We prove that if τ is a large positive number, then the atomic Goldberg-type space h1(N) and the space hRτ1(N) of all integrable functions on N of which local Riesz transformRτ is integrable, are the same space on any complete noncompact Riemannian manifold N with Ricci curvature bounded from below and positive injectivity radius. We also relate h1(N) to a space of harmonic functions on the slice N× (0 , δ) for δ> 0 small enough.
Meda, S., Veronelli, G. (2022). Local Riesz Transform and Local Hardy Spaces on Riemannian Manifolds with Bounded Geometry. THE JOURNAL OF GEOMETRIC ANALYSIS, 32(2) [10.1007/s12220-021-00810-1].
Local Riesz Transform and Local Hardy Spaces on Riemannian Manifolds with Bounded Geometry
Meda S.;Veronelli G.
2022
Abstract
We prove that if τ is a large positive number, then the atomic Goldberg-type space h1(N) and the space hRτ1(N) of all integrable functions on N of which local Riesz transformRτ is integrable, are the same space on any complete noncompact Riemannian manifold N with Ricci curvature bounded from below and positive injectivity radius. We also relate h1(N) to a space of harmonic functions on the slice N× (0 , δ) for δ> 0 small enough.File | Dimensione | Formato | |
---|---|---|---|
Meda-2022-J Geom Anal-preprint.pdf
accesso aperto
Descrizione: Article
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Creative Commons
Dimensione
684.32 kB
Formato
Adobe PDF
|
684.32 kB | Adobe PDF | Visualizza/Apri |
Meda-2022-JGA-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
728.43 kB
Formato
Adobe PDF
|
728.43 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.