We describe how to obtain a global t-structure from a semiorthogonal decomposition with compatible t-structures on every component. This result is used to generalize a well-known theorem of Bondal on full strong exceptional sequences.

Lorenzin, A. (2022). Compatibility of t-Structures in a Semiorthogonal Decomposition. APPLIED CATEGORICAL STRUCTURES, 30(4), 755-778 [10.1007/s10485-022-09672-2].

Compatibility of t-Structures in a Semiorthogonal Decomposition

Lorenzin, A
2022

Abstract

We describe how to obtain a global t-structure from a semiorthogonal decomposition with compatible t-structures on every component. This result is used to generalize a well-known theorem of Bondal on full strong exceptional sequences.
Articolo in rivista - Articolo scientifico
Exceptional sequences; Filtered enhancement; Semiorthogonal decomposition; t-Structures; Triangulated categories;
English
8-feb-2022
2022
30
4
755
778
open
Lorenzin, A. (2022). Compatibility of t-Structures in a Semiorthogonal Decomposition. APPLIED CATEGORICAL STRUCTURES, 30(4), 755-778 [10.1007/s10485-022-09672-2].
File in questo prodotto:
File Dimensione Formato  
Lorenzin - 2022 - Appl Cat Struct - VoR.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 436.89 kB
Formato Adobe PDF
436.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/394977
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact