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Abstract
We describe how to obtain a global t-structure from a semiorthogonal decomposition with
compatible t-structures on every component. This result is used to generalize a well-known
theorem of Bondal on full strong exceptional sequences.
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1 Introduction

The notion of algebraic triangulated categories has raised great attention in the last decades.
These particular triangulated categories are described in several equivalent ways: they admit
an enhancement by dg categories or A∞-categories; alternatively, they are obtained as the
stable category of a Frobenius category. The most important examples are derived categories
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(assuming they are categories).1 Interestingly, many results can be extended from derived
categories to algebraic triangulated categories. We focus on the following.

Theorem—Bondal. [3, Theorem 6.2] Assume that the bounded derived category Db(X) of
coherent sheaves on a smooth manifold X is generated by a strong exceptional sequence
〈E1, . . . , En〉. Then Db(X) is equivalent to the bounded derived category Db(mod- A) of
right finite-dimensional modules over the algebra A = End(

⊕n
i=1 Ei ).

Bondal’s result has been generalized to algebraic triangulated categories by Keller [15, The-
orem 8.7]. In particular, the statement below is a consequence of Keller’s work.

Theorem—Keller-Orlov. [20, Corollary 1.9] Let T be an algebraic triangulated category.
Assume that T has a full strong exceptional sequence 〈E1, . . . , En〉. Then the category T
is equivalent to the derived category Db(mod- A), where A = End(

⊕n
i=1 Ei ) is the algebra

of endomorphisms of the collection 〈E1, . . . , En〉.
A question may arise: is it possible to drop the algebraic requirement? At the moment,
no answer has been found. As a matter of fact, it is incredibly hard to study the general
case of triangulated categories; indeed, the definition of an exceptional object requires the
category to beK-linear, withK a field, and the only known example of non-algebraicK-linear
triangulated category is studied in [23].

Our aim is to generalize Bondal’s result. For this reason, we deal with the construction
of a global t-structure, starting with compatible t-structures on semiorthogonal components.
Surprisingly, the result is not hard to prove and it follows from basic theory. As a corollary,
a full strong exceptional sequence of length 2 gives a heart of dimension at most 1, so that
Hubery’s result [11, Theorem 3.2] can be applied without any additional requirement on the
triangulated category. We obtain the following.

Corollary 3.13. Let K be a field. Any K-linear triangulated category T with a full strong
exceptional sequence 〈E1, E2〉 such that dimK Hom(E1, E2) < ∞ is algebraic. In particular,
T ∼= Db(mod- A), where A = End(

⊕2
i=1 Ei ).

For a strong exceptional sequencewith length greater than 2wedealwith realized triangulated
categories, i.e. triangulated categories T admitting an exact functor real : Db(A ) → S for
every heart A of a bounded t-structure on a full subcategory S of T . In particular, it has
been proven that all algebraic triangulated categories are realized (see Example 6.2 for a
discussion on examples of realized triangulated categories). By induction on the length of
the exceptional sequence, we can prove the main result.

Theorem 6.6. LetK be afield and letT be a realizedK-linear triangulated categorywith a full
strong exceptional sequence 〈E1, . . . , En〉 such that⊕i Hom(X , Y [i]) is afinite-dimensional
vector space for any X , Y ∈ T . Then T ∼= Db(mod- A), where A = End(

⊕n
i=1 Ei ).

In Sect. 2, we recall some basic results on t-structures. Section 3 is devoted to the notion
of compatible t-structures with respect to a semiorthogonal decomposition. Section 4 covers
the needed knowledge on quivers, while Sect. 5 deals with filtered triangulated categories,
introduced by Beilinson in [1, Appendix A]. In Sect. 6, we introduce the concept of realized
triangulated category and state the main theorem. “Appendix A” generalizes a result on
Yoneda extensions of exact categories.

1 Here, and in the following, category is used to mean locally small category.
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Compatibility of t-Structures in a Semiorthogonal Decomposition

2 Some Basic Results on Bounded t-Structures

In this section, we define t-structures and hearts, and state some classical results.

Definition 2.1 A t-structure on a triangulated category T is a full subcategory T ≤0 closed
by left shifts, i.e.T ≤0[1] ⊂ T ≤0, and such that for any object E ∈ T there is a distinguished
triangle A → E → B → A[1], where A ∈ T ≤0 and B ∈ T ≥1 := (T ≤0)⊥.

We remember that for any full subcategory C ⊂ T , we write C⊥ to mean the full
subcategory whose objects are Y such that Hom(X , Y ) = 0 for any X ∈ C .

We will write T ≤i := T ≤0[−i] and T ≥ j := T ≥1[− j + 1] for any i, j integers. A
t-structure is said to be bounded if

T =
⋃

i, j∈Z
(T ≤i ∩ T ≥ j ).

Moreover, the t-structure is non-degenerate if
⋂

i T
≤i = ⋂

j T
≥ j = 0.

The heart (of the bounded t-structure T ≤0) is the additive category A := T ≥0 ∩ T ≤0,
and it is proven to be abelian. We define the homological dimension of A in T , denoted by
dimT A , as the greatest integer n such that Hom(A, B[n]) = 0 for some A, B ∈ A .

Notation 2.2 Given a map f : A → B in a triangulated category, its cone will be denoted
by C( f ). When there is no need to make f explicit, we will write C(A → B).

Definition/Proposition. 2.3 [4, Lemma 3.2]. Let T be a triangulated category. A heart (of
bounded t-structure) on T is an additive category A satisfying the following properties:

1. For any two objects A, B ∈ A , Hom(A, B[n]) = 0 for every n < 0.
2. Given an object E ∈ T , we can find integers k1 > · · · > km and a filtration

0 = E0 → E1 → · · · → Em−1 → Em = E

such that C(Ei−1 → Ei ) = Ai [ki ] for some Ai ∈ A . The cohomology objects (with
respect to A ) are defined as H−ki (E) := Ai .

Lemma 2.4 Every bounded t-structure T ≤0 is non-degenerate. In particular, the collection
of functors Hi is conservative and Hi (E) = 0 for all i > 0 (respectively i < 0) if and only
if E ∈ T ≤0 (respectively T ≥0); this is [2, Proposition 1.3.7].

Proof Let E be in the intersection of allT ≤i . SinceT ≤0 is bounded, Emust be inT ≤ j∩T ≥h

for some j, h. Then E is in T ≥h , but also in T ≤h−1. By definition,

T ≥h = T ≥1[−h + 1] = (T ≤0)⊥[−h + 1] = (T ≤0[−h + 1])⊥ = (T ≤h−1)⊥.

So Hom(E, E) = 0, therefore E is a zero object. In the same way one proves that also⋂
i T

≥i = 0. ��

Lemma 2.5 LetA ⊂ T be a heart. Then 0 → A
α→ B

β→ C → 0 is a short exact sequence
in A if and only if there exists a map γ : C → A[1] such that

A B C A[1]α β γ

is a distinguished triangle (cf. proof of [2, Theorem 1.3.6]).
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Proof Notice that Hi (A) = 0 for i = 0 and H0(A) = A for any A ∈ A . We recall that,
given a distinguished triangle E → F → G → E[1], we have an induced exact sequence

· · · → Hi (E) → Hi (F) → Hi (G) → Hi+1(E) → · · ·
in A .

Let 0 → A
α→ B

β→ C → 0 be a short exact sequence in A and set C ′ := C(A → B).
The cohomology functors give rise to an exact sequence

0 → H−1(C ′) → A
α→ B → H0(C ′) → 0

inA . Since α is a monomorphism inA , H−1(C ′)must be zero; on the other side, H0(C ′) ∼=
coker(A → B) = C . The filtration in the definition proves that C ′ ∼= H0(C ′) ∼= C , so we
can choose C ′ to be C with the same map appearing in the distinguished triangle.

Conversely, let A
α→ B

β→ C
γ→ A[1] be a distinguished triangle with A, B,C ∈ A .

Then the cohomology functors show that there is an exact sequence

0 = H−1(C) → H0(A)
α→ H0(B)

β→ H0(C) → H1(A) = 0,

concluding that 0 → A
α→ B

β→ C → 0 is a short exact sequence. ��

3 Semiorthogonal Decompositions and t-Structures

After recalling the notion of semiorthogonal decomposition, we define compatibility between
t-structures with respect to such decomposition. In Theorem 3.7 we show how this situa-
tion gives rise to a global t-structure. As an application of the result, we study exceptional
sequences and state Corollary 3.13, which generalizes Bondal’s theorem [3, Theorem 6.2]
for exceptional sequences of length 2.

Definition 3.1 Let T be a triangulated category. A semiorthogonal decomposition is a
sequence of full triangulated subcategories T1,T2, . . . ,Tn such that

1. Hom(Ti ,T j ) = 0 with i > j ;
2. For any E ∈ T , there is a filtration

0 = En → En−1 → · · · → E1 → E0 = E

such that C(Ei → Ei−1) ∈ Ti for any i ∈ {1, . . . , n}.
In this situation, we will write T = 〈T1,T2, . . . ,Tn〉.
Remark 3.2 Item 1 entails that both the filtration and its cones are unique up to isomorphism
and functorial, as observed in [18, Remark 2.2].

Definition 3.3 Let T be a triangulated category. Given two full subcategories X and Y of
T , we define X ∗ Y to be the full subcategory of T whose objects are

{Z ∈ T | there exists a distinguished triangle X → Z → Y → X [1], with X ∈ X , Y ∈ Y }.
This construction gives rise to an operation ∗ between full subcategories of T .

Proposition 3.4 [2, Lemma 1.3.10]. The operation ∗ is associative.
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Compatibility of t-Structures in a Semiorthogonal Decomposition

Example 3.5 Let T be a triangulated category. Given a semiorthogonal decomposition T =
〈T1, . . . ,Tn〉, we can write T = Tn ∗ . . . ∗ T2 ∗ T1. If we consider a t-structure T ≤0 on
T , we have T = T ≤0 ∗ T ≥1.

Definition 3.6 Let T = 〈T1,T2〉 be a semiorthogonal decomposition, T any triangulated
category. Assume that Ti has a t-structure T ≤0

i for i = 1, 2. Then T ≤0
1 and T ≤0

2 are

compatible in T if Hom(T ≤0
1 ,T ≥1

2 ) = 0.

Denoted by A1 and A2 the hearts of T
≤0
1 and T ≤0

2 respectively, the relative dimension
of A1 and A2 in T is the number

rdimT (A1,A2) :=
{
sup {m ∈ Z | Hom(A1,A2[m]) = 0} if the set is nonempty

−1 otherwise.

Notice that, whenever the set above is nonempty, rdimT (A1,A2) ≥ 0 by compatibility. The
reason why we have chosen the value −1 in case the set is empty will become clear reading
the statement of Theorem 3.7.

Theorem 3.7 Let T be a triangulated category with a semiorthogonal decomposition T =
〈T1,T2〉. Given two compatible t-structures T ≤0

1 and T ≤0
2 on T1 and T2 respectively, the

full subcategory defined by

T ≤0 := T ≤0
2 ∗ (T ≤0

1 [1])

is a t-structure. Furthermore,

1. If T ≤0
1 and T ≤0

2 are bounded (respectively non-degenerate), then T ≤0 is bounded
(respectively non-degenerate).

2. Let A1, A2 and A be the hearts associated to T ≤0
1 , T ≤0

2 and T ≤0 respectively. Then

A = A2 ∗ (A1[1]).
3. The following equality holds true whenever at least one of the two hearts A1,A2 is

nonzero:

dimT A = max{dimT1 A1, dimT2 A2, rdimT (A1,A2) + 1}.

Proof Since T ≤0
i [1] ⊂ T ≤0

i for i = 1, 2, it is clear that also T ≤0 is closed by left shifts.
We aim to show that T = T ≤0 ∗ T ≥1, where T ≥1 := (T ≤0)⊥. Notice that

T = T2 ∗ T1 = T ≤0
2 ∗ T ≥1

2 ∗ (T ≤0
1 [1]) ∗ (T ≥1

1 [1]).
Since 〈T1,T2〉 is a semiorthogonal decomposition and compatibility holds, we have

T ≥1
2 ∗ (T ≤0

1 [1]) = {X ⊕ Y | X ∈ T ≥1
2 , Y ∈ T ≤0

1 [1]} = (T ≤0
1 [1]) ∗ T ≥1

2 .

Therefore,T = T ≤0
2 ∗(T ≤0

1 [1])∗T ≥1
2 ∗(T ≥1

1 [1]).We claim thatT ≥1
2 ∗(T ≥1

1 [1]) = T ≥1.

Let A ∈ T ≥1
2 ∗ (T ≥1

1 [1]). There exists a distinguished triangle A≥1
2 → A → A≥1

1 [1] →
A≥1
2 [1] with A≥1

2 ∈ T ≥1
2 and A≥1

1 [1] ∈ T ≥1
1 [1]. Now let B ∈ T ≤0 and consider the

distinguished triangle B≤0
2 → B → B≤0

1 [1] → B≤0
2 [1], where B≤0

2 ∈ T ≤0
2 and B≤0

1 [1] ∈
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T ≤0
1 [1]. The two distinguished triangles introduced give rise to the following hom-exact

sequences:

· · · Hom(B, A≥1
2 ) Hom(B, A) Hom(B, A≥1

1 [1]) · · ·

· · · Hom(B≤0
1 [1], A≥1

1 [1]) Hom(B, A≥1
1 [1]) Hom(B≤0

2 , A≥1
1 [1]) · · ·

· · · Hom(B≤0
1 [1], A≥1

2 ) Hom(B, A≥1
2 ) Hom(B≤0

2 , A≥1
2 ) · · ·

Since 〈T1,T2〉 is a semiorthogonal decomposition, Hom(B≤0
2 , A≥1

1 [1]) = 0, and the

properties of t-structures tell us that Hom(B≤0
1 [1], A≥1

1 [1]) = 0 = Hom(B≤0
2 , A≥1

2 ). By

compatibility, we also have Hom(B≤0
1 [1], A≥1

2 ) = 0. Then the last two exact sequences

prove that Hom(B, A≥1
1 [1]) = Hom(B, A≥1

2 ) = 0. The first exact sequence concludes that
Hom(B, A) = 0. Finally, A ∈ T ≥1.

Conversely, if A ∈ T ≥1, then there exists a distinguished triangle

A≤0 → A → A≥1 → A≤0[1]
with A≤0 ∈ T ≤0 and A≥1 ∈ T ≥1

2 ∗ (T ≥1
1 [1]). Notice A≤0 → A must be zero because

A ∈ T ≥1. Since A≥1 cannot have a direct summand in T ≤0, we get that A≤0 = 0. In
particular, A = A≥1; as wanted, T ≥1

2 ∗ (T ≥1
1 [1]) = T ≥1.

1. First, we deal with boundedness. Let A ∈ T . From the semiorthogonal decomposition,
we get a distinguished triangle A2 → A → A1[1] → A2[1]where Ai ∈ Ti for i = 1, 2.2

SinceT ≤0
i is bounded, Ai ∈ T

≤ki
i ∩T

≥hi
i for some integers ki , hi . Let k := max{k1, k2}

and h := min{h1, h2}.
By assumption, Ai ∈ T ≤0

i [−ki ], so Ai [k] ∈ T ≤0
i [k − ki ] ⊆ T ≤0

i being t-structures
closed by left shifts. Therefore, A[k] ∈ T ≤0; in other words A ∈ T ≤0[−k] = T ≤k .
Similarly, Ai ∈ T ≥1

i [1 − hi ] implies Ai [h − 1] ∈ T ≥1
i [1 − hi + h − 1] ⊆ T ≥1

i (here
we use the closure by right shifts). We conclude that A[h − 1] ∈ T ≥1, which means that
A ∈ T ≥1[1 − h] = T ≥h . We have showed that A ∈ T ≤k ∩ T ≥h .
To prove non-degeneracy when T ≤0

1 and T ≤0
2 are non-degenerate, let C ∈ ⋂

j T
≤ j .

By Remark 3.2, we have C = C(E → F) for E ∈ ⋂
j T

≤ j
1 and F ∈ ⋂

j T
≤ j
2 . By

hypothesis, both intersections are zero, so C ∼= 0 as wanted. The proof of
⋂

j T
≥ j = 0

is analogous since T ≥1 = T ≥1
2 ∗ (T ≥1

1 [1]).
2. For any A ∈ A we can find two distinguished triangles, according to the fact that

A ∈ T ≤0 and A[−1] ∈ T ≥1 = T ≥1
2 ∗ (T ≥1

1 [1]). Then Remark 3.2 proves that A is
exactly as described in the statement.

3. Let A = C(A1 → A2) and B = C(B1 → B2) be two objects of A , with Ai , Bi ∈ Ai ,
i = 1, 2. For any m, we consider the long exact sequence

· · · → Hom(A1[1], B[m]) → Hom(A, B[m]) → Hom(A2, B[m]) → · · ·
associated to the distinguished triangle A1 → A2 → A → A1[1]. By considering the
first and the last term, we can create two exact sequences associated to B1 → B2 →
B → B1[1]:

2 The choice of A1[1] in the distinguished triangle is motivated by the fact that T ≤0 = T ≤0
2 ∗ (T ≤0

1 [1]).
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· · · → Hom(A1[1], B2[m]) → Hom(A1[1], B[m]) → Hom(A1[1], B1[m + 1]) → · · ·
· · · → Hom(A2, B2[m]) → Hom(A2, B[m]) → Hom(A2, B1[m + 1]) → · · ·

Notice that Hom(A2, B1[m + 1]) = 0 since A2 ∈ T2 and B1 ∈ T1. Taking

� := max{dimT1 A1, dimT2 A2, rdimT (A1,A2) + 1},
the exact sequences above prove that Hom(A, B[m]) = 0 for any m > �, so dimT A ≤
�. To conclude, it suffices to show that dimT A ≥ �.
We have two cases. If � is realized by the homological dimension ofA1 orA2, we notice
that A1[1],A2 ⊂ A by item 2, so dimT A ≥ �.
Assume � = rdimT (A1,A2) + 1. If 0 < � < +∞, for some choices of A1[1] and B2 in
A we have Hom(A1[1], B2[�]) = 0. Similarly, if � = +∞, there is a sequence (an) ⊂ Z

such that an → +∞ andHom(An
1[1], Bn

2 [an]) = 0 for any an and some An
1[1], Bn

2 ∈ A .
Since item 2 tells us that A1[1], An

1[1], B2, Bn
2 ∈ A , in both cases dimT A cannot be

less than �. If � = 0, then � is also equal to the homological dimensions ofA1 orA2, and
this possibility has already been addressed.

��
Remark 3.8 As already used in the last part of the proof, the constructed t-structure may not
behave as wanted. For instance, using the notation of the statement, A1 is not contained in
A : we need to consider its shift A1[1].

One may think this shifting could be easily adjusted, but the requirement needed is incred-
ibly strong. The first idea it comes to mind is to consider the t-structure T ≤1

1 = T ≤0
1 [−1]

instead of T ≤0
1 . Indeed, if we ask T ≤1

1 and T ≤0
2 to be compatible, no shift will be involved,

and in particular A1,A2 ⊂ A . However, requiring T ≤1
1 and T ≤0

2 to be compatible implies
that Hom(A1,A2) = 0, which is generally too restrictive.

Remark 3.9 Theorem 3.7 is incredibly linked to torsion pairs (for an introduction of the
concept, we refer to [10, Section I.2]). LetT be a triangulated categorywith a semiorthogonal
decomposition 〈T1,T2〉 and a t-structure T ≤0 such that T ≤0

i = T ≤0 ∩ Ti is a t-structure
on Ti for i = 1, 2. If these t-structures are compatible in T , Theorem 3.7 gives rise to a
t-structure T ≤0

# , which is different from T ≤0. Indeed, E ∈ T ≤0
1 ∩ T ≥0

1 is an object in

(T ≤0
# ∩ T ≥0

# )[−1].
As a matter of fact, T ≤0

# gives rise to a heart which is a tilted version of the heart A of
T ≤0. This is simply true by picking the coupleF = A ∩ T1 and T = A ∩ T2, which is a
torsion pair by [17, Exercise 6.5].

Remark 3.10 Theorem 3.7 is very similar to [2, Theorem 1.4.10], which constructs global
t-structures via recollements instead of semiorthogonal decompositions. Let us explain this
relation in detail.

First of all, we recall that any recollement gives rise to a semiorthogonal decomposition.
We considerT = 〈T1,T2〉 a semiorthogonal decomposition and letT ≤0

i a t-structure onTi

for i = 1, 2. Then, under their respective assumptions, from Theorem 3.7 we get the global
t-structure T ≤0

2 ∗ (T ≤0
1 [1]), while [2, Theorem 1.4.10] gives the t-structure T ≤0

2 ∗T ≤0
1 . In

other words, the new result gives a tilted version of the old statement (see Remark 3.9).
Moreover, the two theorems deal with different situations. Indeed, although it is possible

to construct a left adjoint i∗ to the inclusion i∗ : T1 → T (i.e. T1 is left admissible)
and a right adjoint j∗ to the inclusion j! : T2 → T (i.e. T2 is right admissible) by [3,
Lemma 3.1], in general a left (respectively right) admissible subcategory does not need to
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be right (respectively left) admissible. Conversely, a recollement does not ensure that the
compatibility requirement is satisfied, since T ≥1

2 is not necessarily equal to T ≥1 ∩ T2.
Concerning our studies, Theorem 3.7 is to be preferred because it computes the homolog-

ical dimension of the obtained heart; this is crucial, especially for Corollary 3.13.

The definition of compatible t-structures so that Theorem 3.7 holds can be generalized
to semiorthogonal decompositions of any length, but the requirement may result unnatural
since we need to consider some shifting.

Definition 3.11 Let T = 〈T1, . . . ,Tm〉 and assume Ti has a t-structure T ≤0
i for i =

1, . . . ,m. Then all the t-structures are compatible if Hom(T ≤0
i [k − i − 1],T ≥1

k ) = 0
for any k > i .

With this notion of compatibility, an analogous of Theorem 3.7 can be obtained by recursion.
With the same notation of the definition above, if Ai is the heart of T

≤0
i , the heart A ⊂ T

built via Theorem 3.7 is described as

A = Am ∗ Am−1[1] ∗ . . . ∗ A2[m − 2] ∗ A1[m − 1].
Example 3.12 —Exceptional sequence LetK be a field and consider aK-linear triangulated
category T . We recall that an exceptional object is an object E ∈ T such that

Hom(E, E[n]) =
{
K if n = 0

0 otherwise.

A sequence of exceptional objects E1, . . . , Em ∈ T , such that Hom(Ei , E j [n]) = 0 for any
i > j and all n, is called exceptional sequence. It is full if T is generated by E1, . . . , Em ,
i.e. if T is exact equivalent to the smallest full triangulated subcategory of T containing
E1, . . . , Em .

Consider a K-linear triangulated category with a full exceptional sequence E1, . . . , Em

such that
⊕

i Hom(A, B[i]) is a finite-dimensional vector space for any A, B ∈ T .3 By [12,
§1.4], it is known that such a full exceptional sequence gives rise to a semiorthogonal decom-
position given by Ti = {⊕� E

⊕b�

i [�] : b� ∈ N}. We will use the notation 〈E1, . . . , Em〉 to
indicate exceptional sequences. Notice that on eachTi we can consider a bounded t-structure
with heart Ai = {E⊕b

i : b ∈ N}.
If the full exceptional sequence is also strong,4 i.e. Hom(Ei , E j [n]) = 0 for any i, j and

n = 0, the above t-structures are compatible: indeed, taking k > i ,

Hom

⎛

⎝
⊕

�≥0

E⊕b�

i [�][k − i − 1],
⊕

j<0

E
⊕c j
k [ j]

⎞

⎠ = 0.

Moreover, the t-structure induced on T is bounded.

Corollary 3.13 Let K be a field. Any K-linear triangulated category T with a full strong
exceptional sequence 〈E1, E2〉 such thatdimK Hom(E1, E2) < ∞ is algebraic. In particular,
T ∼= Db(mod- A), where A = End(

⊕2
i=1 Ei ).

Proof Theorem 3.7 and Example 3.12 prove that T has a heart of dimension at most 1. By
[11, Theorem 3.2], T is algebraic. We conclude by [20, Corollary 1.9]. ��
Example 3.14 By the previous corollary, Db(P1

K
) is the uniqueK-linear triangulated category

with a full strong exceptional sequence 〈E1, E2〉 such that dimK Hom(E1, E2) = 2.

3 In fact, it suffices to require this property for A, B ∈ {E1, . . . , Em }.
4 This condition can be weakened.

123



Compatibility of t-Structures in a Semiorthogonal Decomposition

4 Quivers

In order to study exceptional sequences of length greater than 2, we will need some basic
knowledge on quivers. Here we will give a brief introduction, mostly following [3, Section
5].

Definition 4.1 A quiver is a quadruple Q = (Q0, Q1, s, t), where Q0 is a set of vertices,
Q1 a set of arrows between vertices and s, t : Q1 → Q0 are the maps indicating source and
target respectively. A quiver is finite if Q0 and Q1 are finite. It is ordered if the vertices are
ordered and for every arrow a, s(a) ≤ t(a).

A path p of length n is a sequence of arrows a1, . . . , an ∈ Q1 such that t(ai ) = s(ai+1).
Moreover, with the same notation, t(p) := t(an) and s(p) := s(a1). We also allow paths of
length 0: such paths are in correspondence with the vertices. Let p, q be two paths. Then the
composition of paths q ◦ p is defined to be the concatenated path whenever s(q) = t(p).

Let K be a field. The path algebra KQ is the K-vector space with basis the paths. The
product is described as follows:

λq · μp =
{

(λμ) q ◦ p if s(q) = t(p)

0 otherwise

where λ,μ ∈ K and p, q are paths. In particular, paths of length 0 are idempotents in KQ.
If S ⊂ KQ is any subset, (Q, S) is called quiver with relations and its associated path

algebra is given by KQ/〈S〉, where 〈S〉 is the ideal generated by S.

Now, let us consider A = KQ/〈S〉 the path algebra associated to the quiver with relations
(Q, S). A left A-module is a vector space V overKwith the left action of the algebra A. This
is also called representation of a quiver. Using the paths of length 0, which are associated to
the vertices of Q, then V , as a vector space, decomposes into a direct sum

⊕
i∈Q0

Vi , where
Vi is the vector space associated to the vertex i . Moreover, for every path p ∈ A, we get a
linear operator Vs(p) → Vt(p).

When dealing with right A-modules, one can consider the opposite quiver Qop where s, t
are swapped with respect to Q. In other words, arrows go in the other direction, analogously
to what happens with the notion of opposite category. As one expects, left modules associated
to (Qop, Sop) are right modules of A.

In case the quiver Q is finite and ordered, let X1, . . . , Xn be the vertices and pi
the idempotent in A associated to Xi . Every right A-module V has a decomposition
V = ⊕

i∈Q0
GiV = ⊕

i∈Q0
V pi .

Let us denotewith Si the representation forwhichG j Si = δi jK, where δi j is theKronecker
delta, and all arrows are represented by the zero morphisms. Notice that for each right A-
module V we can create a filtration

0=F0V ↪→ F1V =G1V ↪→ F2V =
2⊕

j=1

G jV ↪→ · · · ↪→Fn−1V =
n−1⊕

j=1

G jV ↪→FnV =V

(3.2)
such that each quotient Fi V /Fi−1V is a direct sum of copies of Si . Projective modules are
Pi = pi A and the decomposition A = ⊕n

i=1 Pi holds. As a matter of fact,

A = HomA(A, A) = HomA

(
n⊕

i=1

Pi ,
n⊕

i=1

Pi

)

=
⊕

i, j

Hom(Pi , Pj ).
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These isomorphisms allow to interpret the arrowsof a quiver asmorphismsbetweenprojective
modules. In particular, being A the path algebra of an ordered quiver, Hom(Pi , Pj ) = 0 for
i > j . Furthermore, it is possible to consider the exact sequence

0 → Fi−1Pi → Pi → Si → 0 (3.3)

for every i = 1, . . . , n. Notice that P1 = S1.
LetT be aK-linear algebraic triangulated categorywith a full strong exceptional sequence

〈E1, . . . , En〉. Then A = End(
⊕n

i=1 Ei ) is the path algebra of an ordered and finite quiver
with relations. In particular, the equivalence F : T → Db(mod- A)obtained in [20,Corollary
1.9] is such that F(Ei ) = Pi , the projective modules of the path algebra A.

5 Filtered Enhancements

In this section, we explore the definition of filtered triangulated categories and give a fairly
simple result that has not been found in the literature, namely if a triangulated category
admits a filtered enhancement, then every full triangulated subcategory admits a filtered
enhancement in a natural way (see Proposition 5.4). Main reference is [1, Appendix A]. In
Remark 5.6, we discuss the relation of filtered enhancements with realization functors.

Definition 5.1 Let us consider a quintuple (F ,F (≤ 0),F (≥ 0), s, α), where F is a
triangulated category, F (≤ 0) and F (≥ 0) are strict full triangulated subcategories,
s : F → F is an exact equivalence and α : idF → s is a natural transformation. We
set F (≤ n) = snF (≤ 0) and F (≥ n) = snF (≥ 0). In this picture, F is called filtered
triangulated category if it satisfies the following axioms:

fcat 1 F (≤ 0) ⊂ F (≤ 1) and F (≥ 1) ⊂ F (≥ 0).
fcat 2 F = ⋃

n F (≤ n) = ⋃
n F (≥ n).

fcat 3 Hom(F (≥ 1),F (≤ 0)) = 0.
fcat 4 For any X ∈ F there exists a distinguished triangle A → X → B → A[1] where

A ∈ F (≥ 1) and B ∈ F (≤ 0); in other words, F = F (≥ 1) ∗ F (≤ 0).
fcat 5 For any X ∈ F , it holds that αs(X) = s(αX ).
fcat 6 For any X ∈ F (≥ 1) and Y ∈ F (≤ 0), α induces isomorphisms

Hom(Y , X) ∼= Hom(Y , s−1X) ∼= Hom(sY , X).

A triangulated categoryT admits a filtered enhancement if there exists a filtered triangulated
category F such that T ∼= F (≤ 0) ∩ F (≥ 0) in the sense of triangulated categories. With
an abuse of notation, we will always assume that T = F (≤ 0) ∩ F (≥ 0).

Proposition 5.2 [1, Proposition A.3]. Let F be a filtered triangulated category. Then the
following assertions hold true:

1. The inclusion i≤n : F (≤ n) → F has a left adjoint σ≤n, and the inclusion i≥n : F (≥
n) → F has a right adjoint σ≥n. In particular, these adjoints are exact (see, for instance,
[12, Proposition 1.41]).

2. There is a unique natural transformation δ : σ≤n → σ≥n+1[1] such that, for any X ∈ F ,

σ≥n+1(X) → X → σ≤n(X)
δ(X)→ σ≥n+1(X)[1]

is a distinguished triangle. Up to unique isomorphism, this is the only distinguished
triangle A → X → B → A[1] with A ∈ F (≥ n + 1) and B ∈ F (≤ n).
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3. For any two integers m, n, we have the following natural isomorphisms:

σ≤mσ≤n ∼= σ≤min{m,n}, σ≥mσ≥n ∼= σ≤max{m,n}, σ≥mσ≤n ∼= σ≤nσ≥m .

Part of the proof. We want to prove the first two isomorphisms of item 3, since it is the
only part of the statement not considered in [1]. Being the reasoning analogous, let us focus
just on the first isomorphism. Let X ∈ F . If m ≥ n, then F (≤ m) ⊃ F (≤ n). We recall
that σ≤mi≤m ∼= id because the inclusion i≤m is fully faithful. Since σ≤n(X) ∈ F (≤ m), we
simply have that σ≤mσ≤n(X) ∼= σ≤n(X) by the natural isomorphism mentioned before. We
conclude that σ≤mσ≤n ∼= σ≤n .

Let m ≤ n, so that F (≤ m) ⊂ F (≤ n). Then, by adjunction, we have the following
isomorphisms for any X ∈ F and Y ∈ F (≤ m):

HomF (≤m)(σ≤mσ≤n(X), Y ) ∼= HomF (σ≤n(X), i≤m(Y ))

∼= HomF (X , i≤ni≤m(Y ))

∼= HomF (X , i≤m(Y )).

In particular, σ≤mσ≤n is left adjoint to i≤m . Since adjoints are determined up to a natural
isomorphism, σ≤mσ≤n ∼= σ≤m as wanted.

Remark 5.3 By item 2 of Proposition 5.2, we also have the following isomorphisms:

sσ≤n ∼= σ≤n+1s, sσ≥n ∼= σ≥n+1s.

Let us set grn := σ≤nσ≥n . This is not the definition used in [1], but it will come in handy
in the proof of the following statement.

Proposition 5.4 LetT be a triangulated category admitting a filtered enhancementF . Then
any full triangulated subcategory S of T has a filtered enhancement given by the full
subcategory G of F with objects

{X ∈ F | s−n grn(X) ∈ S ∀n}.
Proof First of all, we would like to show that G is a triangulated subcategory of F . Notice
that the shift functor ofF obviously restricts to G since s−n grn is exact, being composition
of exact functors. Let us consider X → Y with X , Y ∈ G . This gives a distinguished triangle
X → Y → Z → X [1] in F . We get that

s−n grn(X) → s−n grn(Y ) → s−n grn(Z) → s−n grn(X [1])
is a distinguished triangle in T , with s−n grn(X) and s−n grn(Y ) objects ofS . This suffices
to conclude that s−n grn(Z) ∈ S , so that Z ∈ G . Next, we set G (≤ 0) := G ∩ F (≤ 0) and
G (≥ 0) := G ∩ F (≥ 0). We would like to prove that the autoequivalence s : F → F can
be restricted to G . Let X ∈ G . Then, by Remark 5.3, we have

s−n grn(sX) = s−nσ≤nσ≥ns(X)

∼= s−nσ≤nsσ≥n−1(X)

∼= s−nsσ≤n−1σ≥n−1(X)

= s−n+1 grn−1(X) ∈ S .

So we can restrict s and create an exact autoequivalence s : G → G , called s as well by an
abuse of notation. Of course, the restriction of α : idF → s gives us the required natural
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transformation and fcat 5 is ensured. We set G (≤ n) and G (≥ n) via s as described in
Definition 5.1. Being s an equivalence, we have the following

G (≥ n) = sn(G (≥ 0)) = sn(G ∩ F (≥ 0)) = sn(G ) ∩ sn(F (≥ 0)) = G ∩ F (≥ n),

and analogously G (≤ n) = G ∩ F (≤ n). This immediately shows that fcat 1, 2, 3, 6 hold.
As fcat 5 has already been dealt with, it remains to show fcat 4. In order to do that, we recall
the distinguished triangle in item 2 of Proposition 5.2. Therefore, the statement is reduced
to establish that the images of σ≤n and σ≥n are in G (≤ n) and G (≥ n) respectively, so that
these functors are adjoints to the inclusions as in F . Let X ∈ G and consider σ≤m . By item
3 of Proposition 5.2 and Remark 5.3 the following isomorphisms hold:

s−n grn(σ≤m X) = s−nσ≤nσ≥nσ≤m(X)

∼= s−nσ≤nσ≤mσ≥n(X)

∼= s−nσ≤mσ≤nσ≥n(X)

∼= σ≤m−ns
−nσ≤nσ≥n(X).

In particular, s−n grn(σ≤m X) ∼= σ≤m−n(A), where A ∈ S . If m − n ≥ 0, we have the
following inclusions:

A ∈ S ⊂ T ⊂ F (≤ 0) ⊂ F (≤ m − n),

so σ≤m−n(A) = A. If m − n < 0, being A ∈ F (≥ 0) it holds that Hom(A, σ≤m−n(A)) = 0
by fcat 3. In particular, item 2 of Proposition 5.2 entails that σ≤m−n(A) = 0. As wanted,
s−n grn(σ≤m X) ∈ S , so that σ≤m X ∈ G . With a similar reasoning, one can prove that
σ≥m X ∈ G . ��
The reason why filtered enhancements become of great interest is their relation with realiza-
tion functors.

Definition 5.5 Let T be a triangulated category. Given a heart (of a bounded t-structure)
A ⊂ T , we call realization functor (of A in T ) an exact functor real : Db(A ) → T such
that real|A = idA .

Remark 5.6 In [1, Appendix], it is proven that every triangulated category with a filtered
enhancement admits a realization functor for any heart. However, some authors point out
that an additional requirement, called fcat 7, may be necessary to provide the result (see [21,
Appendix A] for further details).

For the sake of completeness, let us state this new axiom using the same notation of
Definition 5.1.

fcat 7 Given any morphism f : X → Y in F , the diagram

σ≥1(X) X σ≤0(X) σ≥1(X)[1]

s(σ≥1Y ) s(Y ) s(σ≤0Y ) s(σ≥1Y )[1]
ασ≥1(Y )σ≥1( f ) αY f

δ(X)

ασ≤0(Y )σ≤0 f ασ≥1(Y )σ≥1( f )[1]

can be extended to a 3 × 3-diagram whose rows and columns are distinguished
triangles.

Once ensured thatF satisfies fcat 7, it is easy to prove that also G as defined in Proposition
5.4 fulfills fcat 7. This will be key in what follows.
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6 Realized Triangulated Categories

This section revolves around the unconventional notion of realized triangulated categories.
After the definition, we will give some large classes of examples studied in the literature
and prove a crucial result, Proposition 6.3. As an application, the generalization of Bondal’s
theorem [3, Theorem 6.2] is ensured for realized triangulated categories.

Definition 6.1 A triangulated category T is called realized if for every heartA of every full
triangulated subcategoryS ⊂ T there exists a realization functor real : Db(A ) → S ⊂ T .

Example 6.2 1. Triangulated categories with a filtered enhancement are realized, as dis-
cussed in Proposition 5.4 and Remark 5.6.

2. Algebraic triangulated categories are realized by [16, Theorem 3.2], where the first item
is proved in detail in [14, Section 4]. In fact, every algebraic triangulated category has a
filtered enhancement, as proved in [5, Proposition 3.8], but fcat 7 has not been investi-
gated.

3. Every triangulated category which is the underlying category of a stable derivator admits
a filtered enhancement; this is the content of [19].
Furthermore, topological triangulated categories obtained by stable combinatorial model
categories are filtered by [9, Example 4.2]. In particular, there are examples of triangulated
categories with a filtered enhancement which are not algebraic.

Proposition 6.3 [6, Corollary 2.8]. Let T be a realized triangulated category and let A be
a heart on T . The following assertions are equivalent:

1. T has all the Ext groups of A according to Definition A.12.
2. The realization functor real : Db(A ) → T is fully faithful.
3. The realization functor is full.

Moreover, under such circumstances, real is an exact equivalence.

Proof We start with 1. ⇒ 2. Let E, F ∈ Db(A ) and consider Ẽ = real(E) and F̃ = real(F).
Then, by Proposition 2.3, there exist integers k1 > · · · > km , j1 > · · · jn and filtrations

0 = E0 → E1 → · · · → Em−1 → Em = E

0 = F0 → F1 → · · · → Fn−1 → Fn = F

with C(Ei−1 → Ei ) = Ei ∈ A [ki ] and C(Fh−1 → Fh) = Fh ∈ A [ jh]. Since real is an
exact functor, their images Ẽi , Ẽ i , F̃h and F̃h give the same filtrations. We consider the exact
hom-sequences

· · · Hom(Ei , Fh) Hom(Ei , Fh) Hom(Ei−1, Fh) · · ·
· · · Hom(Ei , Fh−1) Hom(Ei , Fh) Hom(Ei , Fh) · · ·

From these sequences, an induction on i and h proves that Hom(Ei , Fh) ∼= Hom(Ẽi , F̃h),
so finally Hom(E, F) ∼= Hom(Ẽ, F̃) as wanted. Notice the base case is ensured since T
has all the Ext groups of A .

The implication 2. ⇒ 3. is trivial. We deal with 3. ⇒ 1. In order to do that, we use item
3 and 4 of Proposition A.7, remembering Proposition A.15. Let A, B ∈ A . Since f1,A,B :
Ext1(A, B) → HomT (A, B[1]) is an isomorphism by Dyer’s Theorem A.2, we know that
f2,A,B is injective. Moreover, since real is full, f2,A,B is surjective, thus an isomorphism.
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The same reasoning proves that fn,A,B is an isomorphism for every n, concluding that T
has all the Ext groups of A .

We now assume that real is fully faithful and prove that it is also an equivalence. Let
E ∈ T . By Proposition 2.3, there are a sequence of integers k1 > · · · > km and a filtration

0 = E0 → E1 → · · · → Em−1 → Em = E

such that C(Ei−1 → Ei ) = Ei ∈ A [ki ]. We prove by induction on m that E is in the
essential image of real. If m = 0, there is nothing to prove. If m > 0, then by induction
hypothesis Em−1 = real(Êm−1). Obviously, Em = real(Êm) because all shifts of the heart
A are in the essential image of real. By the filtration, E = C(Em[−1] → Em−1). The
map associated to this cone is the image of a unique map f : Êm[−1] → Êm−1 in Db(A )

because real is fully faithful. We consider its cone C( f ). Since real is exact, we obtain an
isomorphism real(C( f )) ∼= E . ��

Remark 6.4 As a corollary, it is immediately proven that not all hearts in a derived category
have all the Ext groups. Indeed, in Db(P1) one can show that A = {O⊕a0

P1
[2] ⊕ OP1(1)

⊕a1 |
a0, a1 ≥ 0} gives a heart (this can be done by applying Theorem 3.7). As highlighted in [17,
Exercise 5.3], Db(A ) ∼= Db(pt)⊕2 is not equivalent to Db(P1), so Db(P1) cannot have all
the Ext groups of A .

With a different approach, notice that A � OP1 [2] → OP1(1)[2] ∈ A [2] does not factor
through an object in A [1], and therefore Corollary A.13 proves that Db(P1) does not have
all the Ext groups of A .

Remark 6.5 Let K be a field and consider a realized K-linear triangulated category T with
a full strong exceptional sequence 〈E1, . . . , En〉. Then we can consider the heart A on T
obtained according to Theorem 3.7 and Example 3.12, giving rise to a realization functor
Db(A ) → T . One would like to prove that such functor is in fact an equivalence, so that
[20, Corollary 1.9] can be applied to ensure the generalization of Bondal’s result [3, Theorem
6.2]. However, when n > 2, it is not said that T has all the Ext groups of A ; for instance, if
n = 3,

A � E1[2] f−→ E3[2] ∈ A [2]
does not necessarily factor through A [1]. In general, we would have f /∈ Ext2A (E1[2], E3)

by Proposition A.7, item 1. For example, consider the quiver obtained by the following
vertices and arrows:

1 2 3

f

In order to resolve this issue, we recall what already discussed in Remark 3.9. If the length
of the exceptional sequence is 2, the heart obtained by Theorem 3.7 is a tilt of mod- A, where
A = End(

⊕2
i=1 Ei ). As we will see, the same idea can be used to prove the general case.

Theorem 6.6 Let K be a field and let T be a realized K-linear triangulated category
with a full strong exceptional sequence 〈E1, . . . , En〉 such that

⊕
i Hom(X , Y [i]) is a

finite-dimensional vector space for any X , Y ∈ T . Then T ∼= Db(mod- A), where
A = End(

⊕n
i=1 Ei ).
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Proof Wewill prove the statement by induction on n, the length of the exceptional sequence.
The base case n = 2 is already taken care of by Corollary 3.13.

If n > 2, we write T = 〈T̃ , En〉. By induction hypothesis, there exists an exact equiva-
lence ϕ : Db(mod- Ã) → T̃ with Ã = End(

⊕n−1
i=1 Ei ). We divide the proof in two parts:

1. The t-structures associated to ϕ(mod- Ã) and En are compatible. By Theorem 3.7, we
obtain a heart A on T .

2. T has all the Ext groups of A .

Once both items are ensured, Proposition 6.3 can be applied, proving that T ∼= Db(A ), and
an application of [20, Corollary 1.9] will complete the proof.

From (3.2), every object X ∈ mod- Ã has an associated filtration

0 = F0X ↪→ F1X ↪→ · · · ↪→ Fn−2X ↪→ Fn−1X = X

where Fk X/Fk−1X is a direct sum of copies of Sk . Moreover, for each Pk there is a short
exact sequence 0 → Fk−1Pk → Pk → Sk → 0 by (3.3). In particular, S1 = P1.

Let us deal with 1. In order to prove it, it suffices to show that Hom(ϕ(X), En[m]) = 0 for
every m ≤ −1 and X ∈ mod- Ã. This can be done by induction on k, requiring Fk X = X .
If k = 1, F1X is in fact a direct sum of copies of P1 = ϕ−1(E1), so the claim holds.

If k > 1, notice that the short exact sequence 0 → Fk−1Pk → Pk → Sk → 0 is
associated to a distinguished triangle in T , so it gives rise to the hom-sequence

Hom(ϕ(Fk−1Pk)[1], En[m]) → Hom(ϕ(Sk), En[m]) → Hom(Ek, En[m]).
By induction,Hom(ϕ(Fk−1Pk)[1], En[m]) = 0,whileHom(Ek, En[m]) = 0 by hypothesis.
Therefore, Hom(ϕ(Sk), En[m]) = 0. We now consider X = Fk X and the distinguished
triangle

Fk−1X → X → X/Fk−1X → Fk−1X [1]
obtained by the filtration. From the associated hom-sequence, Hom(ϕ(X), En[m]) = 0 since
the same holds for Fk−1X and X/Fk−1X , the last one being a direct sum of copies of Sk .

It remains to prove item 2. According to Corollary A.14, we will prove by induction
on m that Hom(ϕ(X), En[m]) ∼= ExtmA (ϕ(X), En) with ϕ(X) ∈ ϕ(mod- Ã)[1] ⊂ A . The
cases m = 0, 1 are true since A is a heart. Let m > 1. By Proposition A.7, it holds that
Extm(Ek[1], En) ⊂ Hom(Ek[1], En[m]) = 0, and therefore Extm(Ek[1], En) = 0. Let
us consider the distinguished triangle Fk−1Pk → Pk → Sk → Fk−1Pk[1]. Applying
Hom(ϕ(−), En[m]), we get the following commutative diagram

Extm−1(Ek[1], En) Extm−1(ϕ(Fk−1Pk)[1], En) Extm(ϕ(Sk)[1], En) 0

Hom(Ek[2], En[m]) Hom(ϕ(Fk−1Pk)[2], En[m]) Hom(ϕ(Sk)[1], En[m]) 0

∼= ∼=

(5.7)
proving that Extm(ϕ(Sk)[1], En) ∼= Hom(ϕ(Sk)[1], En[m]) for every k (use, for instance,
the five lemma).

Now, we proceed by induction on the length of the filtration. If X = F1X , there is nothing
to prove since F1X is a sum of copies of S1 = E1, and therefore Hom(ϕ(F1X)[1], En[m]) =
0 since m > 1. If X = Fk X , we consider the short exact sequence 0 → Fk−1X → X →
X/Fk−1X → 0. Then we get the following diagram:
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Extm−1(ϕ(Fk−1X)[1], En) Hom(ϕ(Fk−1X)[2], En[m])

Extm(ϕ(X/Fk−1X)[1], En) Hom(ϕ(X/Fk−1X)[1], En[m])

Extm(ϕ(X)[1], En) Hom(ϕ(X)[1], En[m])

Extm(ϕ(Fk−1X)[1], En) Hom(ϕ(Fk−1X)[1], En[m])

Extm+1(ϕ(X/Fk−1X)[1], En) Hom(ϕ(X/Fk−1X), En[m]).

∼=

∼=

fk

∼=

gk

To show that fk is an isomorphism, it suffices to apply the five lemma whenever gk is a
monomorphism. More strongly, we claim that gk is an isomorphism. The idea is exactly the
one seen above with the diagram (5.7). In order to prove that

Extm+1(Ek[1], En) ⊂ Hom(Ek[1], En[m + 1]) = 0,

we will check that Extm(Ek[1], Y ) ∼= Hom(Ek[1], Y [m]) for any Y ∈ A , and conclude by
item 3 of Proposition A.7. This is in fact true. Indeed, notice that

Extm(Ek[1], ϕ(X)[1]) = Hom(Ek[1], ϕ(X)[m + 1]) = 0

for any X ∈ mod- Ã because Ek is projective in ϕ(mod- Ã). Furthermore, as remarked before
(5.7), Extm(Ek[1], En) = Hom(Ek[1], En[m]) = 0. We conclude that

Extm(Ek[1], Y ) = Hom(Ek[1], Y [m]) = 0

since any Y ∈ A is the extension of a direct sum of copies of En and an object ϕ(X)[1] ∈
ϕ(mod- Ã). ��
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A Yoneda Extensions in a Triangulated Category

A necessary remark to prove Hubery’s main result is that, for a heart A in a triangulated
category T , if dimT (A ) ≤ 1, then dimDb(A )(A ) ≤ 1 (see [11, Section 3]). This appendix
aims to generalize this observation, providing results onYoneda extensions in any triangulated
category.

First of all, we want to recall a theorem by Dyer, as it will give the desired generality
for Proposition A.7. For this reason, let us give the definition of exact category according to
Quillen [22].
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Definition A.1 An exact category A is a full extension closed additive subcategory of an
abelian categoryB. A conflation (or short exact sequence) is given by a short exact sequence
in B contained in A .

Theorem A.2 (Dyer) [7]. LetA be a full extension closed additive subcategory of a triangu-
lated category T such that Hom(A, B[−1]) = 0 for any A, B ∈ A .

Then A has a natural exact structure, given by defining 0 → A → B → C → 0 a
conflation if A → B → C → A[1] is a distinguished triangle in T for some C → A[1].
This association gives rise to a natural isomorphism Ext1A (A, B) ∼= HomT (A, B[1]) for
all A, B ∈ A .

Remark A.3 A heart A in a triangulated category T satisfies the requirements of Theorem
A.2 thanks to Lemma 2.5.

Definition A.4 (Yoneda extensions) LetA be an abelian category. The elements of the group
Extn(A, B) ∼= HomDb(A )(A, B[n]) are n-extensions for n > 0, i.e. exact sequences

X : 0 → B → X1 → · · · → Xn → A → 0

under the equivalence relation generated by identifying two exact sequences X, Y if there is
a family of morphisms ψ = {ψ1, . . . , ψn} satisfying the following commutative diagram

0 B X1 · · · Xn A 0

0 B Y1 · · · Yn A 0

id ψ1 ψn id

(cf. [8, Theorem III.5.5]). For n = 0, Ext0(A, B) ∼= HomDb(A )(A, B) ∼= HomA (A, B).
The Yoneda product is given by maps Y n,m

A,B,C : Extn(A, B) × Extm(B,C) →
Extn+m(A,C) for any n,m ≥ 0 and any A, B,C ∈ A . For n,m ≥ 1, the Yoneda product is
the map

(
X : 0→ B→ X1→· · ·→ Xn → A → 0 , Y : 0 → C → Y1 → · · · → Ym → B → 0

)

Y · X : 0 → C → Y1 → · · · → Ym → X1 → · · · → Xn → A → 0.

If n = m = 0, the product is simply the composition of maps. The case n > 0 and m = 0
requires a more sophisticated definition. Let X1 ∈ Ext1(K , B) and g : B → C . Then g · X1

is described by the following commutative diagram

0 B X1 K 0

0 C g · X1 K 0

g id (A.5)

where g · X1 is the pushout of g and B → X1. Now, considering an n-extension

X : 0 → B → X1 → X2 → · · · → Xn → A → 0

and g : B → C , the Yoneda product is given by substituting 0 → B → X1 with 0 → C →
g · X1:

g · X : 0 → C → g · X1 → X2 → · · · → Xn → A → 0.
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Dually, one can describe the case n = 0 and m > 0. The Yoneda product so defined behaves
according to the composition of maps (up to shift)

HomDb(A )(A, B[n]) × HomDb(A )(B,C[m]) → HomDb(A )(A,C[n + m]).
The structure of abelian group of HomDb(A )(A, B[n]) can be considered on Extn(A, B)

via the Baer sum, described as follows. Let X, Y ∈ Extn(A, B). Consider the direct sum of
the long exact sequences

X ⊕ Y : 0 → B ⊕ B → X1 ⊕ Y1 → · · · → Xn ⊕ Yn → A ⊕ A → 0,

the diagonal map �A = (
id
id

) : A → A ⊕ A and the codiagonal map ∇B = (id id) :
B ⊕ B → B. Then the Baer sum is given by X + Y := ∇B · (X ⊕ Y) · �A.

The (absolute) homological dimension of A , denoted by dimA , is the greatest integer
n such that Extn(A, B) = 0 for some A, B ∈ A .

Remark A.6. Last definition can be generalized to any exact category A , where an n-
extension is a sequence

0 B X1 X2 · · · Xn A 0
ξ0 ξ1 ξ2 ξn−1 ξn

such that, for i = 1, . . . , n − 1, ξi factor through an object Ci ∈ A and

0→ B → X1→C1→0, 0→C1 → X2 → C2→0, . . . , 0→Cn−1 → Xn → A→ 0

are conflations. In particular, Ci = im ξi = ker ξi+1.

Proposition A.7. [6, Lemma 2.1]. Let A be a heart of a triangulated category T . More
generally, let A be an exact subcategory of T as in Dyer’s Theorem A.2. Then there is a
well-defined map fn,A,B : Extn(A, B) → HomT (A, B[n]) for any A, B ∈ A and n ≥ 0.
The following facts are true.

1. The image of fn,A,B is given by all the maps A → B[n] factoring as

A → Cn−1[1] → · · · → C1[n − 1] → B[n]
for some Ci ∈ A , i ∈ {1, . . . , n − 1}.

2. The Yoneda product is sent to composition as expected: therefore, fn,−,− is a natural
transformation and fn,A,B is a group homomorphism with respect to the Baer sum on
Extn(A, B).

3. If fn−1,A,B is an isomorphism for any B ∈ A , then fn,A,B is injective.
4. Let gn,A,B : Extn(A, B) → HomT (A, B[n]) be a map for any n ≥ 0 and A, B ∈ A .

If g1,A,B is the natural isomorphism of Theorem A.2 and the Yoneda product is sent to
composition, then gn,A,B = fn,A,B .

Proof For n = 0, f0,A,B : HomA (A, B) → HomT (A, B) is an isomorphism since A is a
full subcategory of T . Let n > 0 and consider X an exact sequence

0 B X1 X2 · · · Xn A 0.
ξ0 ξ1 ξ2 ξn−1 ξn
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To X we can associate short exact sequences

0 B = im ξ0 X1 im ξ1 0

0 im ξ1 X2 im ξ2 0

...

0 im ξn−1 Xn im ξn = A 0

which are associated to distinguished triangles; therefore, we can consider a map

A → im ξn−1[1] → · · · → im ξ2[n − 2] → im ξ1[n − 1] → B[n].
We need to show that if (X, ξ) and (Y, η) give the same n-extension, then the associated
map A → B[n] obtained is the same. Without loss of generality, assume there is a family of
morphisms ψ as in Definition A.4. Then for each i ∈ {0, . . . , n − 1} we have

im ξi Xi+1 im ξi+1 im ξi [1]

im ηi Yi+1 im ηi+1 im ηi [1]
ϕi ψi+1 ϕi+1 ϕi [1]

where ϕi is obtained by the universal property of the kernel. In order to prove that the middle
square is commutative, we notice that

Xi+1 → im ξi+1 → im ηi+1 ↪→ Yi+2 = Xi+1 → im ξi+1 → Xi+2 → Yi+2

= Xi+1 → Yi+1 → Yi+2

= Xi+1 → Yi+1 → im ηi+1 ↪→ Yi+2,

so Xi+1 → im ξi+1 → im ηi+1 = Xi+1 → Yi+1 → im ηi+1. Since ϕi+1 is the only one
making the middle square commutative by the universal property of the cokernel, TR3 entails
that also the right-hand square is commutative.

We obtain a commutative diagram

A im ξn−1[1] · · · im ξ2[n − 2] im ξ1[n − 1] B[n]

A im ηn−1[1] · · · im η2[n − 2] im η1[n − 1] B[n]
ϕn ϕn−1[1] ϕ2[n−2] ϕ1[n−1] ϕ0[n]

where ϕn = id and ϕ0 = id, so that the rows are in fact the same map. This gives the
well-definition of every fn,A,B .

1. Let us consider a map α : A → B[n] factoring through A = Cn → Cn−1[1] → · · · →
C1[n − 1] → C0[n] = B[n]. To any Ci [−1] → Ci−1, we can associate a cone, which
is in A by Theorem A.2. Let us call such cone Xi . We have the following short exact
sequences: 0 → Ci−1 → Xi → Ci → 0. Since Ci is also the kernel of Xi+1 → Ci+1,
we manage to create an exact sequence

0 → B → X1 → X2 → · · · → Xn → A → 0.

It is easy to notice that such exact sequence is associated to the map α : A → B[n] via
fn,A,B .

123



A. Lorenzin

2. In the case of Extn and Extm with n,m > 0, the Yoneda product is sent to composition
with a reasoning similar to item 1. Therefore, it suffices to show it is true when either m
or n is zero.
First, we recall that f1,A,B is exactly the map considered in Theorem A.2, which is a
natural transformation for both entries. So (A.5) can be translated to

B X1 K B[1]

C g · X1 K C[1]
g

h

id g[1]
g[1] f

(A.8)

inT . Let us prove that fn,A,− is a natural transformation, the proof of fn,−,B being dual.
For a general n-extension

X : 0 → B → X1 → X2 → · · · → Xn → A → 0

and g : B → C , themap A → C[n] associated to g ·X factors through K [n−1] → C[n],
where K = im(g · X1 → X2) = im(X1 → X2), according to (A.8). Furthermore, the
same diagram shows that K → C[1] is obtained as a composition K → B[1] → C[1],
where the lattermorphism is g[1]. Therefore, A → C[n] canbewritten as the composition
of A → B[n], obtained by X, and g[n] : B[n] → C[n], as wanted.
Finally, fn,−,− is a natural transformation for both entries A and B. Moreover, fn,A,B is a
group homomorphism since the Baer sum of two extensions is given by Yoneda products
as explained in Definition A.4.

3. We want to show that the zero map A → B[n] is associated to only one equivalence class
of extensions, the trivial one, whenever fn−1,A,X is an isomorphism for any X ∈ A .
Let us consider

X : 0 → B → X1 → X2 → · · · → Xn → A → 0

such that fn,A,B(X) = 0 and the associated factorization

A → Cn−1[1] → · · · → C2[n − 2] → C1[n − 1] → B[n].
We have the following diagram, where the rows are distinguished triangles:

A B[n] B[n] ⊕ A[1] A[1]

C1[n − 1] B[n] X1[n] C1[n]

0

id
g[n]

(A.9)

Now we pick the map A[1] → B[n] ⊕ A[1] → X1[n]. Since fn−1,A,X1 is a surjective,
we get that A → X1[n − 1] is associated to an exact sequence

Y : 0 → X1 → Y1 → · · · → Yn−1 → A → 0.

Composing Y with 0 → B → X1 ⊕ B → X1 → 0, we have the following:

0 B X1 ⊕ B Y1 · · · Yn−1 A 0

0 B X1 X2 · · · Xn A 0.

(
0
id

)

id (id,ι) id

ι

(A.10)
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We want to prove there are maps Yi → Xi+1 making every square of the diagram above
commutative. It suffices to consider the sequences starting at X1 and C1 respectively
(remember that C1 is the image of X1 → X2). The Yoneda product of Y and g : X1 →
C1 gives us g · Y, whose associated map A → X1[n − 1] → C1[n − 1] factors as
A → Cn−1[1] → · · · → C1[n − 1] because of the right-hand commutative square in
(A.9). Since fn−1,A,C1 is injective by assumption, we know that g · Y is in the same
equivalence class of

0 → C1 → X2 → · · · → Xn → A → 0.

Therefore, we can assume, up to equivalence, that X is in fact

0 → B → X1 → g · Y1 → Y2 → · · · → Yn−1 → A → 0.

With this assumption, (A.10) can be completed with maps Yi → Xi+1 as wanted: the
first morphism is given according to (A.5), while all the others are the identity. It remains
to show that the equivalence class of

0 → B → X1 ⊕ B → Y1 → · · · → Yn−1 → A → 0

is the one associated to 0, which is obvious because the diagram

0 B X1 ⊕ B Y1 · · · Yn−2 Yn−1 A 0

0 B B 0 · · · 0 A A 0

id

(
0
id

)

(0 id)

π

π id

id id

commutes.
4. Let gn,A,B as in the statement and assume by induction that gm,C,D = fm,C,D for any

m < n and C, D ∈ A . We consider X ∈ Extn(A, B) given by

0 → B → X1
ξ1→ X2 → · · · → Xn → A → 0.

Such an extension can be split into two shorter extensions:

X1 : 0 → B → X1 → coker(ξ1) → 0

X2 : 0 → coker(ξ1) → X2 → · · · → Xn → A → 0.

Moreover, X1 · X2 = X. As gn,A,B sends Yoneda product to composition, we have

gn,A,B(X) = gn,A,B(X1 · X2)

= g1,coker(ξ1),B(X1) ◦ gn−1,A,coker(ξ1)(X2)

= f1,coker(ξ1),B(X1) ◦ fn−1,A,coker(ξ1)(X2)

= fn,A,B(X1 · X2) = fn,A,B(X).

��
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Remark A.11. By Proposition A.7, for any exact subcategoryA ⊂ T as in Dyer’s Theorem
A.2, it holds that Ext2(A, B) ⊂ Hom(A, B[2]) for any A, B ∈ A . In case A is a heart,
dimT (A ) ≤ 1 implies that dimA ≤ 1.

Definition A.12. Let T be a triangulated category andA an exact subcategory as in Dyer’s
Theorem A.2. We say that T has all the Ext groups of A if the morphism fn,A,B defined
in Proposition A.7 is an isomorphism for any A, B ∈ A and all n ∈ N.

Corollary A.13. A triangulated categoryT has all the Ext groups of an exact subcategoryA
as in Dyer’s Theorem A.2 if and only if for every map A → B[n] there exists a factorization

A → Cn−1[1] → · · · → C1[n − 1] → B[n]
with Ci ∈ A for i ∈ {1, . . . , n − 1}. In particular, if A is a heart and dimT A ≤ 1, then T
has all the Ext groups of A and dimA = dimT A .

Proof The only if part is obvious: if fn,A,B is an isomorphism, then the image of such map
contains all morphisms A → B[n]: item 1 of Proposition A.7 concludes.

Conversely, item 1 of Proposition A.7 shows that fn,A,B is surjective. By Theorem A.2,
f1,A,B is an isomorphism:we obtain that f2,A,B is injective according to item 3 of Proposition
A.7. An induction proves that this holds for every n.

Using Remark A.11 and Theorem A.2, we prove the last part of the statement. ��
Corollary A.14. Let T be a triangulated category with a semiorthogonal decomposition
T = 〈T1,T2〉 and two compatible t-structures T ≤0

1 and T ≤0
2 on T1 and T2 respectively.

We denote with Ai the heart associated to T ≤0
i . By Theorem 3.7, we obtain the heart

A = A2 ∗ A1[1].
We consider the following hypotheses:

1. Ti has all the Ext groups of Ai ;
2. HomT (A, B[m]) ∼= ExtmA (A, B) for every A ∈ A1[1] and B ∈ A2.

Then T has all the Ext groups of the heart A .

Proof Before starting the actual proof, let us remark that ExtmA (A, B) = ExtmA2
(A, B)when-

ever A, B ∈ A2. Indeed, let

X : 0 → B → X1 → X2 → · · · → Xn → A → 0

be an extension in A with A, B ∈ A2 and let σ2 : T → T2 be the right adjoint of the
inclusion functor ι : T2 → T . Then we get

ισ2X : 0 B ισ2X1 · · · ισ2Xn A 0

X : 0 B X1 · · · Xn A 0

id id

which shows that ισ2X ∼= X in ExtmA (A, B) (recall the equivalence relation used to describe
the Yoneda extensions in Definition A.4). Since σ2X ∈ ExtmA2

(A, B), we conclude that
ι gives an isomorphism between ExtmA2

(A, B) and ExtmA (A, B) whenever A, B ∈ A2. In
a similar way, considering the left adjoint of the inclusion T1 → T , one can prove that
ExtmA (A, B) = ExtmA1[1](A, B) if A, B ∈ A1[1].
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Given A, B ∈ A , we consider two distinguished triangle A2 → A → A1 → A2[1] and
B2 → B → B1 → B2[1] with A2, B2 ∈ A2 and A1, B1 ∈ A1[1]. We obtain the following
hom-exact sequences

· · · Hom(A1, B[m]) Hom(A, B[m]) Hom(A2, B[m]) · · ·
· · · Hom(A1, B2[m]) Hom(A1, B[m]) Hom(A1, B1[m]) · · ·
· · · Hom(A2, B2[m]) Hom(A2, B[m]) Hom(A2, B1[m]) = 0 · · ·

By Proposition A.7, these exact sequences have maps from the Ext groups. We proceed by
induction onm. From the induction hypothesis and item 3 of Proposition A.7 we deduce that

ExtmA (A2, B1) ⊆ Hom(A2, B1[m]) = 0.

Therefore, hypothesis 1 and five lemma entails that Hom(A2, B[m]) ∼= ExtmA (A2, B). The
second row proves that Hom(A1, B[m]) ∼= ExtmA (A1, B) using both hypotheses and five
lemma. From the first row, we conclude that Hom(A, B[m]) ∼= ExtmA (A, B). ��
Proposition A.15. [13, Propositions XI.4.7 and 4.8]. In the case of Db(A ), the map fn,A,B :
Extn(A, B) → Hom(A, B[n]) above is exactly the classical one, that associates to each
X ∈ Extn(A, B) the map given by the composition of the inverse of the quasi-isomorphism

(0 → B → X1 → · · · → Xn → 0) → A

(the left-hand complex is such that Xn is at level 0) and the morphism

(0 → B → X1 → · · · → Xn → 0) → B[n].
In particular, in the case of Db(A ) every fn,A,B is an isomorphism.

Proof This is a direct consequence of item 4 of Proposition A.7 . The last sentence is a
classical result; see, for instance, [13, Proposition XI.4.8]. ��
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