Alpha particles with energies on the order of megaelectronvolts will be the main source of plasma heating in future magnetic confinement fusion reactors. Instead of heating fuel ions, most of the energy of alpha particles is transferred to electrons in the plasma. Furthermore, alpha particles can also excite Alfvénic instabilities, which were previously considered to be detrimental to the performance of the fusion device. Here we report improved thermal ion confinement in the presence of megaelectronvolts ions and strong fast ion-driven Alfvénic instabilities in recent experiments on the Joint European Torus. Detailed transport analysis of these experiments reveals turbulence suppression through a complex multi-scale mechanism that generates large-scale zonal flows. This holds promise for more economical operation of fusion reactors with dominant alpha particle heating and ultimately cheaper fusion electricity.

Mazzi, S., Garcia, J., Zarzoso, D., Kazakov, Y., Ongena, J., Dreval, M., et al. (2022). Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions. NATURE PHYSICS, 18(7), 776-782 [10.1038/s41567-022-01626-8].

Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions

Nocente M.;Bonanomi N.;Casiraghi I.;Cavedon M.;Croci G.;Gorini G.;Milocco A.;Muraro A.;Panontin E.;Putignano O.;Rebai M.;Tardocchi M.;
2022

Abstract

Alpha particles with energies on the order of megaelectronvolts will be the main source of plasma heating in future magnetic confinement fusion reactors. Instead of heating fuel ions, most of the energy of alpha particles is transferred to electrons in the plasma. Furthermore, alpha particles can also excite Alfvénic instabilities, which were previously considered to be detrimental to the performance of the fusion device. Here we report improved thermal ion confinement in the presence of megaelectronvolts ions and strong fast ion-driven Alfvénic instabilities in recent experiments on the Joint European Torus. Detailed transport analysis of these experiments reveals turbulence suppression through a complex multi-scale mechanism that generates large-scale zonal flows. This holds promise for more economical operation of fusion reactors with dominant alpha particle heating and ultimately cheaper fusion electricity.
Articolo in rivista - Articolo scientifico
Plasma
English
30-giu-2022
2022
18
7
776
782
none
Mazzi, S., Garcia, J., Zarzoso, D., Kazakov, Y., Ongena, J., Dreval, M., et al. (2022). Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions. NATURE PHYSICS, 18(7), 776-782 [10.1038/s41567-022-01626-8].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/401011
Citazioni
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 51
Social impact