of size q for which SΛ is 2-transitive. Arguing as before, we find that a simple section of
MΛ is isomorphic to a section of either Isom(W2,0) or Isom(W1). We obtain, therefore, a beautiful subset,
provided Alt(q − 1) is not a section of O3(q) or Sp2(q). This is true for q ≥ 7, and we are done.

Finally, we suppose that situation (a) holds. Here bothW1 andW2 are symplectic, S = Ω+
n (q) and, since

n ≥ 8, we can assume without loss of generality that dim(W2) ≥ 4. In this case, we setW2,0 = 〈u1, u2, v2, v1〉
as detailed above, and we consider the basis of 〈e1, f1〉 ⊗W2,0 given by

{−f1u1, e1v1, −f1u2, e1v2, f1v1, e1u1, f1v2, e1u2}.

Again T1 = 1⊗ T is given by the diagonal matrix with entries

[r, r−1, 1, 1, r−1, r, 1, 1].

On the other hand, we can take U0 to be the set of elements given with respect to the subspace, Y , spanned
by the first four of these elements













1 a
1

1
−a 1







| a ∈ Fq







,

and we take U1 to be the subgroup of S which acts like U0 on Y , and fixes the elements in its orthogonal
complement. Then U1 < SO+

n (q).

Now U1 is not a subgroup of M , is normalized by T1, and so we obtain a set Λ = PU1 of size q for
which SΛ is 2-transitive. Arguing as before, we find that a simple section of MΛ is isomorphic to a section
of either Isom(W2,0) or Isom(〈e1, f1〉). We obtain, therefore, a beautiful subset, provided Alt(q − 1) is not
a section of Sp4(q). This is true for q ≥ 8, and we are done.

Lemma 4.4.5. In this case, if q ≤ 7, then Ω contains a beautiful subset or else S is listed in Ta-
bles 4.4.4, 4.4.5, 4.4.6 or 4.4.7.

Proof. Let us suppose first that W1 and W2 are symplectic, and so S = Ω+
n (q); then [54, Table 4.4.A]

implies that we can assume that n2 > n1.

Suppose, first, that n2 = 4; then n1 = 2 and n = 8. Now [10, Table 8.50] confirms that no C4-maximal
subgroups exist when q is even. What is more, when q is odd, all C4-subgroups are conjugate, via a
triality automorphism, to certain maximal C1-subgroups; then [46, Proposition 4.6] asserts that Ω contains
a beautiful subset.

Suppose from here on that n2 ≥ 6. If q > 2, then the procedure is virtually identical to that in the
previous lemma, but this time we build a beautiful set of size q2. To do this we start with a 6-dimensional
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subspace of W2: define W2,0 = 〈u1, u2, u3, v1, v2, v3〉. Then with respect to this basis we define

U ⋊ T :=

〈











1 a1 a2
1

1
1

−a1 1
−a2 1











,







1
A

1
A−T







| a1, a2 ∈ Fq, A ∈ GL2(q)

〉

. (4.4.3)

Observe that U ⋊ T < Sp(W2). We set T1 = 1⊗ T , and we set U1 to be the set of elements given by the
same matrices as U above, but with respect to the basis

{e1u1, e1u2, e1u3, f1v1, f1v2, f1v3},

and fixing the elements in the orthogonal complement. As before we obtain a beautiful subset of size q2,
provided Alt(q2 − 1) is not a section of Sp6(q). This is true for q ≥ 3.

Now assume that q = 2, in which case [54, Table 3.5.E] implies that n1 > 2. We proceed as in the
previous paragraph, but this time, we assume that n2 ≥ 10, and we take T to be a group isomorphic to
GL4(q). We obtain a beautiful subset of size q4 = 16, provided Alt(q4 − 1) = Alt(15) is not a section of
Sp10(2); it is not (by Lemma 2.1.1), so the result follows. The exceptions occur when 4 ≤ n1 < n2 ≤ 8,
and are listed in Table 4.4.6. This completes the case where both W1 and W2 are symplectic.

Suppose now that W1 is orthogonal. Then q is odd, so q ∈ {3, 5, 7}.
First, assume that W2 is symplectic of dimension at least 6. As W1 is orthogonal, it contains a non-

isotropic vector x. We define U ⋊ T exactly as for (4.4.3). We let T1 := 1⊗ T , and we set U1 to be the set
of elements given by the same matrices as U above, but with respect to the basis

{xu1, xu2, xu3, xv1, xv2, xv3},

and fixing the elements in the orthogonal complement. As before we obtain a beautiful subset of size q2,
provided Alt(q2 − 1) is not a section of Sp6(q) (which is true, by Lemma 2.1.1, since q ≥ 3).

Now assume that W2 is symplectic of dimension 2 or 4, and also that dimW1 ≥ 5. To keep notation
consistent, relabel W2 as W1 and vice versa. Then W2 is orthogonal of dimension at least 5, and we define
W2,0 = 〈u1, u2, x, v1, v2〉. Then with respect to this basis we define

U ⋊ T :=

〈









1 a1 −1
2a

2
1

1 a2 −1
2a

2
2

1 −a1 −a2
1

1









,





A
1

A−T



 | a1, a2 ∈ Fq, A ∈ GL2(q)

〉

. (4.4.4)

As usual we set T1 = 1 ⊗ T . To define U1 we let e1, f1 be a hyperbolic pair in W1, and we consider the
space

W ′
2,0 = 〈e1u1, e1u2, e1x, f1x, f1v1, f1v2〉,

which we observe is a non-degenerate symplectic 6-space. We define U1 to act as 1 ⊗ U on W ′
2,0, and to

fix W ′⊥
2,0. Now, proceeding as above we obtain a beautiful subset of size q2, provided Alt(q2 − 1) is not a

section of O5(q) (which is true, by Lemma 2.1.1, since q ≥ 3).

The previous two paragraphs cover all cases where S = Spn(q), since Table 4.4.4 contains the remaining
cases with n1, n2 ≤ 4.

Finally, suppose that W1 and W2 are both orthogonal. Recall that q ∈ {3, 5, 7}.
Assume n1 and n2 are both even. Then [54, 4.4.2, 4.4.13] implies that S = Ω+

n (q), and that 1⊗SO(W2)
and SO(W1)⊗ 1 both embed into S. We suppose now that n2 ≥ n1 with n2 ≥ 6. Then we define W2,0, U
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and T via (4.4.4). We set T1 = 1⊗ T , and we set U1 to be the set of elements given by the same matrices
as U above, but with respect to the basis

{yu1, yu2, yx, yv1, yv2}

(where y is an anisotropic element of W1), and fixing the elements in the orthogonal complement. As
before we obtain a beautiful subset of size q2, provided Alt(q2 − 1) is not a section of SO5(q). This is true,
by Lemma 2.1.1, for q ≥ 3. This leaves the case where n1 = n2 = 4, which is in Table 4.4.6.

Notice that the same argument works if n1 is even and n2 is odd with n2 ≥ 5 (again using the fact,
given in [54, 4.4.13], that 1⊗ SO(W2) embeds into S). Again we obtain a beautiful subset since q ≥ 3.

We are left with the possibility that both n1 and n2 are odd (in which case we may assume that
3 ≤ n1 < n2), or (relabelling if necessary), that n1 = 3 and n2 is even. In this case we assume now
that n2 ≥ 7. Now the argument of the previous paragraph works except that we cannot assume that
1 ⊗ SO(W2) ≤ S; this means that we must adjust the definition of W2,0 to ensure that T ≤ Ω(W2). To
do this we define W2,0 = 〈u1, u2, u3, x, v1, v2, v3〉; we take U to be identical to that given in (4.4.4), except
that we prescribe that the 7× 7-matrices of U fix u3 and v3; then we define

T =















A
s

1
A−T

s−1









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s ∈ F∗
q, A ∈ GL2(q) and s.det(A) is a square







.

Now the argument proceeds as before.
The cases not yet covered have n1 = 3, n2 = 4, 5, 6, and are listed in Tables 4.4.6 and 4.4.7. Note that

[54, Tables 3.5.D, 3.5.E and 3.5.F] imply that if n1 = 3, then we can exclude q = 3.

4.4.4 The remaining cases

The remaining cases are dealt with by the following result.

Lemma 4.4.6. If the action is listed in Tables 4.4.2, 4.4.3, 4.4.4, 4.4.5, 4.4.6 or 4.4.7, then it is not binary.

Proof. The socle of M is a direct product, as given by the tables. Our method for most cases is as follows:
suppose that the action of G on (G : M) is binary. In every case we can see that |G : M | is even. Thus,
given a Sylow 2-subgroup P of M , there exists an element x of order a power of 2 in G\M that normalizes
P . Then |M :M ∩Mx| is odd and M ∩Mx is core-free in M . Now a magma computation shows that every
faithful transitive action of odd degree of a group M , with socle as given in one of the tables, is not binary.
Hence (M, (M :M ∩Mx)) is not binary, and the conclusion follows by Lemma 1.6.1.

In a couple of cases where the magma computation required too much time we have, instead, found a
suitable group H < M with the property that NG(H) is not contained in M . This guarantees that there
is a suborbit of M for which the stabilizer contains H. Now we use magma to show that the action of M
on such a suborbit is not binary, and the result follows, again, by Lemma 1.6.1.

4.5 Family C5
In this case M is a “subfield subgroup”: let Fq0 be a subfield of K (with |K| = qr0 for some prime r), and
let B be a basis of V . Then V0 = spanF0

(B) is an n-dimensional Fq0-vector space. The group GLn(q) acts
naturally on the set of all such vector spaces and M can be taken to be a subgroup of the stabilizer of V0
in this action.

When G is not SLn(q), the group S is a set of isometries for some non-degenerate form ϕ on V . Now
we require that M is also a subset of the set of isometries of the form ϕ0 on V0 which is the restriction
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of ϕ (or a scalar multiple of ϕ); full details are given in [54, §4.5]. We list the embeddings in Table 4.5.1.
Note that the subfield subgroups are centralized by outer automorphisms of S (see Proposition 2.5.1), so
M may not be almost simple. We will need to take account of this possibility in the proofs below.

case type conditions

L GLn(q
1/r)

S Spn(q
1/r)

Oǫ Oδ
n(q

1/r) ǫ = δr

U GUn(q
1/r) r odd

U Oǫ
n(q) r = 2, q odd

U Spn(q) r = 2, n even

Table 4.5.1: Maximal subgroups in family C5

The main result of this section is the following. The result will be proved in a series of lemmas.

Proposition 4.5.1. Suppose that G is an almost simple group with socle S̄ = Cln(q), and assume that

(i) n ≥ 3, 4, 4, 7 in cases L,U, S,O respectively, and

(ii) Cln(q) is not one of the groups listed in Lemma 4.1.1.

Let M be a maximal subgroup of G in the family C5. Then the action of G on (G :M) is not binary.

4.5.1 Case S = SLn(q)

Lemma 4.5.2. In this case either Ω contains a beautiful subset or else S is listed in Table 4.5.2.

Proof. Let B = {v1, . . . , vn} be a basis for V , and we assume that M stabilizes the Fq0-span of B. We use
Lemma 1.6.10 for which we need to exhibit two subgroups, as follows.

We set A ∼= SLn−2(q0) to be the subgroup of M that fixes vn−1 and vn; we let B0
∼= SLn−1(q0) be

the subgroup of M which fixes vn. Then let g ∈ CG(A) such that vgn−1 is not in the Fq0-span of B; we
set B = Bg

0 and note that B 6≤ M . Now Lemma 1.6.10 implies that there is a subset ∆ of Ω such that
|∆| = qn−2

0 and G∆ acts 2-transitively on ∆.
If ∆ is a beautiful subset, then Lemma 1.6.12 yields the result; if ∆ is not a beautiful subset, then

Alt(qn−2
0 ) must be a section of SLn(q). By Lemma 2.1.1, this is impossible unless (n, q0) ∈ {(4, 2), (5, 2)}

or n = 3, q0 ≤ 7.
Consider the remaining situations, and set A ∼= SLn−1(q0) to be the subgroup of M that fixes vn. Let

g be the diagonal matrix with entries
(λ, . . . , λ, λ−n+1),

where λ is an element of Fq \Fq0 such that λn 6∈ Fq0; this is possible unless (n, q) = (3, 4). Setting B =Mg,
and applying Lemma 1.6.10 yields a set ∆ as above, except that this time |∆| = qn−1

0 . Again we obtain a
beautiful subset unless Alt(qn−1

0 ) is a section of SLn(q); we conclude that n ≤ 4 and q0 = 2.

Lemma 4.5.3. If S is listed in Table 4.5.2, then the action is not binary.

Group S Details of action

SL3(2
r) r prime, M ⊲ SL3(2).

SL4(2
r) r prime, M ⊲ SL4(2).

Table 4.5.2: C5 – SLn(q) – Cases where a beautiful subset was not found.
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Group S Details of action

SUn(q
r
0) n ∈ {4, 5}, q0 ∈ {2, 3, 4, 5, 7}, r odd prime, M ⊲ PSUn(q0)

SU8(3) M ⊲ PΩ±
8 (3), PSp8(3)

SU8(2) M ⊲ PSp8(2)
SU7(3) M ⊲ PΩ7(3)
SU6(2) M ⊲ PSp6(2)
SU6(q) q ∈ {3, 5, 7}, M ⊲ PΩ−

6 (q)
SU5(q) q ∈ {3, 5, 7}, M ⊲ PΩ5(q)
SU4(q) q ∈ {2, 3, 4, 5, 7}, M ⊲ PSp4(q)
SU4(q) q ∈ {3, 5, 7}, M ⊲ PΩ±

4 (q)

Table 4.5.3: C5 – SUn(q) – Cases where a beautiful subset was not found.

Proof. Here n ∈ {3, 4}, S = SLn(2
r) with r a prime, and M contains a normal subgroup SLn(2). If

r ∈ {2, 3}, then Lemma 4.1.1 yields the result.
Assume from here on that r ≥ 5. We have M = M0 × 〈φ〉, where M0

∼= SLn(2).a with a ∈ {1, 2}, and
φ is either 1 or a field automorphism of S of order r.

Let Q be a Sylow 2-subgroup of M0. As |G :M | is even , there exists g ∈ NG(Q) \M . Then M0 ∩Mg
0

contains Q, hence is a parabolic subgroup P of M0, and NM0(P ) = P . It follows that M ∩Mg = P × 〈σ〉,
where σ = 1 or φ. In particular, σ is in the kernel of the action of M on (M :M ∩Mg). Hence this action
is isomorphic to either (M0, (M0 : P )) or (M0 × 〈φ〉, (M0 × 〈φ〉 : P )). Lemma 2.3.1 shows that the first
action is not binary, and it follows using Lemma 1.6.2 that the second action is also not binary.

4.5.2 Case S = SUn(q)

Note that we are assuming that n ≥ 4, since the case where S = SU3(q) is covered in [45]. Note, though,
that an inspection of the proof [45] shows up a missing case when q0 = 2. Let us deal with that case now.

Lemma 4.5.4. Suppose that S = SU3(2
r) with r an odd prime, and that M is a subfield subgroup of G

containing PSU3(2). Then the action of G on (G :M) is not binary.

Proof. We use magma, first, to confirm the result when r = 3. For the rest of the proof we suppose r ≥ 5.
We have M = M0 × 〈φ〉, where M0 ∈ {PSU3(2),PSU3(2).2,PGU3(2),PGU3(2).2} and φ is either 1 or a
field automorphism of S of order r. Another magma computation confirms that all non-trivial odd-degree
core-free actions of M0 are not binary.

The proof is now similar to that of the previous lemma. Let Q ∈ Syl2(M0) and g ∈ NG(Q) \M . Then
Q ≤M0 ∩Mg

0 ≤ Q〈h〉, where h has order 1 or 3. If M ∩Mg 6≤M0, then M ∩Mg contains an element hiφ
for some i, and hence also contains φ (as φ has order r > 3). Thus M ∩Mg = (M0 ∩Mg

0 ) × 〈σ〉, where
σ = 1 or φ. Now we complete the proof as in Lemma 4.5.3.

Lemma 4.5.5. In this case either Ω contains a beautiful subset or else S is listed in Table 4.5.3.

Proof. Our proof splits into two cases, depending on whether r is odd or even. Suppose, first, that r is
odd. In this case we let B = {e1, . . . , em, x, f1 . . . , fm} be a hyperbolic basis for V (for n even we do not
need the element x); then ϕ0, the restriction of ϕ to the Fq20 -span of B, is unitary.

First assume that m ≥ 3, in which case we will use Lemma 1.6.10. We start by defining A ∼= SLm−1(q
2
0)

to be the set of elements stabilizing the Fq20 -subspaces

〈e1, . . . , em−1〉, 〈em〉, 〈f1, . . . , fm−1〉, 〈fm〉 (and 〈x〉 if n is odd),

and acting on each as an element of determinant 1.
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Now let g be the diagonal element with respect to B whose diagonal entries are 1 except in the entries
corresponding to em and fm, in which case the entries are µ and µ−1, respectively, where µ ∈ F∗

q \F∗
q0 . Let

B0
∼= SLm(q

2
0) be the subgroup of M stabilizing the subspaces

〈e1, . . . , em−1, em〉 and 〈f1, . . . , fm−1, fm〉 (and 〈x〉 if n is odd),

and acting on each as an element of determinant 1. Let B = Bg
0 , and observe that A < B and B 6≤M ; thus

Lemma 1.6.10 implies that we have a subset Λ ⊆ Ω of cardinality q
2(m−1)
0 such that SΛ is a 2-transitive

group. This yields a beautiful subset unless Alt(q
2(m−1)
0 ) is a section of SUn(q); since we are assuming that

m ≥ 3, Lemma 2.1.1 eliminates the latter possibility, and we are done.

We are left with the possibility that m = 2, in which case n ∈ {4, 5}. We define two subgroups, T and
U , as follows. First, if n = 5, then both subgroups fix the vector x. Then, in both cases, we fix an element
ζ ∈ F∗

q \ F∗
q0 and describe the action of the two groups on the space 〈e1, e2, f1, f2〉 (writing elements with

respect to the ordered basis {e1, e2, f1, f2}):

T =













a
1

a−1

1







| a ∈ F∗
q0







, U =













1 ζx
1

1
−ζx 1







| x ∈ Fq0







. (4.5.1)

As usual, we can check that T ≤ M , U 6≤ M , and T normalizes U and acts transitively on the set of
non-identity elements of U . Then ∆ =MU is a subset of Ω on which G∆ acts 2-transitively, and we have
a beautiful subset unless Alt(q0) is a section of SUn(q), which by Lemma 2.1.1 can only occur if q0 ≤ 7, as
listed in the first line of Table 4.5.3.

Suppose, next, that r = 2. In this case ϕ0 is either symmetric (and q is odd) or alternating (and q can
be either even or odd). These are the embeddings in the last two lines of Table 4.5.1. In the case where
ϕ0 is symmetric and not of type O−, we take B, as before, to be a hyperbolic basis.

For the other two cases, we adjust B slightly in order to see more clearly the embeddings (namely,
SO−

n (q) < SUn(q) and Spn(q) < SUn(q)). In the symplectic case we take B = {e1, . . . , em, f1, . . . , fm} such
that

ϕ(ei, ej) = ϕ(fi, fj) = 0 and ϕ(ei, fj) = δijζ,

where ζ ∈ Fq2 satisfies ζq = −ζ. It is easy to see that the restriction ϕ0 of ϕ to the Fq-span of B is
symplectic; what is more the matrix for ϕ0 written in block form with respect to B is

ζ

(
0 I
−I 0

)

,

a scalar multiple of the “usual” alternating matrix; hence Isom(ϕ0) is a symplectic group Spn(q).
In the O− case we take B = {e1, . . . , em, f1, . . . , fm, x, y} to be a hyperbolic basis for ϕ0 over Fq, and

we simply define ϕ to be the Hermitian form obtained by extending ϕ0 to include scalars over Fq2 .
In all cases, m is the Witt index of ϕ0, and we now proceed as in the first part of the proof. First

assume that m ≥ 3 and define A ∼= SLm−1(q) to be the set of elements in M stabilizing the Fq-subspaces

〈e1, . . . , em−1〉, 〈em〉, 〈f1, . . . , fm−1〉, 〈fm〉 (and 〈x〉 and 〈y〉 if needed),

and acting on each as an element of determinant 1.
Now we define g according to two cases:

1. If ϕ0 is orthogonal with n odd, or of type O− with n even, then let g send

em 7→ µem, fm 7→ µ−qfm, x 7→ µq−1x,

and fix all other elements of B, where µ is a primitive element of Fq2 .



4.5. FAMILY C5 115

2. If ϕ0 is symplectic or of type O+, then we let λ, µ ∈ Fq2 with λ primitive, and let g act as

λI on 〈e1, . . . , em−1〉,
µ on 〈em〉,
λ−qI on 〈f1, . . . , fm−1〉,
µ−q on 〈fm〉.

We require that λ−(q−1)(m−1) = µq−1 to ensure that det(g) = 1, and we require that λµ−1 6∈ Fq (this
condition ensures that B = Bg

0 6≤M , see next paragraph). This can be done provided q+1 does not
divide m – we defer this remaining case for the moment.

Let B0
∼= SLm(q) be the subgroup of M stabilizing the subspaces

〈e1, . . . , em−1, em〉 and 〈f1, . . . , fm−1, fm〉 (and 〈x〉 and 〈y〉 if needed),

and acting on each as an element of determinant 1. Let B = Bg
0 , and observe that A < B and B 6≤M ; thus

Lemma 1.6.10 implies that we have a subset Λ ⊆ Ω of order qm−1 such that SΛ is 2-transitive. This yields
a beautiful subset unless Alt(qm−1) is a section of SUn(q). By Lemma 2.1.1, the latter is only possible
if (n, q) is one of (6, 2), (7, 3), (8, 2), (8, 3) (recall that we are assuming m ≥ 3 here), and M is as in
Table 4.5.3.

Now let us deal with the deferred case: we suppose that ϕ0 is symplectic or of type O+ and q + 1
divides m = n

2 . Then we repeat the argument with m redefined to equal n−2
2 . Note, though, that for the

argument to work we must have (n− 2)/2 = m ≥ 3, that is, n ≥ 8. We set g to act as

I on 〈e1, . . . , em−1〉,
µ on 〈em〉,
µ−1 on 〈em+1〉,
I on 〈f1, . . . , fm−1〉,
µ−q on 〈fm〉,
µq on 〈em+1〉.

We obtain the same outcome: a beautiful subset of size qm−1 unless Alt(qm−1) is a section of SUn(q). The
latter is only possible when (n, q) = (8, 3), which situation is listed in the second line of Table 4.5.3.

If we are in the deferred case with n < 8, then n = 6. As q + 1 divides m+ 1 = 3, we have q = 2 and
S = SU6(2), and S is listed in Lemma 4.1.1. This concludes the analysis of the deferred case.

Next, we consider the possibility that m = 2 (defined, as it was originally, to be the Witt index of ϕ0)
in which case n ∈ {4, 5, 6}. In this case we proceed as at the start of this proof – defining two subgroups
U and T as in (4.5.1) – so that we obtain a beautiful subset unless Alt(q) is a section of SUn(q). Using
Lemma 2.1.1, we conclude that q ≤ 7 in the latter case, giving the cases listed in Table 4.5.3.

Finally, if m = 1, then n = 4 and M is of type O−. We shall work with the quasisimple group
S = SU4(q) with centre Z of order d = (4, q + 1). In this group, the corresponding maximal subgroup,
which we shall also denote as M , has structure SO−

4 (q).d (see [10, Table 8.10]). Let X = SO3(q) < M ,
and let T = {(λ, λ−1, 1) : λ ∈ F∗

q} be a maximal torus of order q − 1 in X (matrices relative to a standard
basis for the O3-space). Thus

T < X < M < S. (4.5.2)

We claim that there is an S-conjugate Y of X such that T < Y 6≤ M . Given the claim, we can
complete the proof as follows. Since Y ∼= SO3(q) ∼= PGL2(q), there are subgroups U+, U− of order q in Y
such that T acts by conjugation fixed-point-freely on both of them. These cannot both be contained in
M , as Y 6≤ M . Hence, say, U+ ∩M = 1. Then in the usual way, ∆ = MU+ is a set of q points on which
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TU+ acts 2-transitively. For q > 7, Alt(q) is not a section of G, and so ∆ is a beautiful subset of Ω, giving
the conclusion; when q ≤ 7, these case are listed in the last line of Table 4.5.3.

So it remains to prove the claim. The claim would follow by applying Lemma 2.6.1 to the sequence
(4.5.2) if we knew that M controls fusion of X in S, but this may not be the case: there are two conjugacy
classes of subgroups SO3(q) in SO−

4 (q), with representatives X1,X2, say; then X1 and X2 are S-conjugate,
but may or may not be M -conjugate (this depends on certain congruences of q which we do not need to
state here). Therefore, our argument is different. Define

Λ = {Y < S : T < Y, Y conjugate to X in S},
Φ = {Y ∈ Λ : Y < M}.

We shall compute the sizes of Λ and Φ, showing that |Λ| > |Φ|, hence proving the claim.

First observe that NS(T ) acts on Λ. The action of NS(T ) on Λ is transitive; indeed,

Y ∈ Λ ⇒ Y = Xs (s ∈ S)

⇒ T, T s
−1
< X

⇒ T s
−1

= T x for some x ∈ X
⇒ Y = Xxs with xs ∈ NS(T ).

Hence |Λ| = |NS(T ) : NS(T ) ∩ NS(X)|. Since NS(T ) has a subgroup of order |GU2(q).(q − 1)/|Z|, while
the order of NS(T ) ∩NS(X) divides 2(q2 − 1)/|Z|, it follows that |Λ| is divisible by 1

2q(q
2 − 1).

In the same way we see that NM (T ) has at most 2 orbits on Φ. The orbit Φ1 of X1 has size |NM (T ) :
NM (T ) ∩ NM (X1)|. Since |NM (T )| divides 4(q2 − 1) and |NM (T ) ∩ NM (X1)| is divisible by 2(q − 1), it
follows that |Φ1| divides 2(q + 1). If there is a second orbit Φ2, its size also divides 2(q + 1). Hence |Φ|
divides 4(q + 1).

As q > 7, it is clear from the previous two paragraphs that |Λ| > |Φ|. This yields the claim and
completes the proof.

Lemma 4.5.6. If S is listed in Table 4.5.3, then the action is not binary.

Proof. Suppose, first, that r = 2 – this covers all but the first line of Table 4.5.3. Now Lemma 4.1.1 deals
with all the possible groups S except for SU8(3), SU6(5), SU6(7) and SU5(7). We handled these cases with
magma computations using the permutation character method.

Suppose, next, that r ≥ 3, so we are in the first line of the table. Here M = M0 × 〈φ〉, where M0 has
socle PSU4(q0) or PSU5(q0) with q0 ≤ 7, and φ is either 1 or a field automorphism of S of order r. We
adopt the strategy of the proof of Lemma 4.5.3. Let p be the characteristic of Fq, let Q ∈ Sylp(M0), and
choose g ∈ NG(Q)\M . Then Q ≤M0∩Mg

0 , and so (by the well-known “Tits lemma”, or by computation)
there is a parabolic subgroup P of M0 such that UL′ ≤ M0 ∩Mg

0 ≤ P , where U is the unipotent radical
and L a Levi factor.

Write M1 = M0 ∩Mg
0 , a core-free subgroup of M0. A magma computation shows that any transitive

action of M0 of p′-degree is not binary. Hence, if M ∩Mg =M1 × 〈σ〉 with σ = 1 or φ, then we obtain the
conclusion as in the proof of Lemma 4.5.3. Otherwise,M ∩Mg =M1〈hφ〉, where h ∈ NM0(M1). Analysing
this normalizer, we see that we can take h to be diagonal of order dividing q20 − 1. Since φ 6∈M ∩Mg, the
order of h must be divisible by r, and hence as q0 ≤ 7, we must have r = 3 or 5. Hence M =M0× r, r = 3
or 5, and |M : M ∩Mg| is coprime to p. Now a further magma computation shows that any such action
(M, (M :M ∩Mg)) (with soc(M0) 6≤M ∩Mg) is not binary.

4.5.3 Case S = Spn(q)

Lemma 4.5.7. In this case either Ω contains a beautiful subset or else S is listed in Table 4.5.4. In all
cases the action of G on Ω is not binary.
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Group S Details of action

Sp4(2
r) r prime, M ⊲ Sp4(2).

Table 4.5.4: C5 – Spn(q) – Cases where a beautiful subset was not found.

Proof. Let B = {e1, . . . , ek, fk, . . . , f1} be a hyperbolic basis for V with k = n
2 . Let M be the group

stabilizing the Fq0-span of B.
First fix an element ζ ∈ Fq \ Fq0 . We define two subgroups, writing elements with respect to B:

T =











1
A

1



 | A ∈ Spn−2(q0)






, U =











1 ζx
In−2 ζx′T

1



 | x ∈ Fn−2
q0






,

where x′ = xJ , J being the matrix of the form relative to the basis B, omitting e1, f1. As usual, we can
check that T ≤ M , U 6≤ M , and T normalizes U and acts transitively on U \ 1. Then ∆ = MU is a
subset of Ω of size qn−2

0 on which G∆ acts 2-transitively, and we have a beautiful subset unless Alt(qn−2
0 )

is a section of Spn(q). By Lemma 2.1.1, the latter is only possible if n = 4 and q0 = 2, the case listed in
Table 4.5.4. Finally, the case in the table is dealt with exactly as in Lemma 4.5.3.

4.5.4 Case S is orthogonal

In this section we deal with all of the orthogonal families in one go. Recall from Section 4.1.1 that n ≥ 7,
and also if S = Ω+

8 (q), then we are assuming that G ≤ PΓΩ+
8 (q).

Group S Details of action

Ω7(3
r) q0 = 3, M ⊲ Ω7(3)

Ω−
8 (q

r
0) q0 ∈ {2, 3}, r odd, M ⊲ PΩ−

8 (q0)
Ω+
8 (q

2
0) q0 ∈ {2, 3}, M ⊲ PΩ−

8 (q0)
Ω+
8 (2

r) q0 = 2, M ⊲ Ω+
8 (2)

Ω−
10(2

r) q0 = 2, r odd, M ⊲Ω−
10(2)

Ω+
10(4) q0 = 2, M ⊲ Ω−

10(2)

Table 4.5.5: C5 – Ωεn(q) – Cases where a beautiful subset was not found.

Lemma 4.5.8. In this case either Ω contains a beautiful subset or else S is listed in Table 4.5.5.

Proof. Let W be an n-dimensional orthogonal space over Fq0 , with associated quadratic form QW , and let
B be a hyperbolic basis for W . Define V =W ⊗Fq0

Fq, with QW extended to a quadratic form, QV , on V .
This yields an embedding of Isom(QW ) ≤ Isom(QV ). The embeddings listed in row 3 of Table 4.5.1 follow
immediately. Note that, in the case where Ω−

n (q0) is embedded in Ω+
n (q

2
0), B is not a hyperbolic basis for

V .
We write B = {e1, . . . , ek, f1, . . . , fk, x, y} (omitting x if n is odd, and omitting x and y if n is even and

ε = +). We write A for the Fq-span of the anisotropic vectors in B; so dim(A) ∈ {0, 1, 2}.
We define two subgroups:

A = {g ∈M | g stabilizes 〈ek〉, 〈fk〉, 〈e1, . . . , ek−1〉 and 〈f1, . . . , fk−1〉; vg = v ∀v ∈ A};
B0 = {g ∈M | g stabilizes 〈e1, . . . , ek〉 and 〈f1, . . . , fk〉; vg = v ∀v ∈ A}.

Observe that A ⊲ SLk−1(q0) and B0 ⊲ SLk(q0). Now define g ∈ G to send ek 7→ λek, fk 7→ λ−1fk and to
fix the other elements of B, where λ ∈ Fq \ Fq0 . Set B = Bg

0 and observe that B contains A but is not
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contained in M . Then Lemma 1.6.10 implies that there is a subset ∆ of Ω such that |∆| = qk−1
0 and G∆

acts 2-transitively on ∆. Then ∆ is a beautiful subset (and we are done) or else Alt(qk−1
0 ) is a section of

Ωεn(q). In the latter case, Lemma 2.1.1 implies that S,M are as in Table 4.5.5.

Lemma 4.5.9. If S is listed in Table 4.5.5, then the action is not binary.

Proof. Suppose, first, that r = 2. In this case, S ∈ {Ω+
8 (4),Ω

+
8 (9),Ω

+
10(4)} and we confirm the result using

magma.
Now suppose that r ≥ 3. Then M = M0 × 〈φ〉, where M0 has socle PΩǫn(q0) with n ≤ 10 and q0 ≤ 3,

and φ is either 1 or a field automorphism S of order r. We use the same argument as for Lemma 4.5.6.
First, a magma computation shows that any transitive action of M0 of p′-degree is not binary. Then the
argument shows that there exists g ∈ G such that (M, (M : M ∩Mg)) is not binary, unless possibly r
divides q20−1. As q0 ≤ 3, this forces r = 3, and now a further magma computation shows that any transitive
p′-action of M0 × 3 is not binary, completing the proof.

4.6 Family C6
The members in the Aschbacher class C6 arise as local subgroups; more specifically they are normalizers of
certain absolutely irreducible r-groups R of symplectic-type, where r is a prime number with r 6= p and p
is the characteristic of the defining field for the classical group. For r odd, the r-group R is extraspecial of
exponent r, denoted by its order r1+2a; and for r = 2, either R is an extraspecial group 21+2a

± , or is a central
product 4 ◦ 21+2a. These r-groups have absolutely irreducible embeddings in various classical groups of
dimension ra, and the normalizers of R in these classical groups comprise the C6 subgroups; more precisely,
if G is an almost simple classical group and R̄ is the projective image of R in G, then M = NG(R̄) is in
the C6 class. Full details are given in [54, §4.6], and we give a list of the embeddings in Table 4.6.1.

case normalizer conditions

Lǫ r1+2a.Sp2a(r) < GLǫra(q) r odd, q ≡ ǫ mod r
Lǫ 4 ◦ 21+2a.Sp2a(2) < GLǫ2a(q) q = p ≡ ǫ mod 4

S 21+2a
− .O−

2a(2) < GSp2a(q) q = p

O+ 21+2a
+ .O+

2a(2) < O+
2a(q) q = p

Table 4.6.1: Maximal subgroups in family C6

In Line 1 of Table 4.6.1 there is a further condition on q: namely, let e be the smallest positive integer
such that pe ≡ 1 mod r. If e is odd, then ǫ = + and q = pe; and if e is even, then ǫ = − and q = pe/2.

The main result of this section is the following. The result will be proved in a series of lemmas.

Proposition 4.6.1. Suppose that G is an almost simple group with socle S̄ = Cln(q), and assume that

(i) n ≥ 3, 4, 4, 7 in cases L,U, S,O respectively, and

(ii) Cln(q) is not one of the groups listed in Lemma 4.1.1.

Let M be a maximal subgroup of G in the family C6. Then the action of G on (G :M) is not binary.

Our first lemma deals with the situation when r is odd, in which case S = SLεra(q) and q is as given
above, so that K = Fpe . To prove the lemma we recall the set-up described in [54, §4.6] and establish some
notation.

We let R := 〈x1, . . . , xa, y1, . . . , ya, z〉 be the extraspecial r-group with center Z(R) = 〈z〉 and where,
for every i, j ∈ {1, . . . , a},

xri = yrj = [xi, xj ] = [yi, yj] = 1
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and

[yi, xj ] =

{

z when j = i,

1 otherwise.

Clearly, R̄ := R/Z(R) is an elementary abelian r-group and one can see that R̄ embeds naturally in
CAut(R)(Z(R)). We use an additive notation for the elements of R̄ and a multiplicative notation for the
elements of R and observe that the commutator function

B : R̄× R̄ −→ Z(R)

(gZ(R), h(Z(R)) 7−→ [g, h]

defines a non-degenerate symplectic form on R̄, which endows R̄ with the structure of a symplectic space
over the field Fr. Using the basis (x̄1, . . . , x̄a, ȳ1, . . . , ȳa) of R̄, the symplectic form B on R̄ is represented
by the skew-symmetric matrix in block form

J :=

(
0 −I
I 0

)

.

Observe that, under the natural projection R → R̄, the abelian subgroups of R correspond to the totally
isotropic subspaces of R̄. We let X := 〈x1, . . . , xa〉 and Y := 〈y1, . . . , ya〉. Observe that X and Y are
elementary abelian subgroups of R of cardinality ra and X̄ and Ȳ are maximal totally isotropic subspaces
of R̄.

From the structure of R, it is clear that each element of R can be written uniquely in the form

xε11 · · · xεaa yη11 · · · yηaa zν ,

where ε1, . . . , εa, η1, . . . , ηa, ν can be taken in Fr. Given v =
∑a

i=1 εix̄i +
∑a

i=1 ηiȳi, an element in R̄, we
write v = xε11 · · · xεaa yη11 · · · yηaa , a corresponding element in R.

Given a matrix A ∈ GL2a(r) that preserves the symplectic form B, we find that the function

θA : R −→ R

xi 7−→ Axi

yi 7−→ Ayi,

defined on the generators of R extends to an automorphism of R that centralizes Z(R). In this way
we obtain an embedding R.Sp2a(r) in CAut(R)(Z(R)) and now [54, Table 4.6.A] asserts that in fact

CAut(R)(Z(R)) = R.Sp2a(r)
∼= r2a.Sp2a(r).

Now [54, p.151] describes an absolutely irreducible representation of R over K of dimension ra that
induces an embedding of CAut(R)(Z(R)) into PGLra(K); this embedding yields the C6 subgroups for r odd.

Lemma 4.6.2. Let r be an odd prime, let G be almost simple with socle PSLǫra(q), and let M = NG(R̄),
where R = r1+2a, as in line 1 of Table 4.6.1. Then the action of G on (G :M) is not binary.

Proof. We adopt the above notation and, since M = NG(R̄), we may identify the set Ω = (G : M)
with the set of conjugates {R̄g : g ∈ G}. Recall that X is an elementary abelian group of order ra, so
X ∼= Far . Moreover, since Fra ∼= Far as Fr-vector spaces, GL(X) contains an automorphism acting as scalar
multiplication by a field element of order ra − 1. Let B be the matrix of this automorphism of X with
respect to the basis {x1, . . . , xa}. Then the matrix

A =

(
B 0
0 B−T

)

preserves the bilinear form B. Thus θA is an automorphism of R and hence θA determines an element of
NPGL(V )(R̄). In fact, from [54, Proposition 4.6.5], θA ∈M except when a = 1, r = 3 and p = q. We leave
the case a = 1, r = 3 and p = q aside for the time being; indeed let us assume, for now, that n > 5.
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Let C = 〈θA〉 ∈ M and let T = X̄ ⋊ C ≤ M . By construction T is a Frobenius group with Frobenius
kernel X̄ of cardinality ra and cyclic Frobenius complement C of cardinality ra − 1. We claim that

∃g ∈ NG(C) with M ∩ T g = C. (4.6.1)

We argue by contradiction and we suppose that M ∩ T g 6= C, for every g ∈ NG(C). Let g ∈ NG(C). Since
T g = X̄g ⋊ C, M ∩ T g ≥ C and C acts transitively by conjugation on the non-identity elements of X̄g,
we deduce M ∩ T g = T g, that is, T g ≤ M . Suppose that X̄g � R̄. Then T g is a Frobenius group and is
isomorphic to a subgroup of Sp2a(r). Since r is odd, ra − 1 is even and hence A(ra−1)/2 is the −I matrix.
In particular, A(ra−1)/2 centralizes X̄g. However, this is a contradiction because (since T g = X̄g ⋊ C is
a Frobenius group) the action of A(ra−1)/2 by conjugation on X̄g is fixed-point-free. This contradiction
yields X̄g ≤ R̄. Thus X̄g is a totally isotropic subspace of R̄ normalized by C. The only such totally
isotropic subspaces are X̄ and Ȳ , and hence X̄g = X̄ or X̄g = Ȳ . Now, consider T ′ := Ȳ ⋊ C. As T
and T ′ are conjugate in M , we obtain T ′g ∩ M 6= C because T g ∩ M 6= C. Therefore, repeating the
argument in this paragraph with the group T replaced by T ′, we deduce that g normalizes X̄Ȳ = R̄. Thus
NG(C) ≤ NG(R̄) =M . Now we apply Proposition 2.4.1 and Lemma 2.4.2 to establish the existence of an
element g ∈ G normalizing C but not lying in M . Therefore our claim (4.6.1) is now proved.

Let g ∈ NG(C) with M ∩ T g = C and let Λ := {R̄t | t ∈ T g}. Then Λ is a set of cardinality
|T g : T g ∩M | = ra and T g induces on Λ a permutation group isomorphic to a Frobenius group of order
ra(ra− 1). If Λ is a beautiful subset, the conclusion follows by Lemma 1.6.12. Otherwise, Alt(ra− 1) must
be isomorphic to a section of M , hence to a section of Sp2a(r). Since n > 5, Lemma 2.1.1 rules out the
latter possibility and we are done.

Consider next the case a = 1, r = 5. Here the embedding is 51+2.Sp2(5) < S = SLǫ5(q), where q is
minimal such that q ≡ ǫ mod 5. If p = 2 then S = SU5(4), which is covered by Lemma 4.1.1. So now
assume p > 2. It is well-known that the extension R.Sp2(5) splits. Let S0

∼= Sp2(5) be a complement, and
let t ∈ S0 be the central involution. If V is the natural 5-dimensional module for S, then V5 ↓ S0 = V3⊕V2,
where V3 = CV (t), V2 = CV (−t), of dimensions 3, 2 respectively. Hence there exists a diagonal element of
S of the form ĝ = (λI3, µI2) such that ĝ ∈ CS(S0) \NS(R). Denoting by g the projective image of ĝ, we
then have R̄S0 ∩ (R̄S0)

g = S0. Since R̄S0 = 52.Sp2(5) is a Frobenius group, this give a 2-transitive subset
of size 25 in the usual way, and the conclusion follows.

Finally, the case where a = 1, r = 3 is dealt with in similar fashion. Here the embedding is 31+2.Q8 <
SLǫ3(p) with p ≡ ǫ mod 3 and p 6= 2. As V ↓ Q8 = V2 ⊕ V1, there exists g ∈ CG(Q8) \M , and hence as
above we obtain a subset Λ of size 9 with GΛ 2-transitive. This completes the proof.

Lemma 4.6.3. Let r = 2, let G be almost simple with socle PSLǫ2a(p) (a ≥ 2), PSp2a(p) (a ≥ 2) or
PΩ+

2a(p) (a ≥ 3), and let M = NG(R̄), where R = 4 ◦ 21+2a or 21+2a
± , as in Lines 2, 3, 4 of Table 4.6.1.

Then the action of G on (G :M) is not binary.

Proof. Since M = NG(R̄), we may identify the set Ω = (G : M) with the set of conjugates {R̄g : g ∈ G}.
Referring to [54, §4.6], we have

R = 〈z〉 ◦ 〈x1, y1〉 ◦ · · · ◦ 〈xa, ya〉,
where

z has order 4 in types L,U , and has order 2 in types S,O+,

〈xi, yi〉 ∼= D8 for i ≥ 3,

〈x1, y1〉 ∼= 〈x2, y2〉 ∼= Q8 in types L,U,O+,

〈x1, y1〉 ∼= Q8 and 〈x2, y2〉 ∼= D8 in type S.

The natural 2a-dimensional module V has a tensor product decomposition V = W1 ⊗ · · · ⊗Wa under the
action of R, where each Wi is an irreducible 2-dimensional module for 〈z, xi, yi〉.
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From [54, 4.6.6, 4.6.8, 4.6.9], writing S̄ = soc(G), the precise structure of M ∩ S̄ is as follows:

case M ∩ S̄
Lǫ 24.Alt(6), if n = 4, p ≡ ǫ5 mod 8

22a.Sp2a(2), otherwise

S 22a.O−
2a(2), if p ≡ ±1 mod 8

22a.Ω−
2a(2), if p ≡ ±3 mod 8

O+ 22a.O+
2a(2), if p ≡ ±1 mod 8

22a.Ω+
2a(2), if p ≡ ±3 mod 8

We now divide the proof in two parts (A) and (B), depending on whether p ≥ 7 or p < 7.

(A)Assume first that p ≥ 7. DefineW =W2⊗· · ·⊗Wa, and note that SL(W1) = Sp(W1). The subgroup
of G preserving the tensor decomposition V =W1 ⊗W is the normalizer of the image of SL(W1)⊗Cl(W ),
where Cl(W ) is SLǫ(W ), Ω+(W ) or Sp(W ) for case Lǫ, S or O+ repectively.

Again we use the bar notation for the natural homomorphism to the projective version of our classical
group. As before, M preserves on R̄ a non-degenerate symplectic form B in types L and U defined as
above. In types O+ and S, the group M not only preserves B but also a particular quadratic form
q : R̄ → Fr that polarizes to B. Rather than defining q explicitly we remark only that, for i = 1, . . . , a,
the 2-spaces corresponding to 〈xi, yi〉 ∼= Q8 (resp. 〈xi, yi〉 ∼= D8) are of type O−

2 (2) (resp. O+
2 (2)). Then

R̄1 is a non-degenerate 2-space in R̄, and is of type O−
2 (2) in cases O+ and S.

Define R̄0 =
∏a
i=2 R̄i = R̄⊥

1 , and W = W2 ⊗ · · · ⊗Wa. By [54, 4.4.3], NG(R̄0) preserves the tensor
decomposition V =W1⊗W and contains the image of SL(W1)⊗1W . Define a subset ∆ of Ω = {R̄g : g ∈ G}
by

∆ = {R̄g : g ∈ NG(R̄0)}.
Let X be the image of the group induced on W1 by NG(R̄0). Then X ∼= PSL2(p) or PGL2(p), and

∆ = {R̄0 × R̄x1 : x ∈ X}.

Also, from the structure of M ∩ S̄, we see that

NX(R̄1) ∼= 22.Sp2(2)
∼= 22.O−

2 (2)
∼= Sym(4).

Since the intersection of all the subgroups in ∆ is R̄0, we have G∆ = NG(R̄0). Hence the action of G∆ on
∆ is isomorphic to the action of X on the cosets of Sym(4).

Recall that we are assuming p ≥ 7. Hence Sym(4) is a maximal subgroup of either X or X ′, and [45]
(together with Lemma 1.6.2) shows that (X, (X : Sym(4)) is not binary. Thus there is an integer k ≥ 3,
and k-tuples I = (I1, . . . , Ik), J = (J1, . . . , Jk) ∈ ∆k such that I∼2 J and I 6∼k J with respect to the action
of G∆. Since I∼2 J we can assume that I1 = J1 and I2 = J2; we also assume that there are no repeated
entries in I (and hence there are none in J either).

We need to show that I 6∼k J with respect to the action of G. Suppose Ig = J for some g ∈ G. Observe
that for each j we have Ij = R̄0 × R̄

xj
1 for some xj ∈ G∆. We claim that

k⋂

j=1

R̄
xj
1 = 1.

Proof of claim: Suppose otherwise. Since R̄1 is a Klein 4-group we must have
⋂k
j=1 R̄

xj
1 = 〈gI〉 where gI

is an involution. Now for each j we have Jj = R̄0 × R̄
yj
1 for some yj ∈ G∆. Since I∼k J with respect to

the action of G, we conclude that
⋂k
j=1 R̄

yj
1 = 〈gJ〉 for some involution gJ . Observe that, for distinct i and

j, we have
R̄xi1 ∩ R̄xj1 = 〈gI〉 and R̄yi1 ∩ R̄yj1 = 〈gJ 〉.
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Since I1 = J1 and I2 = J2 we conclude that gI = gJ . Consider what this means for the action of X
on (X : Sym(4)): we can think of this action as being the conjugation action of X on a class of Klein
4-subgroups. The tuples I and J correspond to k-tuples, IX and JX , whose entries are Klein 4-subgroups
of X all of which contain an involution gX . What is more IX ∼2 JX and IX 6∼

k JX with respect to the
action of X. Now if i and j are distinct in {1, . . . , k} and

Ihi = Ji and I
h
j = Jj for some h ∈ X,

then h ∈ CX(gX). The group CX(gX ) is a maximal dihedral subgroup of X and we define Y =
CX(gX)/〈gX 〉 which is also a dihedral group. The tuples IX and JX correspond to k-tuples, IY and
JY , whose entries are involutions in Y . Since IX∼2 JX with respect to X, we have IY ∼2 JY with respect
to Y . But this action is binary (see the discussion of Family 3a at the start of §1.2) and so IY ∼k JY with
respect to Y . But this implies that IX∼k JX with respect to X which is a contradiction. Hence the claim
is proved.

It now follows that
k⋂

j=1

Ij = R̄0,

and similarly
⋂k
j=1 Jj = R̄0. Therefore g ∈ NG(R̄0) = G∆, which is a contradiction. This completes the

proof under the assumption that p ≥ 7.

(B) Now assume that p < 7, so that p = 3 or 5. First note that the cases where a = 2 (in which case
L = PSLǫ4(p) or PSp4(p)) are covered by Lemma 4.1.1. So we may assume that a ≥ 3.

Define Ra = R1 × R3 and Rb =
∏

i 6=1,3Ri, and let Wa = W1 ⊗W3, Wb =
⊗

i 6=1,3Wi. Then in case S

or O+, the subgroup of G preserving the tensor decomposition Wa ⊗Wb is the normalizer of the image of
Sp(Wa)⊗Cl(Wb), where Cl(Wb) is orthogonal or symplectic, respectively. The normalizer NG(R̄b) preserves
this tensor decomposition.

Define a subset ∆ of Ω by ∆ = {R̄x : x ∈ NG(R̄b)}. Let X be the image of the group induced on Wa

by NG(R̄b). Then X has socle PSLǫ4(p) or PSp4(p), and ∆ = {R̄b × R̄xa : x ∈ X}. Also, from the structure
of M ∩ L, we see that

NX(R̄a) ∼=
{

24.Sp4(2), case Lǫ

24.O−
4 (2), cases S,O+.

As above, the action of G∆ on ∆ is isomorphic to the action of X on the cosets of NX(R̄a). Using magma,
we check in all possible cases that this action is not binary, and that there exist k-tuples I = (I1, . . . , Ik),
J = (J1, . . . , Jk) ∈ ∆k such that I∼2 J and I 6∼k J with respect to the action of G∆, and also such that
⋂k
j=1 Ij =

⋂k
j=1 Jj = R̄b. Now we see exactly as in the argument at the end of part (A) that I 6∼k J with

respect to the action of G. Hence G is not binary, and the proof is complete.

4.7 Family C7
In this case M is the stabilizer of a tensor decomposition of V , in much the same way as was detailed
at the start of §4.4. In this case, though, M stabilizes a tensor product of two or more subspaces of
the same dimension: we write V = W1 ⊗ · · · ⊗Wt, and m := dim(W1) = · · · = dim(Wt). Observe that
dim(V ) = n = mt. If G = PGLn(q), the stabilizer M has the structure PGLm(q)wr Sym(t), where Sym(t)
permutes the tensor factors.

In the case where S is not SLn(q), i.e. S preserves a non-degenerate form ϕ, the spaces W1 . . . ,Wt are
mutually similar spaces equipped with non-degenerate forms ϕ1, . . . , ϕt, and

ϕ =

{

Q(ϕ1 ⊗ · · · ⊗ ϕt), if q is even and ϕ1, . . . , ϕt are non-degenerate alternating;

ϕ1 ⊗ · · · ⊗ ϕt, otherwise.
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The definition of the quadratic form Q(ϕ1⊗· · ·⊗ϕt) is given on [54, p.127]: it is the unique non-degenerate
quadratic form Q such that

1. Q(w1 ⊗ · · · ⊗ wt) = 0 for all wi ∈Wi, and

2. the polarization of Q is equal to ϕ1 ⊗ · · · ⊗ ϕt.

Again the stabilizer M has a wreath product structure. It is convenient to set ϕ to be the zero map
when S = SLn(q). We have given a list of all the C7 embeddings in Table 4.7.1, taken from [54, §4.7], where
the precise structures of the C7 subgroups can be found.

case type conditions

Lǫ PGLǫm(q)wr Sym(t) m ≥ 3
S PSpm(q)wr Sym(t) qt odd
O+ PO±

m(q)wr Sym(t) q odd
O+ PSpm(q)wr Sym(t) qt even
O POm(q)wr Sym(t) qm odd

Table 4.7.1: Maximal subgroups in family C7

Note that [54, p. 156] details a further restriction on the subgroup M , namely that the relevant
subgroup Clm(q) must be quasisimple. For instance, in the O+ case that is listed on Line 3 of the table,
we require that Ω±

m(q) is quasisimple; thus, for this case, m ≥ 6 or (m, ε) = (4,−). In general we have that
the socle of M is (Clm(q))

t.
The main result of this section is the following. The result will be proved in a series of lemmas.

Proposition 4.7.1. Suppose that G is an almost simple group with socle S̄ = Cln(q), and assume that

(i) n ≥ 3, 4, 4, 7 in cases L,U, S,O respectively, and

(ii) Cln(q) is not one of the groups listed in Lemma 4.1.1.

Let M be a maximal subgroup of G in the family C7. Then the action of G on (G :M) is not binary.

The following lemma will be used in various special cases.

Lemma 4.7.2. Let t0 be an integer, at least 2; in the case where ϕ1, . . . , ϕt are non-degenerate alternating
bilinear forms, we require that q is odd and that mt0 ≥ 8.

Let V0 be the mt0-dimensional formed space that is a tensor product of t0 formed spaces all similar to
(W1, ϕ1). Let S̄0 = Xmt0 (q), where X ∈ {PSL,PSU,PSp,PΩε}, be the simple group associated with V0.
Consider all pairs (G0,M0) where G0 is an almost simple group with socle S̄0 and M0 is the subgroup of
G0 from class C7 associated with the tensor product decomposition. Let Ω0 = (G0 :M0).

1. Suppose that t0 = 2 and that, for all such pairs (G0,M0), the action of G0 on Ω0 is not binary. Then
the action of G on (G :M) is not binary.

2. Suppose that t0 > 2 and that, for all such pairs (G0,M0) we can find an integer k ≥ 3 and tuples
(I1, . . . , Ik), (J1, . . . , Jk) ∈ Ωk0 such that

(a) (I1, . . . , Ik)∼2 (J1, . . . , Jk);

(b) (I1, . . . , Ik) 6∼k (J1, . . . , Jk);

(c) there is no group isomorphic to Xm(q) that is a normal subgroup of each of the socles of
(G0)I1 , · · · , (G0)Ik .

Then the action of G on (G :M) is not binary.
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Note, first, that the family in which S̄0 lies (i.e. the particular choice of X from {PSL,PSU,PSp,PΩε})
is determined by the type of W1 and the value of t0 (see Table 4.7.1). Then [54, Tables 3.5.H and 3.5.I]
(and, when n ∈ {8, 9}, [10]) imply that, since M is maximal in G, we know that M0 will be a maximal
C7-subgroup of G0 unless ϕ1, . . . , ϕt are non-degenerate alternating and q is even – but this case is explicitly
ruled out by our hypotheses in the statement of this lemma.

Note, second, that in most cases the groups S̄ and S̄0 will lie in the same family, i.e. if S̄0 = Xmt0 (q),
then S̄ = Xmt(q). The exception to this occurs when ϕ1, . . . , ϕt are non-degenerate alternating bilinear
forms and t and t0 have different parity (see Table 4.7.1).

Proof. We noted above that the socle of M is Lt where L = Clm(q), a non-abelian simple group. Write
Γ for the set of semilinear similarities of ϕ, so S = F ∗(Γ), and let ι be the inverse transpose map. Write
G (resp. M) for the preimage of G (resp. M) in Γ (or in Γ : 〈ι〉 if S = SLn(q)). We write D for the
decomposition preserved by M :

(V, ϕ) = (W1, ϕ1)⊗ · · · ⊗ (Wt, ϕt).

We define U =W1⊗· · ·⊗Wt0 and ϕU = ϕ1⊗· · ·⊗ϕt0 . Let GU be the stabilizer in G of the decomposition

DU : (V, ϕ) = (U,ϕU )⊗ (Wt0+1, ϕt0+1)⊗ · · · ⊗ (Wt, ϕt).

Now we consider the action of GU , the projective image of GU in G, on (G : M). In particular we can
consider the action on the set of cosets M.GU ; the action on this set is isomorphic to the action of GU on
(GU :MU ) where MU =M ∩GU .

Clearly the kernel of this action contains the image in GU of

GU ∩ ({1} ⊗∆t0+1 · · · ⊗∆t)JU

where JU ∼= Sym(t − t0). The quotient of GU by the kernel of this action is an almost simple group G0

with socle Xmt0 (q) and the stabilizer in G0 of a point is a subgroupM0 of G0 from class C7 associated with
a decomposition of the associated mt0-dimensional formed space into a tensor product of t0 formed spaces
all similar to (W1, ϕ1).

By assumption we know that this action is not binary. Let I, J be elements of (GU : MU )
k for some

integer k ≥ 3 such that I∼2 J and I 6∼k J with respect to the action of GU . Identify the entries of I and J
with the corresponding elements of (G :M). We can think of the entries of I and J as conjugates of M in
G; now, if t0 > 2, then assume that I has the property listed at 2(c). It is sufficient to prove that I 6∼k J
with respect to the action of G.

It is at this point that we use the fact that the socle of M is Lt where L = Clm(q). Define

K = {1} × · · · × {1}
︸ ︷︷ ︸

t0

×Lt−t0 .

Observe that K is a normal subgroup of the socle of M . By construction, K is a normal subgroup of each
of the socles of I1, . . . , Ik and J1, . . . , Jk. Suppose that I

g = J . Then 〈K,Kg〉 is a normal subgroup of the
socle of Ji for i = 1, . . . , k and we see that 〈K,Kg〉 is isomorphic to Lt−s for some 0 ≤ s ≤ t0. We can
relabel so that

〈K,Kg〉 = {1} × · · · × {1}
︸ ︷︷ ︸

s

×Lt−s

If s = t0, then K = Kg. But NG(K) = GU and so g ∈ GU which is a contradiction. Thus s < t0.
If s = 0, then J1, . . . , Jk have the same socle and so J1 = J2 = · · · = Jk. Since I ∼2 J we obtain that
I1 = I2 = · · · = Ik and so I∼k J with respect to the action of GU , which is a contradiction. Thus 0 < s < t0.

Now we refer to [54, Lemma 4.4.3] from which we deduce that CS(〈K,Kg〉) must be a subgroup of
GL(W1 ⊗ · · · ⊗ Ws) × 1t−s and, of course, must preserve the form ϕ. If s = 1, then this means that
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Group Details of action

SL3t(2) m = 3: M ⊲ PSL3(2)
t

SL4t(2) m = 4: M ⊲ PSL4(2)
t

Table 4.7.2: C7 – SLn(q) – Cases where a beautiful subset was not found.

there is a unique conjugate of M whose socle contains 〈K,Kg〉 and, again, J1 = J2 = · · · = Jk which is a
contradiction as before. This proves the result when t0 = 2.

If t0 > 2, then the property listed at 2(c) implies that the only conjugate of K that is normal in each
of the socles of I1, . . . , Ik is K itself. Hence, since J = Ig and since K is normal in each of the socles of
J1, . . . , Jk, we conclude that the only conjugate of K that is normal in each of the socles of J1, . . . , Jk is
K itself. But this means that Kg = K and, again, the fact that NG(K) = GU implies that g ∈ GU , a
contradiction.

4.7.1 Case S = SLn(q)

In this case [54, Table 3.5.A] allows us to assume that m ≥ 3.

Lemma 4.7.3. In this case either Ω contains a beautiful subset or else the action is listed in Table 4.7.2.

Proof. We write W1 = · · · =Wt, and let B1 = {e1, . . . , em} be a basis for W1. Then

B = {ei1 ⊗ · · · ⊗ eit} | 1 ≤ i1, . . . , it ≤ m}

is a basis for V , and we take M to be the stabilizer the associated tensor decomposition, so that M ∩ S̄ =
(PGLm(q)wr Sym(t)) ∩ S̄.

First assume that q ≥ 7, and let T1 be a split maximal torus in SLm(q) that is diagonal with respect
to B1; then T = T1 ⊗ 1⊗ · · · ⊗ 1 is a subgroup of (the preimage of) M . Define U to be the set of elements
in S for which there exists α ∈ Fq such that

e1 ⊗ · · · ⊗ e1 7→ e1 ⊗ · · · ⊗ e1 + αe2 ⊗ e1 ⊗ · · · ⊗ e1,

and which fixes all elements ei1 ⊗ · · · ⊗ eit ∈ B for which ij > 1 for some j. Observe that U is not a
subgroup of M , that T normalizes U and that T acts transitively on the non-identity elements of U . We
define ∆ = MU , a subset of Ω of size q and observe that U ⋊ T acts 2-transitively on ∆. On the other
hand,

M(∆) ≥ CM (U) ≥
[

GLm−2(q) ◦ (GLm−1(q) ◦ · · · ◦GLm−1(q)
︸ ︷︷ ︸

t−1

).Sym(t− 1)
]

∩ S̄. (4.7.1)

Assuming that ∆ is not beautiful, G∆ induces at least Alt(q) on ∆, hence the point stabilizer M∆ induces
at least Alt(q − 1) on ∆. However, M(∆) contains CM (U), which contains the group on the right hand

side of 4.7.1. It follows that any simple section of M∆ is a section of GL2(q). Since q ≥ 7, it follows
from Lemma 2.1.1 that Alt(q − 1) is not a section of M∆. This implies that ∆ is a beautiful subset and
Lemma 1.6.12 yields the result.

Next assume that q ∈ {3, 4, 5}, and let T2 be a maximal torus in GLm(q) that preserves the decompo-
sition

〈e1〉 ⊕ 〈e2, e3〉 ⊕ 〈e4〉 ⊕ · · · ⊕ 〈em〉,
and that acts on 〈e2, e3〉 as a Singer cycle; let T1 be as above. Then T2 ⊗ T1 ⊗ 1⊗ · · · ⊗ 1 is a subgroup of
M . Define U to be the set of elements in S, for which there exists α, β ∈ Fq such that

e1 ⊗ · · · ⊗ e1 7→ e1 ⊗ · · · ⊗ e1 + αe2 ⊗ e1 ⊗ · · · ⊗ e1 + βe3 ⊗ e1 ⊗ · · · ⊗ e1,
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Group Details of action

SU3t(q) q ∈ {3, 4, 5}, m = 3: M ⊲ PSU3(q)
t

SUmt(2) m ∈ {4, 5}: M ⊲ PSUm(2)
t

Table 4.7.3: C7 – SUn(q) – Cases where a beautiful subset was not found.

and which fixes all other elements of B. Observe that U is not a subgroup of M , that T normalizes U and
that T acts transitively on the non-identity elements of U . We define ∆ = MU , a subset of Ω of size q2

and observe that U ⋊ T acts 2-transitively on ∆. Arguing as above, we see that any non-abelian simple
section of M∆ is isomorphic to a section of GL3(q); hence, since q ≥ 3, Alt(q2 − 1) is not a section of M∆.
This implies that ∆ is a beautiful subset and Lemma 1.6.12 yields the result.

When q = 2, we assume that m ≥ 5 and we proceed similarly: we construct a beautiful subset of size
q4 = 16, using the same method but this time we choose a maximal torus T4 in GLm(q) preserving the
decomposition

〈e1〉 ⊕ 〈e2, e3, e4, e5〉 ⊕ 〈e6〉 ⊕ · · · ⊕ 〈em〉,
and acting on 〈e2, e3, e4, e5〉 as a Singer cycle. At the final stage, we use the fact that Alt(q4−1) = Alt(15)
is not a section of GL5(2) to conclude that the set we have constructed is indeed beautiful.

Lemma 4.7.4. If the action is listed in Table 4.7.2, then the action is not binary.

Proof. We begin with the case when t = 2 for which we use magma. Let S be either SL16(2) or SL9(2) and
let M be a maximal subgroup of G in the Aschbacher class C7. With magma, we have first computed a
Sylow 2-subgroup of M , say Q. Then, we have computed P = NG(NG(Q)) and we have found an element
g ∈ P , with the property that

• |M :M ∩Mg| = 294 when G = SL9(2),

• |M :M ∩Mg| = 588 when G = Aut(SL9(2)),

• |M :M ∩Mg| = 11025 when G ∈ {SL16(2),Aut(SL16(2))}.

In particular, in the faithful primitive action of S on the right cosets Ω of M , a point stabilizer has a
suborbit ∆ with the property that the action of M on ∆ is permutation isomorphic to the action of M on
the right cosets of M ∩Mg. We have constructed the permutation representation ofM under consideration
(that is, on the right cosets of M ∩Mg) and we have verified that in this action (M :M ∩Mg) contains a
beautiful subset of cardinality 7 when S = SL9(2) and cardinality 5 when S = SL16(2). This immediately
yields that the action of M on ∆ is not binary and hence the action of S on Ω is also not binary.

If t > 2, then we use the result for t = 2 combined with Lemma 4.7.2.

4.7.2 Case S = SUn(q)

In this case [54, Table 3.5.B] allows us to assume that m ≥ 3, and that (q,m) 6= (2, 3).

Lemma 4.7.5. In this case either Ω contains a beautiful subset or else the action is listed in Table 4.7.3.

Proof. Our method here will be very reminiscent of that used in Lemma 4.4.3. We start by writing
W =W1 = · · · =Wt, and letting B1 = {u1, . . . , v1, . . . , x} be a hyperbolic basis for W1 (omitting x if m is
even). Taking pure tensors we obtain a hyperbolic basis, B, for V , and we let M be the stabilizer of the
associated tensor decomposition. Then M ∩ S̄ = PGUm(q)wr Sym(t).

If q ≥ 7, then we consider subgroups U and T of GU(〈u1, x, v1〉) defined as per (4.4.1) and (4.4.2). (In
what follows, for i ∈ Z+, we write xi to mean x⊗ · · · ⊗ x

︸ ︷︷ ︸

i

.)
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As in Lemma 4.4.3 we now split into two cases. If q is odd, then we take U0 to be the subgroup of U
obtained by requiring that b ∈ Fq and that c = 1

2b
2; we define an isomorphic group in S: U1 consists of

those elements for which there exists b ∈ Fq such that

u1 ⊗ xt−1 7→ u1 ⊗ xt−1 + bxt − 1

2
b2v1 ⊗ xt−1,

xt 7→ xt − bv1 ⊗ xt−1,

v1 ⊗ xt−1 7→ v1 ⊗ xt−1,

and all elements of 〈u1 ⊗ xt−1, xt, v1 ⊗ xt−1〉⊥ are fixed. Then U1 is a subgroup of order q that is not
contained in M . Now we take T0 to be the subgroup of T obtained by requiring that r ∈ Fq and let
T1 = T ◦ 1 ◦ · · · ◦ 1, a group of order q− 1 that normalizes U1 and acts transitively on the set of non-trivial
elements in U1.

If q is even, the set-up is slightly different but follows the procedure in Lemma 4.4.3 as above. In both
cases, identifying Ω with conjugates of M we set Λ = MU1 ⊂ Ω, and see that SΛ acts 2-transitively upon
Λ, a set of size q. The usual argument shows that that any non-abelian simple section in MΛ is isomorphic
to a section of GU3(q). By Lemma 2.1.1, for q ≥ 7, we conclude that Alt(q − 1) is not a secion of MΛ and
so Λ is a beautiful subset, and Lemma 1.6.12 implies that the action is not binary.

For q ∈ {3, 4, 5} we diverge from the argument given in Lemma 4.4.3, and we assume that m ≥ 4 (the
first line of Table 4.7.3 covers m = 3). We proceed as for q ≥ 7 but we use the existence of a Frobenius
group in GU4(q) this time. We letW0 := 〈u1, u2, v2, v1〉 be a non-degenerate 4-subspace ofW , and consider
the group:

U ⋊ T =

〈







1 a
1

1 −aq
1






,







r
1

1
r−q







| a, r ∈ K, r 6= 0

〉

.

Now we define T0 to be the subgroup of GU(W ) which stabilizes W0, whose action on W0 is equal to the
action of T , and which fixes W⊥

0 point-wise. Then we define

T1 =
(

T0 ⊗ T0 ⊗ 1⊗ · · · ⊗ 1
)

∩ S.

On the other hand we let x be an element of W1 for which (x, x) = 1, and we define

V0 := 〈u1 ⊗ u2 ⊗ xt−2, u2 ⊗ u2 ⊗ xt−2, v2 ⊗ v2 ⊗ xt−2, v1 ⊗ v2 ⊗ xt−2〉.

Observe that V0 is a non-degenerate 4-subspace of V ; indeed there exists an isomorphism between W0

and V0 which maps the listed ordered basis for W0 to that of V0. We can, therefore, define U1 to be the
subgroup of SU(W ) which stabilizes V0, whose action on V0 is equal to the action of U , and which fixes
V ⊥
0 point-wise.

Observe that U1 is of order q2, is contained in S but not in M , and is normalized by T1. Observe,
moreover, that T1 acts transitively on the set of non-identity elements of U1. Defining Λ = MU1 ⊆ Ω, we
therefore conclude that SΛ acts 2-transitively on Λ. The usual argument shows that any simple section
in MΛ is necessarily isomorphic to a section of GU4(q). However Lemma 2.1.1 implies that for q ≥ 3,
Alt(q2 − 1) is not a section of MΛ, and so Λ is beautiful and we are done as before.

Finally, for q = 2, we assume that m ≥ 6 (the cases where m ≤ 5 are listed in Table 4.7.3). We proceed
as in the previous paragraph, using the 2-transitive group constructed in Lemma 4.4.3 for the q = 2 case.
As there, the fact that Alt(15) is not a section of GU6(2) allows us to construct a beautiful subset.

Lemma 4.7.6. If the action is listed in Table 4.7.3, then the action is not binary.
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Group Details of action

Sp2t(5) m = 2, t odd: M ⊲ PSp2(5)
t

Table 4.7.4: C7 – Spn(q) – Cases where a beautiful subset was not found.

Proof. Our method is entirely analogous to that used in Lemma 4.7.4. We begin with the case when t = 2.

Suppose, first, that M ⊲ PSU3(q)
2 and S = SU9(q) with q ∈ {3, 4, 5}. Let {e, f, x} and {v,w, y} be

hyperbolic bases for a Hermitian space of dimension 3 (where (e, f) and (v,w) are hyperbolic pairs and x
and y are anisotropic); taking tensor products we obtain a hyperbolic basis B for a 9-dimensional Hermitian
space, and we obtain our embedding of M in S. We choose an order for B as follows:

e⊗ v, e ⊗w, e ⊗ y, x⊗ v, x⊗ w, f ⊗ y, f ⊗ v, f ⊗ w, x⊗ y.

Define T to be the subgroup of M , whose elements when written with respect to B consist of all diagonal
matrices

diag[aq, a−1, 1, a, a−q, 1, aq, a−1, a1−q],

with a ∈ F∗
q2 . Observe that T normalizes and acts fixed-point-freely upon the group U , whose elements fix

all elements of B except e⊗ y and x⊗ w, and for which there exists a ∈ Fq2 such that

e⊗ y 7→ e⊗ y + ax⊗ v,

x⊗ w 7→ x⊗ w − aqf ⊗ y.

Since U is not in M , we obtain, in the usual way, a set Λ of size q2, on which SΛ acts 2-transitively. Now
observe that an alternating section, Alt(t) of M satisfies t ≤ 7, and so we conclude that MΛ does not have
a section Alt(q2− 1). We conclude that the set Λ is a beautiful subset and Lemma 1.6.12 yields the result.

Next suppose that M ⊲ PSUm(2)
2 and S = SUm2(2) with m ∈ {4, 5}. In both cases we take a pair of

hyperbolic bases {e1, e2, f1, f2} and {v1, v2, w1, w2} (adding in an anisotropic element when m = 5), and we
take tensor products to obtain a hyperbolic basis, B, for an m2-dimensional Hermitian space. Now M has
a subgroup isomorphic to A = SL2(4) that preserves the subspaces 〈e1 ⊗ v1, e1 ⊗ v2〉 and 〈f1 ⊗w1, f1 ⊗w2〉
and fixes all other elements of B.

What is more A lies inside a subgroup X ∼= SL3(4) ≤ S that preserves the subspace 〈e1 ⊗ v1, e1 ⊗
v2, f1 ⊗ v1〉, and note that X 6≤ M . Then Lemma 1.6.10 implies that there is a subset ∆ of Ω of size 16
on which S∆ acts 2-transitively. Since SU5(2) does not contain a section isomorphic to Alt(16), we obtain
that ∆ is a beautiful subset and, as before, Lemma 1.6.12 yields the result.

Now for t > 2 we use Lemma 4.7.2 and the fact that the result is proved for t = 2.

4.7.3 Case S = Spn(q)

In this case [54, Table 3.5.C] implies that qt is odd, that m is even, that t ≥ 3, and that (m, q) 6= (2, 3).

Lemma 4.7.7. In this case either Ω contains a beautiful subset or else the action is listed in Table 4.7.4.

Proof. We start by writingW =W1 = · · · =Wt, and letting B1 = {u1, . . . um/2, vm/2, . . . v1} be a hyperbolic
basis for W1. Taking pure tensors we obtain a hyperbolic basis, B, for V , and we let M be the subgroup
of G that stabilizes the associated tensor decomposition. Then M ∩ S̄ = (PGSpm(q)wr Sym(t)) ∩ S̄.
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First suppose that m ≥ 4. We define two subgroups of Spm(q):

U :=
















1 a1 · · · am−2

1 am−2

. . .
...

1 −a1
1










∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1, . . . am−2 ∈ Fq







,

T :=











1
A

1





∣
∣
∣
∣
∣
∣

A ∈ Spm−2(q)






.

Our construction is inspired by the observation that T normalizes U and acts transitively on the set of
non-trivial elements of U . We define T1 = T ◦ 1 ◦ · · · ◦ 1 < S and we define the group U1 to be the set of
elements for which there exist a1, . . . , am−2 such that

ut1 7→ ut1 + a1u2 ⊗ ut−1
1 + · · · + a(m−2)/2um/2 ⊗ ut−1

1 + am/2vm/2 ⊗ ut−1
1 + · · · + am−2v2 ⊗ ut−1

1 ,

vi ⊗ vt−1
1 7→ vi ⊗ vt−1

1 − ai−1v
t
1,

ui ⊗ vt−1
1 7→ ui ⊗ vt−1

1 + am−iv
t
1,

for i = 2, . . . , m2 , and all other elements of B are fixed. Observe that U1 is of order qm−2, is contained
in S but not in M , and is normalized by T1. Furthermore T1 acts transitively on the set of non-identity
elements of U1. Defining Λ =MU1 ⊆ Ω, we conclude that SΛ acts 2-transitively on the elements of Λ. The
usual argument shows that any simple section of MΛ is necessarily isomorphic to a section of Spm−2(q).
We conclude that either Λ is beautiful or else Spm−2(q) contains a section isomorphic to Alt(qm−2 − 1),
which is impossible by Lemma 2.1.1 (recall that q is odd).

We are left with the situation where m = 2, in which case we use the fact that a Borel subgroup of
GSp2(q) = GL2(q) has a 2-transitive action on q points. We use the basis B1 = {u1, v1}, and consider the
group:

B = U ⋊ T =

〈(
1 a

1

)

,

(
r

s

)

| a, r, s ∈ Fq, r 6= 0 6= s

〉

. (4.7.2)

Then we define
T1 = (T ◦ · · · ◦ T ) ∩ S.

Next we define the group U1 in S to be the set of elements for which there exists b ∈ Fq such that

ut1 7→ ut1 + bv1 ⊗ ut−1
1 ,

u1 ⊗ vt−1
1 7→ u1 ⊗ vt−1

1 + bvt1,

and all elements of 〈ut1, u1 ⊗ vt−1
1 〉⊥ are fixed. Observe that U1 is of order q, is contained in S but not in

M , and is normalized by T1. We can use [54, Proposition 4.7.4] to check that T1 acts transitively on the
set of non-identity elements of U1. Defining Λ =MU1 ⊆ Ω, we conclude that SΛ acts 2-transitively on the
elements of Λ. As usual, either Λ is beautiful or else Sp2(q) contains a section isomorphic to Alt(q − 1).
This yields the result for q ≥ 7. We are left with the case listed in Table 4.7.4 (recall that (m, q) = (2, 3)
is excluded).

Lemma 4.7.8. If the action is listed in Table 4.7.4, then the action is not binary.

Proof. If t = 3, then S = Sp8(5) and we use magma to verify the result. If t > 3, then we use the result for
t = 3 combined with Lemma 4.7.2. Our application of Lemma 4.7.2 requires that we check the property
listed at 2(c): suppose that G0 has socle S̄0 ∼= Sp8(5), that k, I1, . . . , Ik, J1, . . . , Jk are as given in the
lemma and that they satisfy the properties listed at 2(a) and 2(b) – our magma calculations confirm that
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Ω3t(5) m = 3: M ⊲ Ω3(5)
t

Table 4.7.5: C7 – Ωn(q) – Cases where a beautiful subset was not found.

such cosets do exist. Suppose that the property listed at 2(c) is not satisfied, in which case there exists a
group K ∼= PSp2(5) that is a normal subgroup of the socles of (G0)I1 , . . . , (G0)Ik . Then [54, Lemma 4.4.3]
implies that CS̄0

(K) is isomorphic to a subgroup of O+
4 (5), which has socle isomorphic to PSp2(5)×PSp2(5).

Since the socles of (G0)I1 , . . . , (G0)Ik are isomorphic to PSp2(5)×PSp2(5)×PSp2(5), we conclude that the
socles of (G0)I1 , . . . , (G0)Ik are all equal and hence I1 = · · · = Ik. Then the property listed at 2(a) implies
that J1 = · · · = Jk and now the property listed at 2(b) yields a contradiction. We conclude, therefore, that
the property listed at 2(c) is satisfied.

4.7.4 Case S = Ωn(q), n odd

In this case note that m and q are odd, and [54, Table 3.5.D] implies that (m, q) 6= (3, 3).

Lemma 4.7.9. In this case either Ω contains a beautiful subset or else the action is listed in Table 4.7.5.

Proof. We start by writing W =W1 = · · · =Wt, and letting B1 = {u1, . . . , v1, . . . , x} be a hyperbolic basis
for W1. Taking pure tensors we obtain a hyperbolic basis, B, for V , and we let M be the subgroup of G
that stabilizes the associated tensor decomposition. Then M ∩ S̄ = (Ωm(q)wr Sym(t)) ∩ S̄.

First suppose that q ≥ 7; here our method is very similar to that used in Lemma 4.7.5. We define
analogues of the groups defined at (4.4.1) and (4.4.2): we consider subgroups of SO(〈u1, x, v1〉) consisting
of elements of the form

U =











1 b − b2

2
1 −b

1



 | b ∈ Fq






; (4.7.3)

T =











r
1

r−1



 | r ∈ Fq with r 6= 0






. (4.7.4)

Then U ⋊ T is a Borel subgroup of SO3(q), and is a Frobenius group. We let T1 = (T ◦ · · · ◦ T ) ∩ S, a
subgroup of M ; we let U1 be the group consisting of elements for which there exists b ∈ Fq such that

u1 ⊗ xt−1 7→ u1 ⊗ xt−1 + bxt − 1

2
b2v1 ⊗ xt−1,

xt 7→ xt − bv1 ⊗ xt−1,

v1 ⊗ xt−1 7→ v1 ⊗ xt−1,

and all elements of 〈u1 ⊗ xt−1, xt, v1 ⊗ xt−1〉⊥ are fixed. Then U1 is a subgroup of order q that is not
contained in M . Now T1 normalizes U1 and acts transitively on the set of non-trivial elements in U1.

In the same way as before we obtain a beautiful subset, provided Alt(q− 1) is not a section of SO3(q);
this is true for q ≥ 7 by Lemma 2.1.1.

Suppose that q ∈ {3, 5} and m ≥ 5. We define

T =






g ◦ 1 ◦ · · · ◦ 1
︸ ︷︷ ︸

t−1

| g ∈ Ωm(q), x
g = x,

g stabilizes both 〈u1, . . . , u(m−1)/2〉 and 〈v1, . . . , v(m−1)/2〉






.
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Ω+
2t(5) U1 symplectic: M ⊲ PSp2(5)

t

Ω+
8t(3) U1 orthogonal: M ⊲ PΩ−

8 (3)
t

Ω+
4t(q) q ∈ {3, 5}, U1 orthogonal: M ⊲ PΩ−

4 (q)
t

Table 4.7.6: C7 – Ω+
n (q) – Cases where a beautiful subset was not found.

Now define U to be the set of elements g such that, for i = 1, . . . , m−1
2 , there exist ai ∈ Fq such that

x⊗ ut−1
1 7→ x⊗ ut−1

1 + a1u
t
1 + a2u2 ⊗ ut−1

1 + · · ·+ a(m−1)/2u(m−1)/2 ⊗ ut−1
1

vi ⊗ vt−1
1 7→ vi ⊗ vt−1

1 − aix⊗ vt−1
1 ,

and all other members of B are fixed. In exactly the same way as before, we see that T normalizes U , that
T acts transitively on the set of non-trivial elements of U , that T is in M , and that U is not contained in
M . Then, identifying Ω with conjugates of M , and setting ∆ = MU , we conclude that ∆ is a set of size
q(m−1)/2 whose set-wise stabilizer acts 2-transitively.

As usual, either ∆ is a beautiful subset and we are done, or M∆ has a section Alt(q(m−1)/2 − 1), in
which case SOm(q) also has such a section. This is not the case by Lemma 2.1.1.

The remaining case m = 3, q = 5 is in Table 4.7.5 (recall that (m, q) = (3, 3) is excluded).

Lemma 4.7.10. If the action is listed in Table 4.7.5, then the action is not binary.

Proof. When t = 2, we have S = Ω9(5) and we use magma to verify the result, see Lemma 4.1.1. The
remainder of the proof, for t > 2, proceeds using the result for t = 2 along with Lemma 4.7.2.

4.7.5 Case S = Ω+
n (q)

In this case there are two subfamilies, as listed in Table 4.7.1.

Lemma 4.7.11. In this case either Ω contains a beautiful subset or else the action is listed in Table 4.7.6.

Proof. Note that [10, Table 8.50] allows us to exclude n = 8 in all cases; in particular this means n ≥ 16.
We split into two cases.

First consider line 4 of table 4.7.1. In this case W is equipped with an alternating form, M ∩ S̄ =
(PGSpm(q)wr Sym(t)) ∩ S̄, and both m and qt are even. Furthermore in the case where q is even, [54,
Tables 3.5.E and 3.5.I] (and the explanation on p.69) imply that m ≥ 6.

Our method is virtually identical to that of Lemma 4.7.7. For m > 2 we proceed as before, except that
we make a sign adjustment for the elements of U1.

We obtain the same conclusion as in Lemma 4.7.7 – the existence of a beautiful subset of size qm−2 –
and we are done.

For m = 2 our proof is, again, the same as that of Lemma 4.7.7. Note that, by [54, Table 3.5.E], q is
odd, q ≥ 5; in addition we may assume that t ≥ 4. We obtain a beautiful set except when q = 5, and this
case is listed in Table 4.7.6.

Now consider line 3 of Table 4.7.1. Here q is odd, W is equipped with a symmetric form of type
ε ∈ {+,−} and M ∩ S̄ = (POǫ

m(q)wr Sym(t)) ∩ S̄. Furthermore [54, Table 3.5.E] implies that m ≥ 5 + ε1.
This time B1 = {u1, . . . , um/2−1, v1, . . . , vm/2−1, x, y} is a hyperbolic basis for W if ε = −, while B1 =
{u1, . . . , um/2, v1, . . . , vm/2} is a hyperbolic basis for W if ε = +. Taking pure tensors we obtain a basis,
B, for V , and we let M be the subgroup of G that stabilizes the associated tensor decomposition. Write k
for the Witt index of W .
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Assume first that k ≥ 3. Consider the following group:

T =






g ◦ 1 ◦ · · · ◦ 1
︸ ︷︷ ︸

t−1

| g ∈ Ωεm(q), u
g
k = uk, v

g
k = vk

g stabilizes both 〈u1, . . . , uk−1〉 and 〈v1, . . . , vk−1〉






.

Now define U to be the set of elements g such that, for i = 1, . . . , k − 1, there exist ai ∈ Fq such that

uk ⊗ ut−1
1 7→ uk ⊗ ut−1

1 + a1u
t
1 + a2u2 ⊗ ut−1

1 + · · ·+ ak−1uk−1 ⊗ ut−1
1

vi ⊗ vt−1
1 7→ vi ⊗ vt−1

1 − aivk ⊗ vt−1
1 ,

and all other members of B are fixed. One can check directly that T normalizes U , that T acts transitively
on the set of non-trivial elements of U , that T is in M , and that U is not in M . Then, identifying Ω with
conjugates of M , and setting Λ = MU , we conclude that Λ is a set of size qk−1 whose set-wise stabilizer
acts 2-transitively.

Either ∆ is a beautiful subset and we are done, or Alt(qk−1−1) is a section of SOǫ
m(q). By Lemma 2.1.1,

since k ≥ 3 and q is odd, the latter can only hold if q = 3 and (m, ǫ) = (8,−), a case listed in Table 4.7.6.

We are left with the possibility that k ≤ 2, in which case ε = − and m ∈ {4, 6}. Suppose, first, that
m = 6. We define

T =






g ◦ 1 ◦ · · · ◦ 1
︸ ︷︷ ︸

t−1

| g ∈ Ωm(q), x
g = x, yg = y

g stabilizes both 〈u1, u2〉 and 〈v1, v2〉






.

Note that we take x to satisfy ϕ(x, x) = 1. Now define U to be the set of elements g for which there exist
a1, a2 ∈ Fq such that

x⊗ ut−1
1 7→ x⊗ ut−1

1 + a1u
t
1 + a2u2 ⊗ ut−1

1 ,

vt1 7→ vt1 − a1x⊗ vt−1
1 ,

v2 ⊗ vt−1
1 7→ v2 ⊗ vt−1

1 − a2x⊗ vt−1
1

and all other members of B are fixed. As before we obtain a set ∆ of size q2 on whichM∆ acts 2-transitively.
Either ∆ is a beautiful subset and we are done, or Alt(q2 − 1) is a section of M∆, in which case SO−

6 (q)
also has such a section. This is not the case by Lemma 2.1.1.

Finally, suppose that m = 4 and take

U0 ⋊ T0 ∼= [q]⋊ Cq−1 < Ω−
4 (q) ≤ Isom(W ).

Define T = T0 ◦1 ◦ · · · ◦ 1︸ ︷︷ ︸

t−1

. To define U , we first let W0 =W ⊗xt−1, and we define U to be the subgroup of

Ω−
m(q) which fixes, point-wise, every element of W⊥

0 , and whose action on W0 is isomorphic to the action
of U0 on W . We can check that T and U have the same properties as before. Thus, following the same
argument we are done unless O−

4 (q) contains a section isomorphic to Alt(q − 1). Now Lemma 2.1.1 shows
this can only happen if q ∈ {3, 5}, as in Table 4.7.6.

Lemma 4.7.12. If the action is listed in Table 4.7.6, then the action is not binary.

Proof. We work through Table 4.7.6 line-by-line.

First consider Line 1. We apply Lemma 4.7.2 with t0 = 3. In this case S̄0 ∼= Sp8(5) and we confirm,
using magma, that the actions of almost simple groups with socle S̄0 on maximal C7-subgroups of type
Sp2(5)wr Sym(3) are not binary. This yields the result for t ≥ 4, as required. (Note that to confirm the
property listed at 2(c) in Lemma 4.7.2 we argue as per Lemma 4.7.8.)
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Next consider Line 2. If t = 2, then we let {u1, u2, u3, v1, v2, v3, x, y} be a hyperbolic basis for W .
Define

T1 :=













A
A−T

1
1







| A ∈ SL3(3)







,

a subgroup of Ω−
8 (3), and let T = T1 ◦ 1, a subgroup of M . Now consider the subspace

X := 〈x⊗ u1, u1 ⊗ u2, u2 ⊗ u1, u3 ⊗ u1, x⊗ v1, v1 ⊗ v1, v2 ⊗ v1, v3 ⊗ v1〉,

and observe that X is a non-degenerate subspace of V of type O+
8 . We define U to be the set of elements

in S for which there exist a, b, c ∈ Fq such that

x⊗ u1 7→ x⊗ u1 + au1 ⊗ u1 + bu2 ⊗ u1 + cu3 ⊗ u1,

v1 ⊗ v1 7→ v1 ⊗ v1 − ax⊗ v1,

v2 ⊗ v1 7→ v2 ⊗ v1 − bx⊗ v1,

v3 ⊗ v1 7→ v3 ⊗ v1 − cx⊗ v1,

and all elements of X⊥ are fixed. We see that U is a subgroup of S that is not contained in M , that T
normalizes U and that T acts transitively on the set of non-identity elements of U . We obtain, in the usual
way, a set Λ of size |U | = 27 on which GΛ acts 2-transitively. Since Alt(26) is not a section of M , we
obtain a beautiful subset and we conclude that the action is not binary by Lemma 1.6.12. For t > 2, we
use the result for t = 2 along with Lemma 4.7.2.

Finally consider Line 3 and suppose, first, that t = 2, S = Ω+
16(q) and M ⊲ M0 := PΩ−

4 (q)
2 with

q ∈ {3, 5}. We confirm the result with magma, in the following way. For all groups M , we calculate all
actions of M on the cosets of a subgroup H ≤ M where (M : H) is odd. We find that the only binary
actions occur when H =M .

Now, observe that |M : H| is even, thus a Sylow 2-subgroup, P , of M is normalized by a 2-group Q
that strictly contains P . Let x ∈ Q\P and consider H =M ∩Mx. Our magma calculation implies that the
action of M on (M :M ∩Mx) is not binary, and so Lemma 1.6.1 implies that the action of G on (G :M)
is not binary.

Again the proof for t > 2 is completed using the result for t = 2 and Lemma 4.7.2.

4.8 Family C8
In this case M is the normalizer of a classical subgroup of G having the same natural module V . The
possiblilities are listed in Table 4.8.1, taken from [54, §4.8]. Note that in case L, the classical subgroup
M is centralized by a graph or graph-field automorphism of S (see Proposition 2.5.1), so M may not be
almost simple.

case type conditions

L Spn(q) n ≥ 4, n even

L SUn(q
1/2) n ≥ 3, q square

L Ωǫn(q) n ≥ 3, q odd
S Ωǫn(q) n ≥ 4, q even

Table 4.8.1: Maximal subgroups in family C8

The main result of this section is the following. The result will be proved in a series of lemmas.

Proposition 4.8.1. Suppose that G is an almost simple group with socle S̄ = Cln(q), and assume that
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(i) n ≥ 3, 4, 4, 7 in cases L,U, S,O respectively, and

(ii) Cln(q) is not one of the groups listed in Lemma 4.1.1.

Let M be a maximal subgroup of G in the family C8. Then the action of G on (G :M) is not binary.

4.8.1 Case S = SLn(q)

Lemma 4.8.2. Suppose that G is almost simple with socle equal to PSLn(q). If M is a maximal C8-
subgroup, then the action of G on (G :M) is not binary.

Proof. By Lemma 4.1.1, we may assume that q > 25 when n = 3, that q > 9 when n = 4, that q > 7 when
n = 5, that q > 4 when n = 6 and that q > 3 when n = 8. In what follows we suppose, for a contradiction,
that the action of G on (G :M) is binary.

Suppose first that n ≥ 5 whenM is unitary, and n ≥ 7 whenM is orthogonal. We refer to Lemma 2.2.8;
let x be the element listed there and observe that CS(x) is strictly greater than CM (x). We conclude that
there is a suborbit, ∆, on which the action of M is isomorphic to the action of M on (M : H), where
H = M ∩ Mg (for some g ∈ CS(x) \ CM (x)) is a subgroup of M containing the element x (and not
containing M ∩ S̄). Lemma 1.6.1 implies that the action of M on (M : H) is binary, and now Lemma 2.2.8
implies that M must contain a section isomorphic to Sym(t) where t is as follows:

1. if M is unitary and n is even, then t = qn−4; Lemma 2.1.1 implies a contradiction.

2. if M is unitary and n is odd, then t = qn−3; Lemma 2.1.1 implies a contradiction.

3. if M is symplectic or orthogonal of type O+ with n even, then t = q(n−2)/2; given the excluded cases
for small n and q, Lemma 2.1.1 implies a contradiction.

4. if M is orthogonal and n is odd, then t = q(n−3)/2; Lemma 2.1.1 implies a contradiction.

5. if M is orthogonal of type O− with n even, then t = q(n−4)/2; given the excluded cases for small n
and q, Lemma 2.1.1 implies a contradiction.

Next assume thatM is unitary and n ∈ {3, 4}. Here we adopt the same argument using Lemmas 2.2.10
and 2.2.11 in place of Lemma 2.2.8. Again Lemmas 2.1.1 and 4.1.1 yield a contradiction except when
(n, q) = (4, 49). This final case was dealt with using magma and the permutation characther method (a.k.a.
Lemma 1.8.1).

It remains to consider the case where M is orthogonal (so q is odd) and 3 ≤ n ≤ 6. First assume
n ∈ {5, 6}. We think of V as a formed space with form, ϕ, preserved by M . Let W = 〈e1, e2, f1, f2〉 be a
non-degenerate subspace of V of type O+

4 , and consider the group

T :=

{(
A

A−t

)

| A ∈ SL2(q)

}

,

inside M ; here we specify the action of the elements of T on W (with respect to the given basis) and we
require that elements of T fix all elements of W⊥. Then T is isomorphic to SL2(q).

Now let {x} or {x, y} be a basis for W⊥ and consider the group, U < S, consisting of elements for
which there exist a1, a2 ∈ Fq such that

x 7→ x+ a1e1 + a2e2,

and all vectors in W are fixed, as is y if n = 6. Then U is a group of order q2, U does not lie in M , U is
normalized by T , and T acts transitively on the set of non-identity elements of U . Thus, in the usual way,
we obtain a set Λ ⊂ Ω of size q2 such that GΛ is 2-transitive. This set is a beautiful set unless Alt(q2) is a
section of SLn(q); however, this is not the case by Lemma 2.1.1. Hence Lemma 1.6.12 implies the result.
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Finally, for n ∈ {3, 4} we argue similarly. Let W = 〈e1, f1〉 be a non-degenerate subspace of V of type
O+

2 , and consider the group

T :=

{(
a

a−1

)

| a ∈ F∗
q

}

,

inside M ; as before we specify the action of the elements of T on W (with respect to the given basis) and
we require that elements of T fix all elements of W⊥. Then T is cyclic of order q − 1. Again let {x} or
{x, y} be a basis for W⊥. Consider the group, U < S, consisting of elements for which there exists a ∈ Fq
such that

x 7→ x+ ae1,

and all vectors in W are fixed, as is y if n = 4. As before we obtain a beautiful set of size q unless Alt(q)
is a section of SLn(q), which is not the case as q > 9.

4.8.2 Case S = Spn(q)

This case is line 4 of Table 4.8.1.

Lemma 4.8.3. Suppose that G is almost simple with socle PSpn(q), where q is even, n ≥ 4 and (n, q) 6=
(4, 2). Let M = NG(O

ǫ
n(q)) be a maximal C8-subgroup. Then the action of G on (G :M) is not binary.

Proof. First observe that for q = 2, the action of G on (G :M) is 2-transitive, hence is clearly not binary.
So assume from now on that q > 2.

Suppose now that ǫ = +, and let H = O+
n (2) be a subfield subgroup of M . There is a subfield

subgroup K = Spn(2) of G containing H, and K ∩M = H. If we let Λ = {Mk : k ∈ K}, then the action
of K on Λ is isomorphic to the action of Spn(2) on the cosets of O+

n (2), which is 2-transitive of degree
d := 2n/2−1(2n/2 +1). As Alt(d) is not a section of Spn(q) by Lemma 2.1.1, it follows that Λ is a beautiful
subset, giving the conclusion in this case.

Suppose finally that ǫ = −. The argument of the previous paragraph does not work, as O−
n (2

a) does
not possess a subfield subgroup O±

n (2) if a is even, so we use a different argument.
For n ≥ 8, let x ∈ M be the element defined in Lemma 2.2.8. This has larger centralizer in G than in

M , so we can choose g ∈ CG(x) \M . Then x ∈M ∩Mg, so Lemmas 2.2.8 and 2.1.1 imply that the action
of M on (M :M ∩Mg) is not binary.

Next suppose that n = 6, so M ⊲Ω−
6 (q)

∼= PSU4(q). This time we use the element x = diag(1, 1, a, a−1)
of PSU4(q), defined in Lemma 2.2.11, where a ∈ Fq has order q − 1. This acts as diag(1, 1, a, a, a−1, a−1)
in Ω−

6 (q), so there exists g ∈ CG(x) \ M . Now, provided q > 8, we finish the proof as above, using
Lemmas 2.2.11 and 2.1.1. If q = 8, then we use the same argument with Lemma 2.2.11 and the fact that
Alt(8) is not a section of PSU4(8); if q = 4, then the result follows from Lemma 4.1.1.

Finally, suppose that n = 4, so M ⊲ Ω−
4 (q)

∼= PSL2(q
2). This time we use the element x defined in

Lemma 2.2.4 in exactly the same way as in the previous paragraph to obtain the conclusion.

4.9 Family S
Let us first define the family S of subgroups of classical groups. Let G be an almost simple group with
socle Cln(q), a classical simple group with associated natural module V of dimension n over Fqu, where
u = 2 if Cln(q) is unitary and u = 1 otherwise. We say that a subgroup M of G is in the family S if the
following hold:

(a) M is almost simple, with socle M0,

(b) the action of the preimage of M0 on V is absolutely irreducible, and cannot be realised over a proper
subfield of Fqu,

(c) M0 is not contained in a member of the family C8 of subgroups of G.
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In this section we prove the following result. We shall adopt the assumptions on the dimension n made
at the beginning of Section 4.1.1.

Proposition 4.9.1. Suppose that G is an almost simple group with socle S̄ = Cln(q), and assume that

(i) n ≥ 3, 4, 4, 7 in cases L,U, S,O respectively, and

(ii) Cln(q) is not one of the groups listed in Lemma 4.1.1.

Let M be a maximal subgroup of G in the family S. Then the action of G on (G :M) is not binary.

Note that, in all sections up to this point we have assumed (as stipulated in Section 4.1.1) that if
S̄ = PΩ+

8 (q), then G does not contain a triality automorphism. In the current section we shall drop this
assumption. To clarify what we mean by assuming that “M is in the family S” in this special case: we
are allowing the possibility that S̄ = PΩ+

8 (q), that G contains a triality automorphism, that M is almost
simple with socle M0, and that M0 satisfies the defining conditions (a,b,c) given above for the family S.

We have a number of strategies, which we outline first.

4.9.1 Strategies

Strategy 1: Subgroups containing centralizers

This strategy is based on the following definition, the value of which is demonstrated in the ensuing
proposition. It will be used for the case where the socle M0 of M is an alternating group.

Definition 4.9.2. Let L be a simple group and r a positive integer. We say that L satisfies Property(r)
if there exists an element xr ∈ L of order r such that the following hold for any almost simple group M
with socle L:

(1) Z(CM (xr)) = 〈xr〉;

(2) for any core-free subgroup H of M such that CL(xr) ≤ H, the action of M on (M : H) is not binary;

(3) If 〈xr〉 ≤ N ⊳ CM (xr) with CM (xr)/N solvable, then N contains CL(xr).

Lemma 4.9.3. Let G be an almost simple group with socle a classical group G0 = Cln(q), and suppose M
is a maximal subgroup of G in the family S, with socle L. Assume that L satisfies Property(r) for each
r ∈ {3, 5, 7, 11, 13}. Then the action of G on (G :M) is not binary.

Proof. Let G,G0, L and M be as in the statement, and let q = pa with p prime. Consider Property(r),
satisfied by L for r ∈ {3, 5, 7, 11, 13}. If r 6= p, then xr is a semisimple element of G, and the structure of
C := CG(xr) is described in [47, Thm. 4.2.2]: there is a normal subgroup C0 of C that has a non-trivial
central torus Tr containing xr, and such that C/C0 is solvable (C0 is called the connected centralizer in
[47, 4.2.2]).

Suppose that Tr 6= 〈xr〉, and let g ∈ Tr \ 〈xr〉 and H = M ∩ Mg. Then g centralizes C0 ∩ M , a
normal subgroup of CM (xr) with solvable quotient, and hence H contains CL(xr) by condition (3) in the
definition of Property(r). If also H contains L, then g ∈ NG(L) = M , and so g ∈ Z(CM(xr)), which is
a contradiction as Z(CM (xr)) = 〈xr〉 by assumption (1) in the definition of Property(r). As M is almost
simple with socle L, H is core-free in M , and so Property(r) implies that (M, (M : H)) is not binary,
whence also (G, (G :M)) is not binary, as required. Hence we may assume from now on that

if p 6= r, then Tr = 〈xr〉. (4.9.1)

Case G0 symplectic or orthogonal. Assume that G0 = PSpn(q), or PΩ
±
n (q) with n even, or PΩn(q)

with n odd. If p 6= 3, then the torus T3 has order divisible by q−ǫ
d , where ǫ = ±1, q ≡ ǫ mod 3 and d is 1,2

or 4 (it can only be 4 in the orthogonal case). By (4.9.1) we have |T3| = 3. Hence we see that

q = 2, 4, 5, 7, 11, 13 or 3a.
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If q = 7, 13 or 3a with a > 2, then the torus T5 has order greater than 5, so these possibilities are excluded
by (4.9.1).

Now consider the torus T7. For q = 4, 5, 9 or 11, this has order divisible by q3−δ
e , where q3 ≡ δ =

±1 mod 7 and e ∈ {1, 2, 4}, and so |T7| > 7, contradicting (4.9.1).
We are left with the cases q = 2 or 3. For these we consider T11, which has order divisible by 25 + 1

or 35−1
2 , respectively, again contrary to (4.9.1). This completes the proof for the case of symplectic and

orthogonal groups.

Case G0 linear. Now assume that G0 = PSLn(q). Suppose p 6= 3 and let q ≡ ǫ mod 3 with ǫ = ±1.
Consider Property(3). A preimage of the element x3 in SLn(q) acts on V̄ = Vn(q)⊗ F̄q with at most three
eigenspaces. Hence the central torus T3 (of order 3 by (4.9.1)) in CG(x3) has order either q − ǫ or q−ǫ

(n,q−1) ,
and so one of the following holds:

(i) q = 2, 4 or 5,

(ii) ǫ = 1 and q−1
(n,q−1) = 3,

(iii) q = 3a.

Now consider Property(5), assuming p 6= 5. As above, T5 has order q− 1 or q−1
(n,q−1) (if q ≡ 1 mod 5), order

q+1
c with c ∈ {1, 2} (if q ≡ −1 mod 5), and order q4−1

(q−1)c (if q ≡ ±2 mod 5). Since |T5| = 5, it follows that
one of the following holds:

(iv) q = 4, 5 or 9,

(v) q = 52k and q−1
(n,q−1) = 3,

(vi) q = 34k and q−1
(n,q−1) = 5.

Now Property(7) rules out all possibilities except for q = 4, since for all the other cases we must have

|T7| > 7. Finally, Property(11) excludes q = 4, since in this case T11 must have order divisible by 45−1
3 .

Case G0 unitary. To complete the proof of the theorem, assume that G0 = PSUn(q). This is very
similar to the linear case. If p 6= 3 then consideration of Property(3) shows that either q ∈ {2, 4, 7} or
q ≡ −1 mod 3 and q+1

(n,q+1) = 3. Then Property(5) implies that one of the following holds:

(i) q = 2, 4 or 11,

(ii) q = 5k and q+1
(n,q+1) = 3,

(iii) q = 32k and q+1
(n,q+1) = 5.

Now Property(7) excludes all possibilities except for q = 2, and that is ruled out by Property(13).

Strategy 2: Odd degree actions

Our second strategy has been used already at various stages; however it is convenient to write down an
explicit statement. Note that the proof of the next proposition appeals to results of [73] and [51] which
detail, amongst other things, all primitive actions of odd-degree for all of the almost simple groups. Note
that both sources omit one family of actions for the groups with socle 2G2(q) (here the stabilizer contains
a group isomorphic to (22 ×D 1

2
(q+1)) : 3), however this omission does not affect the proof given below.

Lemma 4.9.4. Let G be an almost simple group with socle a classical group G0 = Cln(q), not one of the
groups listed in Lemma 4.1.1. Suppose M is a maximal subgroup of G in the family S, with socle M0.
Then one of the following occurs:
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1. the action of G on (G :M) is not binary;

2. there is a suborbit on which M has a transitive faithful action of odd-degree that is binary;

3. (G0,M ∩G0) = (PΩ7(p),Sp6(2)) or (PΩ+
8 (p),Ω

+
8 (2)), where p is an odd prime.

Proof. Suppose that the third listed possibility does not occur. Then [73] (or, equivalently, [51]) implies
that |G : M | is even. Thus there exists a non-trivial odd subdegree for the action of G on (G : M).
Hence there exists g ∈ G \M such that |M : M ∩Mg| is odd; moreover, by the maximality of M in G,
M0 6≤M ∩Mg, so the action of M on (M :M ∩Mg) is faithful.

Now suppose, in addition, that the second listed possibility does not occur, so that the action of M on
(M : M ∩Mg) is not binary. Then Lemma 1.6.1 implies that the action of G on (G : M) is not binary,
and so the first listed possibility occurs, as required.

Strategy 3: Using distinguished elements

The strategy here is used primarily for the situation where M0 is a group of Lie type. It has already been
used multiple times for other families, and was briefly discussed at the start of Chapter 2. We briefly
summarise:

1. We pick a distinguished element g ∈ M and show that, if H is any core-free subgroup of M that
contains g, then the action of M on (M : H) is not binary. This was done in §2.2.

2. We give an upper bound for |CM (g)| and we use results of §2.4 to show that, in general, |CM (g)| is
smaller than the smallest centralizer in G. We conclude that there exists x ∈ CG(g) \ CM (g).

3. Now M ∩Mx is a core-free subgroup of M that contains g. We conclude that the action of M on
(M :M ∩Mx) is not binary. Then Lemma 1.6.1 implies that the action of G on M is not binary.

We shall also need the well-known lower bounds for dimensions of cross-characteristic representations
of groups of Lie type, taken from [65], with improvements as given in [100]:

Proposition 4.9.5. Let S be a simple group of Lie type over Fr, not isomorphic to one of the following
groups:

PSL2(r) (r ≤ 9), PSL±
4 (r) (r = 2, 3), Ω+

8 (2), Ω7(3),
G2(r) (r ≤ 4), 2E6(2), F4(2),

2F4(2)
′, 2B2(8).

If V is a non-trivial irreducible module for a quasisimple cover of S over a field of characteristic coprime
to r, then dimV ≥ R(S), where R(S) is as given in Table 4.9.1.

Table 4.9.1: Lower bounds for cross-characteristic representations

S PSLd(r) (d ≥ 3) PSUd(r) PSp2k(r) (r odd) PSp2k(r) (r even) PΩǫ2k+y(r) (y ≤ 1)

R(S) rd−r
r−1 − 1 rd−1

r+1
1
2(r

k − 1) (rk−1)(rk−r)
2(r+1)

(rk−1)(rk−1−1)
r2−1

S E8(r) E7(r) Eǫ6(r) F4(r)
2F4(r)

R(S) r29 − r27 r17 − r15 r11 − r9 r8 − r6 r5 − r4

S G2(r)
3D4(r)

2G2(r)
2B2(r)

R(S) r3 − r r5 − r3 r2 − r (r − 1)
√

r/2
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4.9.2 The case where M0 is alternating

In this case, we use a combination of Strategies 1 and 2.

Lemma 4.9.6. Let G be an almost simple group with socle a classical group G0 = Cln(q), and suppose M
is a maximal subgroup of G in the family S, with socle M0

∼= Alt(d) for some d ≥ 27. Then the action of
G on (G :M) is not binary.

Proof. We use Strategy 1: Lemma 4.9.3 yields the result provided we can verify Property(r) for r =
3, 5, 7, 11 and 13.

In every case, we take xr to be the r-cycle (1, 2, . . . , r). Then CM (xr) ∼= (〈xr〉 × Sym(d− r)) ∩M and
CM0(xr)

∼= 〈xr〉×Alt(d− r). Parts (1) and (3) in the definition of Property (r) follow immediately. Hence
to prove the result we must prove part (2): if H is a core-free subgroup of M containing CM0(xr), then
the action of M on (M : H) is not binary.

We claim that the group H satisfies

〈xr〉 ×Alt(d− r) ≤ H ≤ (Sym(r)× Sym(d− r)) ∩M.

To see this observe that the first inclusion is true by definition; the second will follow if we can show that H
is intransitive in the natural action on d points. Suppose, instead, that H is transitive. If H is imprimitive,
then H is isomorphic to a subgroup of Sym(e)wr Sym(f) where ef = d. Then, since max{e, f} ≤ d

2 , any

alternating section of H is of form Alt(s) with s ≤ d
2 . But, since d ≥ 27, r ≤ 13 and H contains Alt(d− r),

we have a contradiction and we conclude that H is primitive. But H contains a 3-cycle hence, by a classical
theorem of Jordan, H contains Alt(d), a contradiction. Thus the claim follows.

Suppose, first, that M = Alt(d) and let K = (Sym(r) × Sym(d − r)) ∩M . We have just seen that K
contains H. Now Lemma 1.6.2 implies that if the action of K on (K : H) is not binary, then the result
follows. The kernel of the action of K on (K : H) contains a subgroup isomorphic to Alt(d − r) and we
see that the action of K on (K : H) is isomorphic to the action of Sym(r) on some subgroup H1 that is
the projection of H to Sym(r). Using magma we confirm that, for r ∈ {5, 7, 11, 13}, all such actions are not
binary, provided H1 is core-free. Thus we are left with the case where H1 = Alt(r) or Sym(r) and we have

H = Alt(r)×Alt(d− r) or (Alt(r)×Alt(d− r)).2.

We repeat this analysis with M = Sym(d) and K = Sym(r)×Sym(d− r). In this case the kernel of the
action of K on (K : H) is isomorphic to either Alt(d − r) or Sym(d− r) and we see that the action of K
on (K : H) is isomorphic to the action of either Sym(r) or Sym(r)× C2 on some subgroup H1. This time
magma confirms that in all but one case these actions are not binary, provided H1 does not contain Alt(r).

Let us deal first with the one exceptional case in which H1 does not contain Alt(r) : here r = 5 and
the action of K on (K : H) is isomorphic to the action of Sym(5) × C2 = 〈(1, 2, 3, 4, 5), (4, 5), (6, 7)〉 on
〈(1, 2, 3, 4, 5), (2, 5)(3, 4)(6, 7)〉. In particular, we can take H to contain

H0 = 〈(1, 2, 3, 4, 5)〉 ×Alt({6, 7, 8, . . . , d})

as an index 2 subgroup and we have H = 〈H0, (2, 5)(3, 4)(6, 7)〉. We will show directly that the action of
M on (M : H) is not binary. We define

I1 = J1 = H;

I2 = J2 = H(2, 3, 4, 5, 6, 7);

I3 = H(1, 3, 4, 5, 6, 7);

J3 = H(1, 6, 7, 5, 4, 3).

In addition we set
g12 = (1), g13 = (1, 5, 4, 3, 2) and g23 = (1, 5, 3, 6, 4).
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Direct calculation confirms that for i, j ∈ {1, 2, 3}, Igiji = Ji and I
gij
j = Jj ; in other words, (I1, I2, I3)∼2

(J1, J2, J3). Now suppose that there exists g ∈ Sym(d) such that Igi = Ji for i ∈ {1, 2, 3}. We note that the
stabilizer in Sym(d) of an element in (M : H) contains a unique normal cyclic subgroup generated by a
5-cycle. For I1 we can take this 5-cycle to be (1, 2, 3, 4, 5), for I2 we can take this 5-cycle to be (1, 3, 4, 5, 6).
Since I1 = J1 and I2 = J2 we conclude that g must normalize the two groups generated by these 5-cycles.
Direct calculation confirms that g is, therefore, a subgroup of Sym({7, 8, 9, . . . , d}). But now we require
that Ig3 = J3; the stabilizer of I3 (resp. J3) contains a normal cyclic subgroup generated by (2, 4, 5, 6, 3)
(resp. (1, 3, 4, 6, 2)) and g must conjugate the first subgroup to the second. But g clearly commutes with
these subgroups and we have a contradiction. Thus (I1, I2, I3) 6∼3 (J1, J2, J3) and we are done.

We are left with the situation where

Alt(r)×Alt(d− r) ≤ H ≤ Sym(r)× Sym(d− r).

Observe that, for fixed d and r, there are five such groups. We now divide the proof in two parts, depending
on whether H contains CM (xr) or not.

Suppose that H contains CM (xr). We define a function from (M : H) to the power set of the
conjugacy class xMr :

ψ : (M : H) −→ P(xMr )

Hk 7→ ωk := {k−1
0 xrk0 | k0 ∈ Hk}.

Notice that ωxr = xHr . We claim that the image, ψ(M : H) is a partition of xMr . It is clear that

⋃

X∈ψ(M :H)

X = xMr ,

thus suppose that ωk1 ∩ ωk2 6= ∅. This implies that (k′1)
−1xr(k

′
1) = (k′2)

−1xr(k
′
2) for some k′1 ∈ Hk1, k

′
2 ∈

Hk2. But this implies that (k′2)(k
′
1)

−1 ∈ CM (xr) < H and so Hk′1 = Hk′2 which means that Hk1 = Hk2
and so ωk1 = ωk2 , as required.

Now we define an action of M on ψ(M : H) via

ωkk1 = {k−1xk | x ∈ ωk1}.

This action is well-defined and is isomorphic to the action of M on (M : H).
Notice that xMr is the set of all r-cycles in Sym(d). We showed above that

Alt(r)×Alt(d− r) ≤ H ≤ (Sym(r)× Sym(d− r)) ∩M.

This implies that the partition ψ(M : H) of xMr is a refinement of the partition where two r-cycles are in
the same part if and only if they have the same underlying r-set.

Our method will vary slightly depending on precise properties of this partition. To divide our method
into cases we define H1 to be the projection of H onto Sym({1, . . . , r}) and we recall that H1 is either
Alt(r) or Sym(r).

Case 1: xr is conjugate to x−1
r in H1. In this case we define

I1 = J1 =
[

(1, 2, 3, . . . , r)
]

,

I2 = J2 =
[(

1, 2, . . . ,
r − 1

2
, r + 1, r + 2, . . . ,

3r + 1

2

)]

,

I3 =
[(

1, 2, . . . ,
r − 1

2
,
3r + 3

2
,
3r + 5

2
. . . , 2r + 1

)]

,

J3 =
[(

r, r − 1, . . . ,
r + 3

2
,
3r + 3

2
, r + 2, r + 3, . . . ,

3r + 1

2

)]

,
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where we use “
[

−
]

” to denote the part of ψ(M : H) containing the listed cycle.

It is easy to see that I 6∼
3 J : the cycles representing I1, I2, I3 all move the points 1, 2, . . . , 12(r − 1),

whereas the cycles representing J1, J2, J3 have no moved points in common.
To see that I∼2 J we must define g13 and g23 such that I

gij
i = Ji and I

gij
j = Jj . To this end, we set:

g13 =
(

1, r
)(

2, r − 1
)

· · ·
(r − 1

2
,
r + 3

2

)(

2r + 1,
3r + 1

2

)(

2r,
3r − 1

2

)

· · ·
(3r + 5

2
, r + 2

)

;

g23 =
(

1,
3r + 1

2

)(

2,
3r − 1

2

)

· · ·
(r − 1

2
, r + 2

)(

2r + 1, r
)(

2r, r − 1
)

· · ·
(3r + 5

2
,
r + 3

2

)

.

It is easy to check that these even permutations do the job; more specifically, we can see that the repre-
sentative r-cycle listed above in the definition of Ii is mapped to either the representative r-cycle listed for
Ji, or to its inverse.

Case 2: xr is not conjugate to x−1
r in H1. Since H1 = Alt(r) or Sym(r), we conclude that

H1 = Alt(r) with r ≡ 3 (mod 4). In particular r ∈ {3, 7, 11} and H1 = Alt(r).
Suppose, first, that r = 3. In this case H is the centralizer of a 3-cycle in M and the set ψ(M : H) can

be identified with set of 3-cycles in Alt(d). We define

I1 = J1 = g13 = (1, 2, 3),

I2 = J2 = g23 = (1, 2, 4),

I3 = (2, 3, 4),

J3 = (3, 1, 4).

Finally we define g12 = 1, and now one can check directly that, for all i, j such that 1 ≤ i < j ≤ 3, we have
I
gij
i = Ji and I

gij
j = Jj . In particular I∼2 J .

We wish to show that I 6∼3 J . Suppose that g ∈ M such that Ig = J . Clearly g must stabilize the set
∆ = {1, 2, 3, 4}. But now, since g must fix both I1 and I2, we obtain that g|∆ = 1. This contradicts the
fact that Ig3 = J3 and the result follows.

Suppose, next, that r ≥ 7. In this case we exhibit the presence of a beautiful subset and the result
follows thanks to Lemma 1.6.12. We consider the set

Λ =







[

(1, 2, 4, 8, 9, 11, 15 . . . , r + 8)
]

,
[

(2, 3, 5, 9, 10, 12, 15, . . . , r + 8)
]

,
[

(3, 4, 6, 10, 11, 13, 15, . . . , r + 8)
]

,
[

(4, 5, 7, 11, 12, 14, 15, . . . , r + 8)
]

,
[

(5, 6, 1, 12, 13, 8, 15, . . . , r + 8)
]

,
[

(6, 7, 2, 13, 14, 9, 15, . . . , r + 8)
]

,
[

(7, 1, 3, 14, 8, 10, 15, . . . , r + 8)
]







.

Note that the parts of the partition of xMr correspond to the conjugacy classes of r-cycles for the alternating
group of the underlying r-set. In particular, for instance, the r-cycle (1τ , 2τ , 4τ , 8τ , 9τ , 11τ , 15, . . . , r+8) is

in
[

(1, 2, 4, 8, 9, 11, 15 . . . , r+8)
]

(where τ is some permutation of {1, 2, 4, 8, 9, 11}) if and only if τ is even.

We have chosen seven r-tuples (µ1, . . . , µ6, 15, . . . , r + 8) that satisfy two properties:

(a) the seven 3-tuples given by (µ1, µ2, µ3) form the lines of a Fano plane;

(b) µi+3 = µi + 7 for i = 1, 2, 3.

It is clear that a group preserving Λ must stabilize the set {15, . . . , r + 8}; in addition we claim that if
g ∈ MΛ, then µ

g
i+3 = µgi ± 7 for i = 1, 2, 3. To see this, let g ∈ MΛ and observe that, for i = 1, . . . , 3, the

number µi+7 is the only one that occurs in every listed tuple where µi occurs. Thus (µi+7)g must occur
in every listed tuple where µgi occurs. But this means that (µi + 7)g = µgi ± 7 as required.

These two properties allow us to conclude that MΛ is isomorphic to a subgroup of GL3(2) and so, in
particular, does not contain Alt(7). We wish to show that, in fact, MΛ = GL3(2) and the result will then
follow.
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Write Λ1 for the set of seven 3-tuples obtained by projecting the listed tuple in each element of Λ onto
its first three entries; similarly Λ2 is the set of seven 3-tuples obtained by projecting the listed tuple in
each element of Λ onto entries 4,5,6. Both Λ1 and Λ2 correspond to Fano planes. Let θ1 be a permutation
of {1, . . . , 7} corresponding to an automorphism of the Λ1-Fano plane and let θ2 be a permutation of
{8, . . . , 14} corresponding to the automorphism of the Λ2-Fano plane obtained by increasing each entry in
the cycle notation of θ1 by 7. Now the permutation θ1θ2 is an element of Alt(14).

Consider the image of a listed tuple λ under θ1θ2. The projection of this image onto its first three
entries yields a 3-tuple which is a permutation of the 3-tuple given by the first three entries of the listed
permutation in an element of Λ. Likewise the projection of this image onto entries 4, 5, 6 yields a 3-tuple
which is a permutation of the 3-tuple given by entries 4,5 and 6 of the same listed permutation. The two
resulting permutations are of the same type and so, since θ1θ2 fixes the points 15, . . . r + 8, we conclude
that λθ1θ2 is of the form (µτ1 , µ

τ
2 , . . . , µ

τ
6 , 15, . . . , r + 8) where (µ1, . . . , µ6, 15, . . . , r + 8) is one of the listed

permutations and τ = θ1θ2 is even. In particular λθ1θ2 lies in an element [γ] of Λ, where γ is one of the
listed tuples. Now both [λ] and [γ] are conjugacy classes in conjugates, Hλ and Hγ , of H. Then Hθ1θ2

λ = Hγ

and, since λθ1θ2 ∈ [γ] we conclude that [λ]θ1θ2 = [γ]. We conclude that θ1θ2 is inMΛ and the result follows.

Suppose that H contains CM0(xr) but not CM (xr). In this case M = Sym(d) and H is one of
the following groups:

Alt(r)×Alt(d− r), Sym(r)×Alt(d− r) or (Alt(r)×Alt(d− r)).2.

Observe, first, that if H < Alt(d), then the action of Alt(d) on cosets of H is considered above. Since we
know that this action is not binary, the result follows by Lemma 1.6.2.

Thus we assume that H 6< Alt(d), in which case H = Sym(r) × Alt(d − r). But now the analysis of
Case 2 for r ∈ {7, 11} works, with the rôles of r and d− r interchanged. (Note that in Case 2 our only use
of the fact that r ∈ {7, 11} was when we needed r ≥ 6 in order to make our definition of Λ work; in the
current situation we just observe that d− r ≥ 6 in all cases.)

For the alternating groups of degree less than 27, we shall use a magma computation together with the
following result.

Lemma 4.9.7. Let G be a group with socle G0 = Cln(q) (q = pa), a classical group, not one of the
groups listed in Lemma 4.1.1. Suppose M = NG(M0) is a maximal subgroup of G in the family S, where
M0 = Alt(r) with r odd, r ≤ 25.

(i) If r is prime, then for any x ∈M0 of order r, we have CG(x) 6= 〈x〉.

(ii) If r = 9, 15 or 21, then |G|3 > |M |3; if r = 25, then |G|5 > |M |5.

Proof. (i) First assume r ≥ 11. Then n ≥ r−δp,r (see Lemma 2.1.1). The orders of centralizers of elements
of prime order in classical groups are given in Tables B3 - B12 of [12], and it is straightforward to read
off from these tables that for n ≥ r − δp,r, no such centralizer in G0 = Cln(q) can have order equal to
r ∈ {11, 13, 17, 19, 23}.

Now suppose r = 7. The modular character tables of Alt(7) and its covering groups are given in [50].
We have n ≥ 3. If n ≥ 9, then [12] gives a contradiction as above. And if n = 7 or 8, then the characteristic
p ≥ 5, and again we can use [12] to rule this out. Hence n ≤ 6.

If n = 3, then the only characteristic in which there is an irreducible modular representation is 5,
yielding a maximal subgroup Alt(7) < PSU3(5) - but this possibility is excluded by Lemma 4.1.1.

If n = 4, then p ≥ 5 yields a contradiction using [12] as above; and p ≤ 3 is again excluded by
Lemma 4.1.1.

If n = 5, then the only possible characteristic is p = 7 with Alt(7) < Ω5(7); but then clearly CG(x) 6=
〈x〉.
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Finally consider n = 6. Here p = 2 is excluded by Lemma 4.1.1. If p = 3, then there are two possible
embeddings, Alt(7) < Ω−

6 (3) or PSp6(9). The first is out by Lemma 4.1.1, and the second is excluded using
[12]. Finally, [12] rules out all possibilities with p ≥ 5.

It remains to consider r = 5. Here n ≤ 6. If n = 2 then G0 = PSL2(q) and assuming p 6= 5, CG0(x)
has order q ± 1/(2, q − 1). Hence q = 9 or 11, excluded by Lemma 4.1.1. When n = 3, the embedding is
Alt(5) < Ω3(q) ∼= PSL2(q), already handled. When n = 4, the embeddings are Alt(5) < Ω−

4 (p)
∼= PSL2(p

2)
and Alt(5) < PSp4(p); in the latter case NG(S) is non-maximal. If n = 5 then Alt(5) < Ω5(q) ∼= PSp4(q).
Finally, if n = 6, then Alt(5) < PSp6(p), and [12] gives a contradiction.

(ii) Suppose r = 9. Then n ≥ 8− δp,3. If p = 3, the conclusion is clear, so assume p 6= 3. If n = 8 then
G0 = PΩ+

8 (q), which has order divisible by 35, greater than |Sym(9)|3 = 34. And if n ≥ 9 then |G0| is
divisible by 1

d

∏4
1(q

2i − 1) (where d = (2, q − 1)), hence is also divisible by 35.

For r = 15 we have n ≥ 14−δp,3−δp,5 and so |G0| is divisible by 1
d

∏6
1(q

2i−1), hence by 38 > |Sym(15)|3.
A similar argument works for r = 21 or 25; the only extra point to note is that if r = 25 and n = 24 then
G0 = PΩ+

24(q) (rather than PΩ−
24(q)), and this has order divisible by 57 > |Sym(25)|5. This completes the

proof.

We can now complete the proof of Proposition 4.9.1 for the case of alternating groups:

Lemma 4.9.8. Let G be an almost simple group with socle a classical group G0 = Cln(q), under the
hypotheses of Propsition 4.9.1, and suppose M is a maximal subgroup of G in the family S, with socle
M0

∼= Alt(d) for some 5 ≤ d ≤ 26. Then the action of G on (G :M) is not binary.

Proof. Recall our assumptions on n in the hypothesis: namely, n ≥ 3, 4, 4, 7 in cases L,U, S,O respectively.
Next we check using magma the following facts, where 6 ≤ d ≤ 26:

(a) every non-trivial binary action of Alt(d) has even degree;

(b) for d even, every non-trivial binary action of Sym(d) has even degree;

(c) every non-trivial binary action of M10, PGL2(9) and PΓL2(9) has even degree;

(d) every non-trivial binary action of Alt(5) and Sym(5) has degree divisible by 5;

(e) for d odd, every non-trivial binary action of Sym(d) (with core-free point stabilizer) has degree
divisible by a prime s, as in the following table:

d 7 9 11 13 15 17 19 21 23 25

s 7 3 11 13 3 17 19 3 23 5

Given these facts, we can complete the proof as follows. Assume for a contradiction that the action of G
on (G : M) is binary. We know by Lemma 4.9.4 that in this action, there is a non-trivial suborbit of odd
degree on which the action of M is binary. Hence by Fact (a), M cannot be Alt(d) for d > 5. Thus, either
d = 5, d = 6 or M is Sym(d). But now Fact (b) rules out the possibility that M is Sym(d) of even degree,
and Fact (c) rules out all the possibilities when d = 6. Thus, in any case, d is odd andM = Sym(d) except,
possibly, when d = 5 and M = Alt(5).

Suppose now that d is a prime (so is 5, 7, 11, 13, 17, 19 or 23). Let x ∈ M have order d. Then by
Lemma 4.9.7(i), there exists g ∈ CG(x) \M . Thus there is a suborbit (M : M ∩Mg) of size coprime to
d. Now the action of M on this suborbit is not binary, by Facts (d) and (e). Hence G is not binary on
(G :M) by Lemma 1.6.1, a contradiction.

The remaining cases d = 9, 15, 21 or 25 succumb to a similar argument. For these cases, we let P be a
Sylow 3-subgroup of M (a Sylow 5-subgroup in the last case), and observe that by Lemma 4.9.7(ii), there
exists g ∈ NG(P ) \M . Hence the suborbit (M : M ∩Mg) has size coprime to 3 (or 5), and the action of
M on this is not binary, by Fact (e), giving a contradiction as before.

This completes the proof of Proposition 4.9.1 for the case where the socle M0 is an alternating group.
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4.9.3 The case where M0 is sporadic

In this case we use Strategy 2 and some earlier computations with magma.

Lemma 4.9.9. Let G be an almost simple group with socle a classical group G0 = Cln(q), and suppose M
is a maximal subgroup of G in the family S, with socle M0 a sporadic simple group. Then the action of G
on (G :M) is not binary.

Proof. The proof follows immediately from Lemmas 2.3.2 and 4.9.4.

4.9.4 The case where M0 is of Lie type

In this section we prove Proposition 4.9.1 for the case where M0 is of Lie type. We will use the strategy
outlined in §4.9.1; in particular we will make use of Propositions 2.4.1 and 4.9.5.

To start we use magma to rule out a number of small possibilities for M .

Lemma 4.9.10. Let M0 be one of the simple groups listed in Lemma 2.3.1, and let G be an almost simple
group with socle a classical group G0 = Cln(q), not one of the groups listed in Lemma 4.1.1. Suppose M is
a maximal subgroup of G in the family S, with socle M0. Then the action of G on (G :M) is not binary.

Proof. Lemmas 2.3.1 and 4.9.4 imply the result unless (G0,M0) = (PΩ7(p),Sp6(2)) or (PΩ+
8 (p),Ω

+
8 (2)),

where p is an odd prime.
If G0 = PΩ7(p) andM0 = Sp6(2), then we let g ∈M0 be the element of order 3 defined in Lemma 2.2.8.

In that lemma it is proved that if H is any subgroup ofM that contains g, then the action ofM on (M : H)
is not binary. Suppose that there exists x ∈ CG(g) \M . Then the action of M on (M : M ∩Mx) is not
binary, and Lemma 1.6.1 yields the result. It remains to show, therefore, that CG(g) is strictly larger that
CM (g). Direct calculation implies that |CM (g)| = 108 and now Lemma 2.4.2 implies the result for q > 7.
For q ≤ 7, the result is confirmed with magma or by direct calculation.

If G0 = PΩ+
8 (p) and M0 = Ω+

8 (2), then we let g be the element of order 7 defined in Lemma 2.2.8. We
proceed as before but must confirm that there exists x ∈ CG(g) \M . Using [10] we see that G0 ∩M =M0,
and using [28] we see that CM0(g) = 〈g〉. Thus it is sufficient to prove that CG0(g) 6= 〈g〉. When p = 7,
this is immediate; when p 6= 7, one can confirm this using, for instance, [12].

Let us next deal with some troublesome groups that are just a little too big to be easily handled with
magma.

Lemma 4.9.11. Let M0 be one of the following groups

3D4(4),
3D4(5),

2E6(3).

Let G be an almost simple group with socle a classical group G0 = Cln(q) (q = pa), and suppose M is a
maximal subgroup of G in the family S, with socle M0. Then the action of G on (G :M) is not binary.

Proof. (1) Suppose, first that M0
∼= 3D4(5).

Claim: There exists an element, g, of order 24 in M0 such that if M is almost simple with socle M0

and H is any core-free subgroup of M containing g, then the action of M on (M : H) is not binary.
Proof of claim: Assume (M, (M : H)) is binary for some such H. We use the fact that if Alt(t) is a

section of 3D4(5), then t ≤ 7 by Lemma 2.1.2. We also use the existence of the following subgroup chain:

SL3(5) < G2(5) <
3D4(5).

The group SL3(5) contains a maximal parabolic subgroup with unipotent radical E, an elementary abelian
group of order 25. In addition SL3(5) contains an element g of order 24 that normalizes, and acts fixed-
point-freely upon, E. Since E ⋊ 〈g〉 is a Frobenius group, we conclude that either H contains E or else
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the set of cosets H.E forms a beautiful subset of size 25, and Lemma 1.6.12 yields a contradiction. Thus
H contains E.

We can now repeat the same argument with the “opposite” unipotent radical, E1. The same element
g acts fixed-point-freely on E1 and we can now also assume that H contains E1. Since 〈E,E1〉 = SL3(5),
we conclude that H contains SL3(5).

The group SL3(5) is a subgroup of K := SL3(5) : 2, a maximal subgroup of G2(5) of maximal rank. We
revisit our argument for the action ofG2(q) on cosets ofK – see Table 3.4.8 and the proof Propositions 3.4.1.
As in that proof, we conclude either that we have a beautiful subset of order 25 (a contradiction) or else
H contains G2(5). Thus the latter holds.

The group L := G2(5) is a maximal subgroup of 3D4(5) in family (V) of Theorem 3.1.1. Now we revisit
our argument for the action of 3D4(q) on cosets of L – see Case (6) of the proof of Proposition 3.6.1. Once
again we obtain a beautiful subset of order 25. We conclude, as required, that H contains M0. The claim
is proved.

We now show that the claim implies the conclusion of the lemma. Suppose that there exists x ∈
CG0(g) \ CM (g). Then the claim implies that the action of M on (M : M ∩ Mx) is not binary and
Lemma 1.6.1 yields the result.

Thus to complete the proof for this case we must check that the element x exists. Note that g is a
regular semisimple element of 3D4(5) (which we can see by computing the action of G on the 8-dimensional
module for 3D4(5)). Hence CM0(g) is a maximal torus of M0, the sizes of which are listed in [57]. We
conclude that |CM0(g)| ≤ 756, and so |CM (g)| ≤ 2268. On the other hand, if p 6= 5 we have n ≥ 55 − 53

by Lemma 4.9.5, and if p = 5, then either n = 8, q = 53 or n ≥ 24 by [54, 5.4.8]; hence |CG0(g)| > 2268 by
Lemma 2.4.2.

(2) Suppose next that M0
∼= 3D4(4). The proof here is very similar to the previous case.

Claim: There exists an element, g ∈ M0 of order 15, such that if M is almost simple with socle M0

and H is any core-free subgroup of M containing g, then the action of M on (M : H) is not binary.

Proof of claim: We use the fact that 3D4(4) contains a maximal group isomorphic to J ∼= PGL3(4)
(see [57]). The group J contains an element g of order 15 that normalizes and acts fixed-point-freely upon
an elementary abelian group E of order 16. Assume that H is a subgroup of M containing g, for which
the action of M on (M : H) is binary. We will show that H contains M0.

Arguing exactly as in the previous case, we see that either there is a beautiful subset of size 16 or H
contains the group PGL3(4); hence we conclude the latter. Now we revisit our argument for the action of
3D4(q) on cosets of J – see Case (6) of the proof of Proposition 3.6.1. Once again we obtain a beautiful
subset of order 16. We conclude, as required, that H contains M0. The claim is proved.

We now show that the claim implies the conclusion of the lemma. This proceeds as before, relying on
the existence of x ∈ CG0(g) \ CM (g). As before, g is regular semisimple and, using [57], we conclude that
|CM (g)| ≤ 945. Now, as before, we find that |CG0(g)| > 945 and we are done.

(3) Suppose now that M0
∼= 2E6(3). From [74, Table 5.1], we see that M0 has a maximal subgroup

SU3(27).3. Write L for the simple subgroup SU3(27) of this. Let x ∈ L be an element of order 26 which,
written with respect to a hyperbolic basis {e1, f1, x} of the corresponding unitary 3-space, is diagonal with
entries (t, t−1, 1). We proceed in a series of steps.

Claim 1: If X is an almost simple group with socle SU3(27), and Y < X is a core-free subgroup such
that |X : Y | is not divisible by 32, then the action of X on (X : Y ) is not binary.

Proof of Claim 1: This is a magma computation.

Claim 2: Let x ∈ L be the element defined above, and suppose x ∈ H < M with H a core-free
subgroup of M . Then the action of M on (M : H) is not binary.

Proof of Claim 2: Assume that the action of M on (M : H) is binary. We shall repeatedly use
Lemma 2.1.2 which asserts that M does not contain a section isomorphic to Alt(d) for any d ≥ 12.
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Let L1
∼= SO3(27) ∼= PGL2(27) be a subfield subgroup of L containing x. Then there are two Sylow

3-subgroups U1, U2 of L1 such that 〈x〉 normalizes and acts transitively on the set of non-trivial elements of
each of them. This implies (using Lemma 1.6.9) that either U1 is in H, or else HU1 is a subset of (M : H)
on which the set-wise stabilizer acts 2-transitively. But in the latter case we obtain a beautiful subset, a
contradiction to Lemma 1.6.12. Thus H contains U1 and, similarly, U2. Thus H ≥ 〈U1, U2, x〉 = L1.

Now let g be a diagonal element of L = SU3(27) of order 27
2 − 1 and such that g28 = x. Then 〈x〉 acts

transitively on the set of non-trivial elements of Ug1 and Ug2 . We deduce, as in the previous paragraph, that
H contains Ug1 and Ug2 , and we conclude that H ≥ L = SU3(27). From the information on the maximal
subgroups of M given by Theorem 3.1.1, it follows that L ≤ H ≤ NM (L) ≤ L.6.

Write Ω = (M : H). Now NM (L) acts transitively on fixΩ(L), so the number of fixed points f =
|fixΩ(L)| divides 6. Also |Ω| = f +

∑

i |∆i|, where the ∆i are the faithful H-orbits on Ω. Since |Ω| is
divisible by 32, it follows that there is an H-orbit ∆i of size not divisible by 32. Hence the action of H on
∆i is not binary, by Claim 1. However the action of M on (M : H) is binary by assumption, so this is a
contradiction to Lemma 1.6.1. This establishes Claim 2.

We now show that Claim 2 implies the conclusion of the lemma. Just as before, we need to show that
there exists x ∈ CG(x) \M .

We start by computing the order of CM (x). The subgroup L = SU3(27) arises as the fixed point group
of a Frobenius endomorphism of the algebraic group E6 acting on a subsystem A3

2 (see [74]). By [76, Prop.
2.1], the Lie algebra L(E6) restricts to A

3
2 as the sum of L(A3

2) together with the tensor product V1⊗V2⊗V2
and its dual, where each Vi is a natural 3-dimensional module for one of the A2 factors. The element x
acts on this tensor product as (t, t−1, 1) ⊗ (t3, t−3, 1) ⊗ (t9, t−9, 1), so has fixed point space 0. Hence the
fixed point space of x on L(E6) has dimension 6, and it follows that x is regular semisimple in M0, with
centralizer CM0(x) of order 27

2 − 1.
On the other hand, for the classical group G0 = Cln(q), q = pe, we have n ≥ 27 if p = 3 by [82], and

n ≥ 311 − 39 if p 6= 3 by Proposition 4.9.5. Hence |CG(x)| is far greater than |CM (x)| by Proposition 2.4.1.
This final contradiction completes the proof.

In light of the preceding two results, to prove Proposition 4.9.1 when M0 of Lie type, we may exclude
the following list of possibilities for M0:

PSL2(r) (r ≤ 31), PSL3(r) (r ≤ 5),PSL4(2),
PSU3(r) (r ≤ 5), PSU4(r) (r ≤ 5), PSU5(2), PSU6(2),
PSp4(r) (r ≤ 7), PSp6(r) (r ≤ 3), PSp8(2),
Ω7(r) (r ≤ 9), PΩ−

8 (r) (r ≤ 9), Ω±
10(2), PΩ

−
10(3),

G2(r) (r ≤ 5), 3D4(r) (r ≤ 5), F4(r) (r ≤ 3), 2E6(r) (r ≤ 3), 2F4(2)
′.

(4.9.2)

For convenience, we restate Proposition 4.9.1 for this case:

Lemma 4.9.12. Let G be an almost simple group with socle a classical group G0 = Cln(q), and suppose
M is a maximal subgroup of G in the family S, with socle M0 a group of Lie type not in the list (4.9.2).
Then the action of G on (G :M) is not binary.

Note that the list (4.9.2) includes all the exceptions in the conclusions of Lemmas 2.2.6, 2.2.8, 2.2.9,
2.2.10, 2.2.11 and 2.2.15.

Now let x ∈M0 to be the element defined in these propositions, as detailed in Table 4.9.2.
We shall need upper bounds for the order of the centralizer of x in M , given in the next result.

Lemma 4.9.13. Let M be almost simple, with socle M0 of Lie type over Fr, and let x ∈M0 be as defined
in Table 4.9.2.

(i) For M0 classical, we have |CM (x)| < N , where N is as in Table 4.9.3.

(ii) For M0 exceptional, upper bounds for |CM (x)| are given in Lemmas 2.2.15 and 2.2.16.
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Table 4.9.2: Definition of the element x ∈M0

M0 x as in Lemma

PSLd(r) 2.2.6
PSUd(r) 2.2.10 (d = 3)

2.2.11 (d = 4)
2.2.8 (d ≥ 5)

PSpd(r) 2.2.8
PΩǫd(r) 2.2.8 (r even)

2.2.9 (r odd)
exceptional 2.2.15, 2.2.16

Proof. The argument for (i) is very similar for all types of classical groups. For M0 = PSLd(r) with
r > 2, the element x has preimage in SLd(r) of the form diag(1, A, a−1) and the centralizer in GLd(r)
of this element has order (r − 1)2|GL1(r

d−2)|. Moreover x is not centralized by any non-trivial field
automorphism, and can only be centralized by a graph automorphism if d = 3. It follows that for d 6= 3,
|CM (x)| ≤ CPGLd(r)(x) ≤ (r − 1)(rd−2 − 1), and for d = 3 there is an extra factor of 2.

For M0 = PSUd(r) with d = 2j + δ (where δ = 1 or 2), the centralizer in GUd(r) of a preimage of x is
contained in GU2(r)×GUδ(r)×GL1(r

2(j−1)), and there are no outer automorphisms centralizing x unless
d = 3 or 4 (in which case there is a graph automorphism); this leads to the bound in Table 4.9.3. Similarly
for M0 = PSp2k(r), the centralizer is Sp2(r)×GL1(r

k−1).
Next consider M0 = PΩ−

2k(r). If r is odd, then x has preimage diag(I4, ζ, ζ
−1, A,A−T ), and the

centralizer of this in O−
2k(r) is O−

4 (r) × GL1(r) × GL1(r
k−3), leading to the required bound. Similar

considerations give the result for PΩ+
2k(r) and PΩ2k+1(r).

Table 4.9.3: Upper bounds for |CM (x)|

M0 N

PSLd(r) rd−1(1 + δd,3)
PSUd(r) (d ≥ 3) 2rd+3, d ≥ 6 even

2rd+1, d ≥ 5 odd
2r5, d = 4
2r2, d = 3

PSp2k(r) (k ≥ 2) rk+2

PΩ+
2k(r) (k ≥ 4) 2rk

PΩ−
2k(r) (k ≥ 4) 2rk+4

PΩ2k+1(r) (k ≥ 3) 2rk+2

For the proof of Lemma 4.9.12, we now adopt the following assumptions:

(1) G is an almost simple group with socle G0 = Cln(q) (q = pa), a classical group.

(2) M is a maximal subgroup of G in the family S with socle M0, a group of Lie type over Fr; moreover,
M0 is not one of the groups in the list (4.9.2).

(3) The action of G on (G :M) is binary.

We aim for a contradiction. This will prove Lemma 4.9.12.

Lemma 4.9.14. Adopt the above assumptions (1)–(3), and let x ∈M0 be as defined in Table 4.9.2. Then
CG(x) = CM (x).
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Proof. Suppose there exists g ∈ CG(x) \M . Then x ∈M ∩Mg. If M0 ≤M ∩Mg, then g ∈ NG(M0) =M
which is not the case; hence M ∩Mg is a core-free subgroup of M containing x. It now follows from the
results listed in the last column of Table 4.9.2 that the action of M on (M : M ∩Mg) is not binary. But
then (G, (G :M)) is also not binary by Lemma 1.6.1, a contradiction.

Recall that the classical group G0 = Cln(q) is defined over the field Fq of characteristic p, while the
subgroup M0 is a group of Lie type over Fr. At this point we divide the analysis into two cases: the
cross-characteristic case (where p ∤ r) and the defining characteristic case (where p | r).

Lemma 4.9.15. Under the assumptions (1)–(3), the cross-characteristic case p ∤ r does not occur.

Proof. Suppose p ∤ r. Then the following hold:

(a) n ≥ R(M0), as given in Table 4.9.1.

(b) By Lemma 2.4.1, we have

|CG(x)| >
q⌈(n−1)/2⌉

4

(
q − 1

2qe(logq(2n) + 4)

)1/2

.

(c) By Lemma 4.9.13 we also have |CM (x)| ≤ N , where N is as defined in Tables 4.9.3 for M0 classical,
and in Table 2.2.2 and Lemma 2.2.16 for M0 exceptional.

By Lemma 4.9.14, it follows that N is greater than the right hand side of the inequality in (b). However,
when combined with the inequality n ≥ R(M0), it is routine to check that this leads to a contradiction.

It remains to handle the defining characteristic case, where p | r. Recall that G0 = Cln(q) (q = pa),
and M0, the socle of the maximal subgroup M , is a group of Lie type over Fr. Let V be the natural
n-dimensional module for G0. According to [92, Cor. 6] together with [90], there are two possibilities:

(A) Fr ⊃ Fq: in this case r = qk with k ≥ 2, and the embedding M0 < G0 is as in [90, Table 1B], and
takes the form Cld(q

k) < Cldk(q);

(B) Fr ⊆ Fq: in this case the representation of M0 on V corresponds to a restricted representation of the
overlying simple algebraic group over F̄p.

First we deal with Case (B).

Lemma 4.9.16. Under the assumptions (1)–(3), the defining characteristic case (B) above does not occur.

Proof. Assume we are in case (B), so that M0 = M0(r) < G0 = Cln(q) with Fr ⊆ Fq. We shall use the
lower bounds for the dimensions of restricted representations of simple algebraic groups given by [82]. For
an integer d, define ǫp,d to be 1 if p | d, and 0 otherwise.

(α) Assume first that M0 = PSLǫd(r). If the restriction of V to M0 is self-dual, then G0 is symplectic or
orthogonal; otherwise, G0 = PSLǫn(q). Hence using [82], we see that one of the following holds:

(i) G0 = PSpn(q) or PΩn(q):
d = 2, n ≥ 4, or
d ≥ 3, n ≥ d2 − 1− ǫp,d;

(ii) G0 = PSLǫn(q):
d = 3, n ≥ 6, or
d = 4, n ≥ 10, or
d = 5, n = 10 or n ≥ 15, or
d ≥ 6, n ≥ 1

2d(d− 1).
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Consider the element x ∈ M0 defined in Table 4.9.2. By Lemma 4.9.13, we have |CM (x)| < N , where N
is as in Table 4.9.3; and by Proposition 2.4.1 we have |CG(g)| > f(n, q), where f(n, q) is as in Table 2.4.1.
Hence Lemma 4.9.14 gives

N > f(n, q).

Combined with the lower bounds on n in (i) and (ii) above, this gives a contradiction except for the
following cases:

(1) d = 3, p = 3, n = 7: here M0 = PSLǫ3(q) < G0 = Ω7(q), q = 3a,

(2) d = 5, n = 10, ǫ = −: here M0 = PSU5(q) < G0 = PSU10(q).

In case (1) the element x ∈ M0 has preimage diag(1, t, t−1) in SLǫ3(q), where t ∈ Fq has order q − 1.
Moreover, the natural 7-dimensional module V for G0 is a constituent of the adjoint module for M0, and
hence the action of x on V is diag(1, t, t, t−1, t−1, t2, t−2). Clearly then, CM (x) 6= CG(x), contradicting
Lemma 4.9.14.

In case (2) above, x has preimage diag(1, 1, 1, t, t−1) in SU5(q), and V is the exterior square of the 5-
dimensional natural module for M0. Hence x acts on V as diag(14, t, t, t, t−1, t−1, t−1), and again CM (x) 6=
CG(x). This completes the proof for the case where M0 = PSLǫd(r).

(β) Next assume that M0 = PSp2k(r) with k ≥ 2. In this case [82] gives

k = 2, n = 10 or n ≥ 12, or
k = 3, n = 8 (p = 2) or n = 14− δp,3 or n ≥ 21, or
k ≥ 4, n = 2k (p = 2) or n ≥ k(2k − 1)− 1− ǫp,k.

Again we have |CM (x)| < N with N is as in Table 4.9.3, and also |CG(g)| > f(n, q) with f(n, q) as in
Proposition 2.4.1(ii). Hence Lemma 4.9.14 gives N > f(n, q), and combined with the above lower bounds
for n, this yields a contradiction apart from the following cases:

(1) k = 2, n = 10,

(2) k = 3, n = 8 (p = 2) or n = 14− δp,3,

(3) k = 4, n = 16 (p = 2).

In case (1), the element x ∈M0 has preimage diag(1, 1, t, t−1) in Sp4(q), where t ∈ Fq has order q − 1;
also p 6= 2 and V is the symmetric square of the natural 4-dimensional module for M0. Hence x acts on V
as diag(14, t, t, t, t−1, t−1, t−1), and CM (x) 6= CG(x), contradicting Lemma 4.9.14.

In case (2), x has preimage diag(1, 1, A,A−T ) in Sp6(q), where A ∈ GL2(q) has order q2 − 1. If
n = 14 − δp,3, then V is a constituent of the exterior square of the natural 6-dimensional module, and
so the action of x has diagonal blocks diag(A,A,A−T , A−T , . . .). But this implies that CG(x) contains
a subgroup SL2(q

2), so again CM (x) 6= CG(x). And if n = 8 with p = 2, then V is a spin module for
M0 = Sp6(q). Observe that x lies in a subgroup Sp2(q) × Sp4(q), and on a spin module this acts as
Sp2(q)⊗ Sp4(q). Hence x acts as I2 ⊗ diag(A,A−T ), and so as before, CG(x) contains a subgroup SL2(q

2).
A similar argument applies in case (3), where V is a spin module for M0 = Sp8(q). Here x =

diag(1, 1, A,A−T ) ∈ M0, where A ∈ GL3(q) has order q3 − 1. This lies in a subgroup Sp2(q) × Sp6(q),
hence as above, acts on a spin module as (I4, A, , A,A

−T , A−T ). Then CG(x) contains a subgroup SL2(q
3),

so again CM (x) 6= CG(x).

(γ) Now consider the case whereM0 is an orthogonal group PΩǫd(r) with d ≥ 7. In this case the dimension
bounds are:

d = 7, n = 8 or n ≥ 21, or
d = 8, n = 8 or n ≥ 26, or

d ≥ 9, n = 2⌊
d−1
2

⌋ or n ≥ 1
2d(d − 1)− 2.

As above, the inequality N > f(n, q) now gives a contradiction apart from the following cases:
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(1) d = 7, n = 8,

(2) d = 8, n = 8,

(3) d = 9 or 10, n = 16.

Consider (1). Here M0 = Ω7(q) < G0 = PΩ+
8 (q), and the element x = (13, ζ, ζ−1, a, a−1) ∈ M0 with

a, ζ ∈ F×
q of order q − 1 and ζ 6= a±1. Write x = (I3,X) ∈ Ω3(q) × Ω+

4 (q) < M0, where X = (ζ−1, a, a−1).

In SL2(q)⊗ SL2(q) ∼= Ω+
4 (q), X takes the form (α,α−1)⊗ (β, β−1), where αβ = a, αβ−1 = ζ. Hence in the

spin representation on V , x acts as (I2⊗ (α,α−1), I2⊗ (β, β−1)). It follows that CG(x) contains a subgroup
(SL2(q))

2, so CM (x) 6= CG(x), giving the usual contradiction.

Now consider (2). In this case M0 = PΩ−
8 (q

1/2) < G0 = PΩ+
8 (q), where M0 is the image of a subfield

subgroup under a triality automorphism of G0. We can write the element x as (I2,X) with X ∈ Ω+
6 (q

1/2)
given by Lemmas 2.2.8 (for p = 2) and 2.2.9 (for p odd). Arguing in similar fashion to the previous
paragraph, we see that CG(x) contains a subgroup SL2(q

2) (p = 2) or (SL2(q))
2 (p odd). Hence again

CM (x) 6= CG(x).

Finally, consider case (3). For d = 9 we have M0 = Ω9(q) < G0 = PΩ+
16(q) with q odd, and V is a spin

module for M0. We have x = (13, ζ, ζ−1, A,A−T ) ∈ M0, where ζ ∈ F×
q has order q − 1 and A ∈ GL2(q)

has order q2 − 1. Then x ∈ Ω3(q) × Ω+
6 (q) < M0, and this subgroup acts on the spin module V as

(V2⊗V4)⊕ (V2⊗V ∗
4 ), where the action of x on V4 is computed via the isomorphism Ω+

6 (q)
∼= SL4(q)/〈−I〉.

It follows that CG(x) contains (SL2(q
2))2, hence CM (x) 6= CG(x). A very similar computation applies in

the case where d = 10.

(δ) To complete the proof of the lemma, it remains to handle the case whereM0 is an exceptional group of
Lie type over Fr with Fr ⊆ Fq. From the bounds for the dimensions of restricted representations of groups
of Lie type given in [82], it follows that either n = R0, or n ≥ R, where R0, R are as in the following table:

M0 E8(r) E7(r) Eǫ6(r) F4(r) G2(r)
2F4(r)

2G2(r)
2B2(r)

3D4(r)

R0 248 56 27 26− δp,3 7− δp,2 26 7 4 8

R 248 132 77 52 14 246 26 16 26

We have |CM (x)| < N with N as given in Lemmas 2.2.15, 2.2.16, and also |CG(g)| > f(n, q) with f(n, q)
as in Proposition 2.4.1(ii). Hence as usual, Lemma 4.9.14 gives N > f(n, q), and combined with the above
bounds for n, this yields a contradiction apart from the cases where n = R0 and

M0 = Eǫ6(q), F4(q), G2(q),
2B2(q) or

3D4(q
1/3)

(note that r = q in all but the last case, by the maximality of M).

If M0 = Eǫ6(q), then n = 27, the module V has highest weight λ1 in the usual notation, and is not
self-dual, so that G0 = PSLǫ27(q). Now the inequality N > f(n, q), with f(n, q) as in Table 2.4.1, gives a
contradiction.

Next consider M0 = F4(q) with n = 26− δp,3. By the exclusions in the list (4.9.2), we have q ≥ 4. The
element x ∈ M0 is as defined in Lemma 2.2.15: it lies in a subsystem subgroup A3

∼= SL4(q) and takes
the form diag(1, a,A) where A is a 2 × 2 matrix of order q2 − 1 and determinant a−1. The restriction
V ↓ A3 is given in [76, Table 8.7]: in terms of highest weight modules, the composition factors are
V (λ1)

2/V (λ3)
2/V (λ2)/0

4−δp,3 . Here W := V (λ1) is the natural 4-dimensional A3-module, V (λ3) = W ∗,
V (λ2) = ∧2W and 0 is the trivial module. Hence we compute that dimCV (x) = 8 − δp,3, and so CG(x)
has a subgroup Ω7(q). However CM (x) has no such subgroup by Lemma 2.2.15, a contradiction.

Now let M0 = G2(q) with n = 7− δp,2 (and q ≥ 7 by the exclusions in (4.9.2)). Here G0 is Sp6(q) if q
is even , and Ω7(q) if q is odd. We have x = diag(1, a, a−1) in a subsystem subgroup SL3(q), where a ∈ F×

q

has order q−1. Hence x acts on V as diag(a, a, a−1, a−1, 13−δp,2), and it follows that CG(x) has a subgroup
Sp2(q)× SL2(q) or Ω3(q)× SL2(q), whereas CM (x) has no such subgroup.
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If M0 =
2B2(q) with n = 4, then G0 = Sp4(q) and we have |CM (x)| = q − 1 by Lemma 2.2.16, whereas

|CG(x)| = (q − 1)2. Finally, if M0 = 3D4(q
1/3) with n = 8, then G0 = PΩ+

8 (q) and x acts on V as
diag(a, a, a−1, a−1, 14); hence CG(x) contains Ω+

4 (q), so once again CM (x) 6= CG(x). This completes the
proof.

Table 4.9.4: Embeddings M0 = Cld(q
k) < G0 = Cldk(q) (k prime)

M0 G0 conditions

PSLǫd(q
k) PSLǫdk(q) d ≥ 3, (k, ǫ) 6= (2,−)

PSLd(q
2) PSUd2(q) d ≥ 3

PSpd(q
k) PSpdk(q) kq odd

PSpd(q
k) PΩ+

dk
(q) k odd, q even

PSpd(q
2) PΩǫd2(q) d ≥ 4, ǫ = (−)d/2

PΩ±
d (q

k) PΩǫdk(q) d ≥ 6 even, q odd
PΩd(q

k) PΩdk(q) dq odd, d ≥ 3

Lemma 4.9.17. Under the assumptions (1)–(3), the defining characteristic case (A) above does not occur.

Proof. Assume we are in case (A), so that M0 = Cld(q
k) < G0 = Cldk(q) with k ≥ 2. Specifically, the

embeddings M0 < G0 are as given by [90, Table 1B], and are as in Table 4.9.4, with k prime. With one

exception, the natural module for G0 is of the form V =W ⊗W (q)⊗· · ·⊗W (qk−1), whereW is the natural
d-dimensional module for M0; the exception is for the embedding PSLd(q

2) ≤ PSUd2(q) in the second row
of the table, where V =W ⊗W ∗(q).

The argument is very similar for all entries in the table: we have x ∈ M0, a semisimple element with
centralizer as described in the proof of Lemma 4.9.13. Then CG(x) contains a maximal torus of G, whereas
we argue that CM (x) cannot contain such a torus: in most cases this is obvious, as G has much larger rank
than M , but nevertheless we shall give a sketch for each case below.

Consider the first row of the table, PSLǫd(q
k) ≤ PSLǫdk(q) with d ≥ 3, (k, ǫ) 6= (2,−). For ǫ = + the

element x ∈ M0 has preimage of the form diag(1, a,A) where A ∈ GLd−2(q
k) has order qk(d−2) − 1. This

acts on V as (1, a,A) ⊗ (1, a,A)(q) ⊗ · · · ⊗ (1, a,A)(q
k−1), and hence we see that CG(x) has order divisible

by (qk(d−2) − 1)2 if d ≥ 4, and by (qk − 1)3/(q − 1) if d = 3. Hence CG(x) 6= CM (x). Now consider ǫ = −.
Here the semisimple element x ∈M0 has at least two eigenvalues 1 if d ≥ 4, and is diag(1, a, a−1) if d = 3,
where a generates F×

qk
. From the action of x on V , we see that CG(x) contains SU2k(q) if d ≥ 4, and

contains (GL1(q
2k))2 if d = 3. Hence again CG(x) 6= CM (x).

The argument for the second row of Table 4.9.4 is entirely similar: here CG(x) has order divisible by
(q2(d−2) − 1)2 if d ≥ 4, and by (q2 − 1)3 if d = 3.

Next consider M0 = PSpd(q
k), with embedding as in rows 3-5 of Table 4.9.4. Suppose first that d = 2,

so that k is odd and G0 is PSp2k(q) or PΩ
+
2k
(q), according as q is odd or even, respectively. Also qk > 31, by

the exclusions of (4.9.2). The element x = diag(a, a−1) ∈M0 has centralizer in M of order dividing qk − 1.
If k = 3, then q > 3 and the action of x on V has eigenvalues µ±1, µ±q, µ±q

2
, λ, λ−1, where µ = aq

2+q−1,
λ = aq

2+q+1; hence CG(x) has order divisible by (q3 − 1)(q − 1)/(2, q − 1), and so CG(x) 6= CM(x). And if

k ≥ 5, then we reach the same contradiction as |CG(x)| is divisible by (qk − 1)(2
k−1−1)/k.

This deals with d = 2, so suppose now that M0 = PSpd(q
k) with d ≥ 4. Here x = (I2, A,A

−T ), where

A ∈ GL d
2
−1(q

k) has order qk(
d
2
−1) − 1. If k ≥ 3, then the fixed point space of x on V has dimension 2k

and CG(x) contains Cl2k(q). Hence k = 2 and x acts on V as (I2, A,A
−T ) ⊗ (I2, A,A

−T )(q). This has

centralizer in G containing Ωǫ4(q)× SL2(q
k(d

2
−1)), so once again CG(x) 6= CM (x).

Finally, consider M0 = PΩǫd(q
k), as in the last two rows of Table 4.9.4.

Because of exceptional isomorphisms of low-dimensional orthogonal groups, we need to consider sepa-
rately the cases d = 3, 5 and 6. If d = 3 then x ∈ M0 = Ω3(q

k) ∼= PSL2(q
k) has the form diag(1, a, a−1),
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where a ∈ Fqk has order (qk − 1)/2, and we argue in the usual way that |CG(x)| is divisible by (qk − 1)2/2,
so CG(x) 6= CM (x).

If d = 5 then x ∈M0 = Ω5(q
k) ∼= PSp4(q

k); in PSp4(q
k), x takes the form (I2, a, a

−1), so in Ω5(q
k), we

have x = (1, aI2, a
−1I2). Now we argue that CG(x) contains (SL2(q

k))2 if k ≥ 3, and contains SL2(q
2) ×

SU2(q) if k = 2. In both cases, CG(x) 6= CM (x).

Next, if d = 6 then x ∈ M0 = PΩǫ6(q
k) ∼= PSLǫ4(q

k). For ǫ = +, x takes the form (1, a,A) in
PSL4(q), hence x = (a, a−1A,A−T ) ∈ PΩ+

6 (q
k); and for e = −, x is (I2, a, a

−1 ∈ PSU4(q), hence x =
(I2, aI2, a

−1I2) ∈ PΩ−
6 (q

k). Now argue in the usual way that CG(x) 6= CM (x).

Finally, if d ≥ 7 then x = (I2+y, ζ, ζ
−1, A,A−T ) ∈ M0 = PΩǫd(q

k) (where y ∈ {0, 1, 2}), and so CG(x)
contains Ω(2+y)k(q)×SL2k−1(qk(d−4−y)/2), and once again we have the contradiction CG(x) 6= CM (x). This
completes the proof.

This completes the proof of Lemma 4.9.12, and hence also the proof of Proposition 4.9.1.

4.10 Exceptional automorphisms

As explained in Section 4.1.1, in our proof of Theorem 4.1, we have so far been assuming that our almost
simple group G contains no graph automorphisms when G has socle Sp4(2

a), and no triality automorphisms
when G has socle PΩ+

8 (q) (except when M is in the Aschbacher class S). In this final section, we complete
the proof of Theorem 4.1 by handling these cases.

Thus we assume in this section that G is an almost simple group such that one of the following holds:

1. the socle of G is isomorphic to Sp4(2
a) with a > 1, and G contains a graph automorphism;

2. the socle of G is isomorphic to PΩ+
8 (q) and G contains a triality automorphism.

Note that we omit the case Sp4(2), as the theorem is already proved for groups with alternating socle
in [46].

We slightly adjust terminology for this final section: we use S to denote the socle of G.

Lemma 4.10.1. Let S = Sp4(q) where q = 2a with a > 1, and suppose that S ≤ G ≤ Aut(S). Let M be a
core-free maximal subgroup of G. Then the action of G on (G :M) is not binary.

Proof. For q ∈ {4, 8, 16}, we refer to Lemma 4.1.1. Assume that q ≥ 32. We refer to [10, Table 8.14] for
the maximal subgroups of G. One checks that with three exceptions, all of them contain an element g as
defined in Lemma 2.2.12; hence these can be excluded. The exceptions are

M ∩ S = Sp4(q0), (q2 + 1) : 4 or (q + 1)2 : D8.

If M ∩ S = Sp4(q0), then q = qr0, where r is prime, and the argument of Lemma 4.5.7 gives the
conclusion.

In the remaining two cases, M is a torus normalizer, and we use arguments similar to those in §3.5.
Suppose that M ∩S = (q2 +1) : 4. Then N =M ∩ S is a Frobenius group with T = q2 +1, the Frobenius
kernel. Let g ∈M ∩ S be of order 4; again we check that there exists c ∈ CG(g) \NG(T ). Then the action
of N on (N : N ∩ Nx) is a Frobenius action and, since N ∩ Nx = N ∩M ∩Mx, Lemma 1.7.2 implies
that the action of M on (M : M ∩Mx) is not binary; hence the action of G on (G : M) is not binary by
Lemma 1.6.1.

Suppose finally that M ∩ S = (q + 1)2 : D8. We apply Lemma 3.5.2 with A ∼= D ∼= SL2(q), and
T0 ∼= T1 ∼= q + 1. The listed conditions are all easy to verify; in particular, item (vii) of the lemma is
verified using [34], which asserts that the action of a group with socle SL2(q) on the set of cosets of the
normalizer of a non-split torus is not binary.
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Lemma 4.10.2. Let S = PΩ+
8 (q), suppose that S ≤ G ≤ Aut(S), and suppose that G contains an element

in the coset of a triality automorphism of S. If M is a maximal core-free subgroup of G, then the action
of G on Ω = (G :M) is not binary.

Proof. This is covered by Lemma 4.1.1 when q ≤ 4, so assume that q ≥ 5.
We refer to [55] for a list of the maximal subgroups of G. Following [55] we set d = gcd(2, q − 1) and,

when giving the isomorphism type of a subgroup, we prefix a circumflex symbol to indicate that we are
giving the structure of the group in Ω+

8 (q), rather than its projective image in PΩ+
8 (q).

Suppose, first, that M ∩ S is a maximal subgroup of S in the C1 family. Then [46, Proposition 4.6]
implies that Ω contains a beautiful subset, and the result follows immediately. Suppose, next, that M is
a novelty maximal subgroup of G such that M ∩ S is a proper subgroup of a maximal C1 subgroup of S.
There are four possibilities for M , and we list them in Table 4.10.1 together with an integer r. The integer
r indicates the presence of a subgroup A = SLr(q) in M , together with a subgroup of S that is isomorphic
to a central quotient of SLr+1(q) satisfying the conditions of Lemma 1.6.10. The lemma then implies that
there is a subset ∆ of Ω of size qr on which G∆ acts 2-transitively. Now Lemma 2.1.1 implies that PΩ+

8 (q)
does not contain a section isomorphic to Alt(qr), and the result follows.

M ∩ S r

[̂q11 :
[
q−1
d

]

: 1
dGL2(q).d

2 2

G2(q) 3

ˆ
(
q−1
d × 1

dGL3(q)
)

.[2d] 3

ˆ
(
q+1
d × 1

dGU3(q)
)

.[2d] 2

Table 4.10.1: Novelty C1-subgroups in PΩ+
8 (q)

Next suppose that M ∩ S is a maximal subgroup of S in the C2 family, stabilizing a decomposition of
V = V8(q) as a direct sum of m-spaces. Lemma 4.2.13 implies that either

• there is a beautiful subset (and we are done), or

• the parameter m = 1 (and [55] implies that we can exclude this case, since such groups are not
maximal given our assumption that G contains a triality automorphism), or

• M ∩ S is of type O−
2 (q)wr Sym(4).

In this last case M is the normalizer of a torus, with M ∩ S ∼=ˆ
(
q+1
d

)4
.d3.23.Sym(4). Now, as in the

previous lemma, we appeal to Lemma 3.5.2 with A = A1(q) and D = A1(q)
3, and we conclude that the

action of G on (G :M) is not binary.

Suppose now that M is a novelty maximal subgroup of G such that M ∩ S is a proper subgroup of
a maximal subgroup of S in the C2 class. Then [55] implies that there are two possibilities: M ∩ S ∼=
[29].PSL3(2) or (D2(q2+1)/d)

2.[22]. For the first we use magma to check that any transitive action of M of
degree k with k 6≡ 0 (mod 4) and with M/K non-solvable, where K is the kernel of the action, is not
binary. Now if q ≡ 1, 7 (mod 8), then |G : M | is even and hence M must have a non-trivial suborbit
of odd degree; so we are done in this case (note that we can ignore actions where M/K is solvable by
Lemma 1.8.2). If q ≡ 3, 5 (mod 8), then |G : M | ≡ 3 (mod 4). Therefore |G : M | − 1 ≡ 2 (mod 4) and
henceM cannot have all suborbits of cardinality a multiple of 4. Again, we are done. For the second group
(D2(q2+1)/d)

2.[22], we use Lemma 3.5.2 with A = A1(q
2) and D = A1(q

2) and we conclude that the action
of G on (G :M) is not binary.

Assume next that M ∩ S is a maximal subgroup of S in the C5 class. Then Lemma 4.5.8 implies
that either there is a beautiful subset (and we are done), or F ∗(M ∩ S) = Ω−

8 (q0) with q0 ∈ {2, 3} and
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S = Ω+
8 (q

2
0) (but this case does not occur when G contains a triality automorphism), or F ∗(M∩S) = Ω+

8 (2)
and q = 2r with r odd. For this last case M equals either L or L× r where L is almost simple with socle
Ω+
8 (2); now we obtain the result arguing in exactly the same way as in Lemma 4.5.9.
The final case to consider is that in which M ∩ S is a subgroup in the family S of subgroups of S.

However this case has already been dealt with in Proposition 4.9.1, thanks to our relaxation of the triality
assumption at the beginning of Section 4.9.

This completes our consideration of the exceptional automorphisms. The proof of Theorem 4.1 is now
complete.
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