We prove that if τ is a large positive number, then the atomic Goldberg-type space h1(N) and the space hRτ1(N) of all integrable functions on N of which local Riesz transformRτ is integrable, are the same space on any complete noncompact Riemannian manifold N with Ricci curvature bounded from below and positive injectivity radius. We also relate h1(N) to a space of harmonic functions on the slice N× (0 , δ) for δ> 0 small enough.

Meda, S., Veronelli, G. (2022). Local Riesz Transform and Local Hardy Spaces on Riemannian Manifolds with Bounded Geometry. THE JOURNAL OF GEOMETRIC ANALYSIS, 32(2) [10.1007/s12220-021-00810-1].

Local Riesz Transform and Local Hardy Spaces on Riemannian Manifolds with Bounded Geometry

Meda S.;Veronelli G.
2022

Abstract

We prove that if τ is a large positive number, then the atomic Goldberg-type space h1(N) and the space hRτ1(N) of all integrable functions on N of which local Riesz transformRτ is integrable, are the same space on any complete noncompact Riemannian manifold N with Ricci curvature bounded from below and positive injectivity radius. We also relate h1(N) to a space of harmonic functions on the slice N× (0 , δ) for δ> 0 small enough.
Articolo in rivista - Articolo scientifico
Bounded geometry; Local Hardy space; Local Riesz transform; Locally doubling manifolds; Potential analysis on strips;
English
5-gen-2022
2022
32
2
55
partially_open
Meda, S., Veronelli, G. (2022). Local Riesz Transform and Local Hardy Spaces on Riemannian Manifolds with Bounded Geometry. THE JOURNAL OF GEOMETRIC ANALYSIS, 32(2) [10.1007/s12220-021-00810-1].
File in questo prodotto:
File Dimensione Formato  
Meda-2022-J Geom Anal-preprint.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 684.32 kB
Formato Adobe PDF
684.32 kB Adobe PDF Visualizza/Apri
Meda-2022-JGA-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 728.43 kB
Formato Adobe PDF
728.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/394884
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
Social impact