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Abstract. We prove that if τ is a large positive number, then the atomic Goldberg-

type space h1(N) and the space h1Rτ
(N) of all integrable functions on N whose local

Riesz transform Rτ is integrable are the same space on any complete noncompact

Riemannian manifold N with Ricci curvature bounded from below and positive in-

jectivity radius. We also relate h1(N) to a space of harmonic functions on the slice

N × (0, δ) for δ > 0 small enough.

1. Introduction

The classical Hardy space H1(Rn) plays an important role in Euclidean Harmonic

Analysis and has been the object of a huge number of investigations. Its theory, which

is available also in book form (see, for instance, [56, 32]), is well understood, and has its

roots in the seminal papers [26, 58]. In the first, C. Fefferman and E.M. Stein proved,

amongst other important results, that H1(Rn) can be equivalently defined in terms of

the Riesz transforms, of various kinds of maximal operators and square functions. In

the second, Stein and G. Weiss considered a space of generalised conjugate harmonic

functions that may be identified with H1(Rn). Their results were complemented by

R.R. Coifman [12] and R. Latter [40], who proved that H1(Rn) admits an atomic de-

composition. All these characterisations corroborate the idea that the space H1(Rn) is

central in Harmonic Analysis and illustrate its flexibility, a feature of great importance

in the applications. This beautiful theory, or part of it, has been extended in various

directions: see, for instance, [13, 28, 11, 50, 25, 22, 23, 21, 33, 19, 4, 62, 38, 1, 3] and

the references therein. We observe in passing that on certain examples of nondoubling
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measure spaces, such as the hyperbolic disc, a perhaps surprising phenomenon occurs:

the Hardy-type spaces defined in terms of the Riesz transform, the Poisson maximal

operator and the heat maximal operator are different spaces [46]. For more on the at-

tempts to define an effective Hardy-type space on noncompact symmetric spaces and

generalisations thereof, see [2, 39, 42, 6, 48, 49, 44] and the references therein.

The major drawback of H1(Rn) is that it is not “stable” under localisation, i.e., mul-

tiplication by smooth functions of compact support does not preserve H1(Rn). This fact

induced D. Goldberg [31] to introduce a variant of H1(Rn), denoted by h1(Rn) and quite

often termed “local Hardy space”. It is fair to recall that R.S. Strichartz [59] had de-

fined a suggestive predecessor of h1(Rn) on any compact Riemannian manifold. Goldberg

proved several characterisations of h1(Rn), which are the natural “local” counterparts of

many of those known for H1(Rn). They include characterisations via several different

maximal operators, local Riesz transforms, and an atomic decomposition. It includes

also a characterisation of h1(Rn) in terms of a generalised system of conjugate harmonic

functions on the slice Rn × (0, 1).

A careful reading of [31] reveals that most of the properties of h1(Rn) depend only on

the local structure of the Euclidean space and not on its geometry at infinity. Thus, it is

natural to speculate whether one can define an analogue of h1(Rn) on “locally Euclidean

spaces”.

Interesting examples of such spaces are the so-called RD-spaces, i.e., homogeneous

spaces X in the sense of Coifman and Weiss with the additional property that a re-

verse doubling condition holds in X. Following up previous works of various authors

[22, 23, 33], Dachun Yang and Yuan Zhou [65, 66] constructed on such spaces an inter-

esting and quite complete theory of “local Hardy spaces” associated to given admissible

functions. See also [36] for results concerning Triebel–Lizorkin spaces on RD-spaces and

their relationships with local Hardy spaces. In particular, note that if N is an RD-space,

then the local Hardy space h1(N) defined below reduces to the space H1,2
` (N) of [65].

Further important examples of “locally Euclidean spaces” are Riemannian manifolds.

A subclass thereof on which a satisfactory theory of local Hardy spaces can be developed

is that of manifolds N with bounded geometry. By this we mean that N is a complete

connected noncompact Riemannian manifolds with Ricci curvature bounded from below

and positive injectivity radius. Notice that the Riemannian measure on N may very

well be nondoubling. In analogy with the classical case [31], one can define a number of

spaces on N , including h1
max(N), h1

H (N), h1
P(N), h1

I (N), h1
at(N): specifically, h1

max(N),

h1
H (N), h1

P(N) are defined in terms of maximal functions (associated to a suitable grand

maximal operator, to the local heat maximal operator and to the local Poisson maximal

operator, respectively), h1
I (N) and h1

at(N) are ionic and atomic spaces, respectively. It

may be worth observing that h1
I (N) can be equivalently defined using various kinds of
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ions, and similarly for h1
at(N), but with atoms playing the role of ions. For the sake of

simplicity, we do not insist on this point in the introduction.

In the inspiring paper [60], M. Taylor proved, under the additional assumption that

all the derivatives of the metric tensor are bounded, that h1
max(N) = h1

I (N). In a much

wider context that includes Riemannian manifolds with bounded geometry in the sense

specified above, Meda and S. Volpi [51] introduced the space h1
at(N), and proved that

h1
at(N) = h1

I (N). It is fair to say that both [60] and [51] contain many additional material,

including duality and interpolation results and boundedness criteria for relevant (pseudo-

) differential operators on N . Quite recently, A. Martini, Meda and M. Vallarino [45],

following up a profound result of A. Uchiyama [63], showed that if N has bounded

geometry, then h1
max(N) = h1

H (N) = h1
P(N) = h1

I (N) (see also [65, 66] for related

results in the setting of RD-spaces). Consequently, the five spaces listed above coincide

(and their norms are equivalent); for the sake of brevity, we denote simply by h1(N) the

resulting space, equipped with any of the corresponding norms.

A further natural local Hardy space on N may be defined as follows. Denote by

∇ the covariant derivative on N , and by L (minus) the Laplace–Beltrami operator,

which we think of as an unbounded nonnegative operator on L2(N). For each positive

number τ , denote by Lτ the translated Laplacian τI + L . We consider the translated

Riesz transform Rτ := ∇L
−1/2
τ , τ > 0, and the Riesz–Goldberg space

(1.1) h1
Rτ

(N) :=
{
f ∈ L1(N) : |Rτf | ∈ L1(N)

}
.

We equip h1
Rτ

(N) with the norm
∥∥f∥∥

h1
Rτ

(N)
:=
∥∥f∥∥

1
+
∥∥|Rτf |

∥∥
1

. E. Russ [53, proof of

Theorem 14] (see also [51, Theorem 8]) proved that if τ is large enough, then h1
Rτ

(N) ⊇
h1(N) on a class of Riemannian manifolds that include those of bounded geometry. It is

then natural to speculate whether h1
Rτ

(N) agrees with h1(N) in this generality, thereby

extending the result for Rn proved by Goldberg via Fourier transform techniques. We

remark that the Riesz transform ∇L −1/2 (which corresponds to the limiting case where

τ = 0) is unbounded from h1(Rn) to L1(Rn).

In this paper, we answer to this deceptively simple question in the affirmative. Our

main result, Theorem 7.9, states that if N is a complete connected noncompact Riemann-

ian manifold with bounded geometry, then h1
Rτ

(N) = h1(N) as long as τ is large enough.

Our strategy of proof has its roots in an old and beautiful idea of Stein and Weiss (see,

in particular, [58, Theorem A]), who realised that certain powers (slightly below 1) of

the gradient of harmonic functions are subharmonic. This idea is central in the classical

proof that if u is a harmonic function on Rn+1
+ :=

{
(x, t) ∈ Rn × (0,∞) : t > 0

}
, then

(1.2)
∥∥∂tu|Rn×{0}∥∥H1(Rn)

�
∥∥|∇∇u|∗∥∥

L1(Rn)
� sup

t>0

∫
Rn

∣∣∇∇u(x, t)
∣∣dx,
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where ∇∇ denotes the gradient on Rn+1 and the superscript ∗ stands for nontangential

maximal function (see, for instance, [55, Ch. VII]). This result has a natural counterpart

for h1(Rn) [31], where the slice Rn × (0, 1) plays the role of Rn+1
+ in the classical case.

There is a major problem in extending the latter result to Riemannian manifolds: if

the curvature of N is not nonnegative, then powers (≤ 1) of the gradient of harmonic

functions on N × R may not be subharmonic. M. Dindoš [19, Chapter 6] was able to

overcome this problem and to work out an effective strategy (modifying significantly

that of Stein and Weiss) to prove an analogue of (1.2) on bounded domains of (compact)

manifolds, endowed with a possibly nonsmooth metric. His strategy hinges on the obser-

vation, derived from the Bochner–Weitzenbock formula, that if u is a harmonic function

on an open set of an (n+ 1)-dimensional Riemannian manifold M with Ricci curvature

bounded from below by −κ2 and (n− 1)/n < q ≤ 1, then
∣∣∇u∣∣q is qκ2-subharmonic, i.e.,

it satisfies an inequality of the form L |∇u|q ≤ qκ2 |∇u|q.

We adapt Goldberg’s approach and extend Dindoš’ strategy to the case of noncompact

Riemannian manifolds N of bounded geometry. We consider the slice Σ := N × (0, 2σ),

and prove that if σ is small enough (see (3.2)), then a harmonic function in Σ satisfies the

maximal inequality

∫
N

∣∣∇∇u(x)
∣∣∗ dν(x) < ∞ if and only if sup

t∈(0,2σ)

∫
N

∣∣∇∇u(x, t)
∣∣dν(x) <

∞ and |∇∇u| tends to 0 at infinity, uniformly in each closed subslice of Σ (see Theo-

rem 6.3). Here ν, ∇∇ and ∗ denote the Riemannian density, the gradient of N × R and

an appropriate nontangential maximal function (defined at the beginning of Section 5),

respectively. Our strategy requires estimating the Poisson operator and powers of the

Green operator associated to Σ. In particular, we show that if σ is small enough, then

the integral kernels of such operators are “integrable at infinity in Σ” (see Sections 3

and 4). Their rate of decay at infinity is controlled by λ1 := π/(2σ). Notice that −λ2
1 is

the first eigenvalue of the Dirichlet Laplacian on the interval [0, 2σ]. Clearly λ1 increases

as σ decreases: this is the reason for which we choose σ small.

The last ingredient we need in the proof our main result is a careful analysis of the

kernel of the translated Riesz transform Rτ . This technical part is confined in Section 7.

The paper is organized as follows. Section 2 contains some preliminary estimates

extensively used in the sequel. In Sections 3 and 4 we establish some potential estimates

on Σ. Section 5 contains some maximal estimates for certain potentials on Σ. Section 6

is devoted to the analogue on slices of Σ of certain results of Dindoš [19]. The analysis

of the local Riesz transform for Riemannian manifolds with bounded geometry, together

with some basic information concerning the Goldberg-type space h1(N), is contained in

Section 7, where our main result concerning H1
Rτ

(N), Theorem 7.9, is proved.

We shall use the “variable constant convention”, and denote by C, possibly with

sub- or superscripts, a constant that may vary from place to place and may depend on
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any factor quantified (implicitly or explicitly) before its occurrence, but not on factors

quantified afterwards.

Throughout the paper, given p in [1,∞], we denote by p′ the conjugate exponent of p.

2. Background material and preliminary estimates

2.1. Standing assumptions. In this paper N will always denote an n-dimensional

complete connected noncompact Riemannian manifold with bounded geometry. By

this we mean that the Ricci curvature of N satisfies RicN ≥ −κ2 for some nonnegative

number κ, and the injectivity radius is strictly positive. The Riemannian measure of N

will be denoted by ν. The operator norm of a bounded linear operator T from Lp(N) to

Lq(N) will be denoted by
∣∣∣∣∣∣T ∣∣∣∣∣∣

p;q
.

Denote by ∇ and ∆ the gradient and the (negative) Laplace–Beltrami operator on N ,

respectively. Set L = −∆. The operator L , initially defined on smooth functions with

compact support, admits a unique self adjoint extension, still denoted by L , in L2(N).

For any nonnegative number τ denote by Lτ the operator τI +L , where I denotes the

identity operator. In particular, L0 = L . Denote by H N
t and hNt the heat semigroup

e−tL and the corresponding heat kernel, respectively. The following are well known

consequences of our assumptions:

(i) N is locally Ahlfors regular. Indeed, by Bishop-Gromov’s volume comparison

theorems and by a well known estimate due to C.B. Croke [16, Prop. 14], for

each R > 0 there exist positive constants C1 and C2 such that

(2.1) C1 r
n ≤ ν

(
Br(x)

)
≤ C2 r

n ∀x ∈ N ∀r ∈ (0, R].

Thus, in particular, ν is locally doubling. Furthermore, there exist nonnegative

constants α and β and C such that

(2.2) ν
(
Br(x)

)
≤ C rα e2βr ∀x ∈ N ∀r ∈ [1,∞);

(ii) there exist positive constants c and C such that

(2.3) hNt (x, y) ≤ C γ(t) e−cd(x,y)2/t ∀x, y ∈ N ∀t > 0,

where γ(t) := max(t−n/2, t−1/2) (see, for instance, [8, Theorem 3]). Note that

(2.3) directly implies the following ultracontractivity estimate for H N
t :

(2.4)
∣∣∣∣∣∣H N

t

∣∣∣∣∣∣
1;∞ ≤ C γ(t) ∀t > 0.

Suppose now that 1 ≤ q ≤ r ≤ ∞. Then there exists a constant C such that

(2.5)
∣∣∣∣∣∣H N

t

∣∣∣∣∣∣
q;r
≤ C γ(t)1/q−1/r ∀t > 0.

The estimate (2.5) follows from (2.4), the contractivity of H N
t on Lp(N) for all

p in [1,∞], duality and interpolation;
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(iii) Bakry’s condition [5]

(2.6)
∣∣∇H N

t f
∣∣ ≤ eκ

2t H N
t

(∣∣∇f ∣∣) ∀t > 0

holds.

2.2. Ultracontractivity estimates for generalised Bessel potentials. Proposi-

tions 2.1, 2.2 and 2.3 contain some basic estimates for certain (families of) operators

that will arise frequently in the sequel. It is convenient to set D :=
√

L .

Proposition 2.1. For any pair of numbers τ ≥ κ2 and ρ > 0∣∣∇(τI + t2D2)−ρf
∣∣ ≤ ((τ − κ2)I + t2D2

)−ρ(∣∣∇f ∣∣) ∀t ∈ (0, 1].

Proof. The subordination formula

(2.7) (τI + t2D2)−ρf =
1

Γ(ρ)

∫∞
0

sρ e−τs Hst2f
ds

s

and Bakry’s condition (2.6) imply that∣∣∇(τI + t2D2)−ρf
∣∣ ≤ 1

Γ(ρ)

∫∞
0

sρ e−τs
∣∣∇Hst2f

∣∣ ds

s

≤ 1

Γ(ρ)

∫∞
0

sρ e−(τ−κ2t2)s Hst2
∣∣∇f ∣∣ ds

s

≤
(
(τ − κ2)I + t2D2

)−ρ∣∣∇f ∣∣,
as required. �

Part of the proof of the next proposition is an adaptation of the proof of [47, Proposi-

tion 2.2 (i)]. Given a nonnegative number ρ and a function G : [0,∞)→ C, set∥∥G∥∥
(ρ)

:= sup
λ≥0

(1 + λ2)ρ
∣∣G(λ)

∣∣ and Ξρ(G) :=
√
‖G‖(ρ) ‖G‖(ρ+1).

In the next proposition F and {Ft : t > 0} will denote functions on [0,∞). It is

straightforward to check that if F (D) is bounded from L1(N) to L2(N), then F (D)

is also bounded from L2(N) to L∞(N), and
∣∣∣∣∣∣F (D)

∣∣∣∣∣∣
1;2

=
∣∣∣∣∣∣F (D)

∣∣∣∣∣∣
2;∞. We shall use

this observation without any further comment.

Proposition 2.2. There exists a positive constant C such that the following hold for

every t > 0:

(i) if 1 ≤ q ≤ r ≤ ∞, ρ > n(1/q − 1/r)/2 and τ > 0, then∣∣∣∣∣∣(τI + t2D2)−ρ
∣∣∣∣∣∣
q;r
≤ C γ(t)2(1/q−1/r);

(ii) if ρ > n/4, then
∣∣∣∣∣∣F (tD)

∣∣∣∣∣∣
1;2

=
∣∣∣∣∣∣F (tD)

∣∣∣∣∣∣
2;∞ ≤ C γ(t) ‖F‖(ρ) and

∣∣∣∣∣∣F (tD)
∣∣∣∣∣∣

1;∞ ≤
C γ(t)2 ‖F‖(2ρ);

(iii) if ρ > n/4, then
∣∣∣∣∣∣Ft(D)

∣∣∣∣∣∣
1;2

=
∣∣∣∣∣∣Ft(D)

∣∣∣∣∣∣
2;∞ ≤ C ‖Ft‖(ρ) and

∣∣∣∣∣∣Ft(D)
∣∣∣∣∣∣

1;∞ ≤
C ‖Ft‖(2ρ);
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(iv) if ρ > n/4, then
∥∥|∇F (tD)g|

∥∥
2
≤ C t−1 γ(t) Ξρ

(
F
) ∥∥g∥∥

1
and

∥∥|∇F (tD)g|
∥∥
∞ ≤

C Ξρ
(
F (t·)

) ∥∥g∥∥
2

;

(v) if ρ > n/4, then
∥∥|∇Ft(D)g|

∥∥
2
≤ C Ξρ

(
Ft
) ∥∥g∥∥

1
and

∥∥|∇Ft(D)g|
∥∥
∞ ≤ C Ξρ

(
Ft
) ∥∥g∥∥

2
.

Proof. First we prove (i). By (2.7) and the ultracontractivity estimate (2.5),∣∣∣∣∣∣(τI + t2D2)−ρ
∣∣∣∣∣∣
q;r
≤ 1∣∣Γ(ρ)

∣∣
∫∞
0

sρ e−τs
∣∣∣∣∣∣e−st2D2 ∣∣∣∣∣∣

q;r

ds

s

≤ C
∫∞
0

sρ e−τs γ(st2)1/q−1/r ds

s
.

The last integral is convergent because of the assumption ρ > n(1/q − 1/r)/2. Now

we write the last integral as the sum of the integrals over (0, 1/t2) and (1/t2,∞) and

observe that γ(st2) = (st2)−n/2 on (0, 1/t2) and that γ(st2) = (st2)−1/2 on (1/t2,∞). It

is straightforward to check that∫1/t2

0

sρ e−τs (st2)−n(1/q−1/r)/2 ds

s
≤ C min(t−n(1/q−1/r), t−2ρ)

and that

∫∞
1/t2

sρ e−τs (st2)−(1/q−1/r)/2 ds

s
≤ C min(e−(τ−ε)/t2 , t−(1/q−1/r)) for ε small.

By combining the estimates above we get the required result.

Next we prove (ii). By the spectral theorem

sup
t>0

∣∣∣∣∣∣(I + t2D2)ρ F (tD)
∣∣∣∣∣∣

2
= sup

λ≥0
(1 + λ2)ρ |F (λ)| = ‖F‖(ρ) <∞.

Thus, (i) (with q = 1 and r = 2) yields

(2.8)

∣∣∣∣∣∣F (tD)
∣∣∣∣∣∣

1;2
=
∣∣∣∣∣∣(I + t2D2)−ρ (I + t2D2)ρ F (tD)

∣∣∣∣∣∣
1;2

≤
∣∣∣∣∣∣(I + t2D2)ρ F (tD)

∣∣∣∣∣∣
2

∣∣∣∣∣∣(I + t2D2)−ρ
∣∣∣∣∣∣

1;2

≤ C γ(t) ∀t > 0.

Furthermore,∣∣∣∣∣∣F (tD)
∣∣∣∣∣∣

1;∞ =
∣∣∣∣∣∣(I + t2D2)−ρ (I + t2D2)2ρ F (tD)(I + t2D2)−ρ

∣∣∣∣∣∣
1;∞

≤
∣∣∣∣∣∣(I + t2D2)−ρ

∣∣∣∣∣∣
2;∞

∣∣∣∣∣∣(I + t2D2)2ρ F (tD)
∣∣∣∣∣∣

2

∣∣∣∣∣∣(I + t2D2)−ρ
∣∣∣∣∣∣

1;2

≤ C γ(t)2 ‖F‖(2ρ) ∀t > 0.(2.9)

Next we prove (iii). We argue much as in the proof of (ii), but with a slight difference.

Instead of composing F (tD) with
(
I + t2D2)ρ, as in (ii), we write

Ft(D) = (I + D2)−ρ (I + D2)ρ Ft(D),

and then proceed as above, using the estimate
∣∣∣∣∣∣(I + D2)ρ Ft(D)

∣∣∣∣∣∣
2

= ‖Ft‖(ρ), which

follows from the spectral theorem. We omit the details.
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To prove (iv), observe that, by the Green formula (see, for instance, [34, Lemma 4.4],

together with [37, Theorem 3.1]),∥∥|∇F (tD)g|
∥∥2

2
=
(
LF (tD)g, F (tD)g

)
=

1

t2
(
F1(tD)g, F (tD)g

)
,

where F1(z) := z2 F (z). Schwarz’s inequality then implies that

(2.10)
∥∥|∇F (tD)g|

∥∥2

2
≤ 1

t2
∥∥F1(tD)g

∥∥
2

∥∥F (tD)g
∥∥

2
,

By (ii), applied to F , and a similar estimate applied to F1, we see that
∥∥F (tD)g

∥∥
2
≤

C γ(t) ‖F‖(ρ)
∥∥g∥∥

1
and that

∥∥F1(tD)g
∥∥

2
≤ C γ(t) ‖F1‖(ρ)

∥∥g∥∥
1

. By combining the esti-

mates above and the trivial observation that ‖F1‖(ρ) ≤ ‖F‖(ρ+1) , we obtain that∥∥|∇F (tD)g|
∥∥

2
≤ C t−1 γ(t) Ξρ(F )

∥∥g∥∥
1

∀t > 0,

as required.

It remains to prove the second gradient estimate. For τ > κ2 we write∣∣∇F (tD)g
∣∣ =

∣∣∇(τI + D2)−ρ (τI + D2)ρ F (tD)g
∣∣

≤ C
(
(τ − κ2)I + D2

)−ρ∣∣∇(τI + D2)ρ F (tD)g
∣∣;

we have used Proposition 2.1 in the inequality above. By (i),
(
(τ − κ2)I + D2

)−ρ
is

bounded from L2(N) to L∞(N), so that∥∥|∇F (tD)g|
∥∥
∞ ≤ C

∥∥|∇(τI + D2)ρ F (tD)g|
∥∥

2
.

By arguing much as in (2.10), we see that

(2.11)

∥∥|∇(τI + D2)ρ F (tD)g|
∥∥

2

≤ C
∣∣∣∣∣∣L (τI + D2)ρ F (tD)

∣∣∣∣∣∣1/2
2

∣∣∣∣∣∣(τI + D2)ρF (tD)
∣∣∣∣∣∣1/2

2

∥∥g∥∥
2

≤ C Ξρ
(
F (t·)

) ∥∥g∥∥
2

;

the last inequality follows from the spectral theorem.

The proof of (v) is similar to that of (iv). By arguing much as in (2.10), we see that∥∥|∇Ft(D)g|
∥∥2

2
≤ C

∥∥LFt(D)g
∥∥

2

∥∥Ft(D)g
∥∥

2
.

By (iii) and its proof,
∥∥Ft(D)g

∥∥
2
≤ C ‖Ft‖(ρ)

∥∥g∥∥
1

and
∥∥LFt(D)g

∥∥
2
≤ C ‖Ft‖(ρ+1)

∥∥g∥∥
1

.

By combining the estimates above, we obtain that∥∥|∇Ft(D)g|
∥∥

2
≤ C Ξρ

(
Ft
) ∥∥g∥∥

1
∀t > 0,

and the first gradient estimate in (v) is proved. In order to prove the second gradient

estimate we proceed as in (iv). If τ > κ2, then∥∥|∇Ft(D)g|
∥∥
∞ ≤ C

∥∥|∇(τI + D2)ρ Ft(D)g|
∥∥

2
.

By (2.11) (with Ft instead of F (t·)),
∥∥|∇(τI + D2)ρ Ft(D)g|

∥∥
2
≤ C Ξρ

(
Ft
) ∥∥g∥∥

2
. This

concludes the proof of (v) and of the proposition. �
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2.3. Estimates for the Poisson semigroup. We denote by PN
t the Poisson semigroup

e−tD . Recall the subordination formula

(2.12) PN
t = t

∫∞
0

hRs (t) H N
s

ds

s
,

where hRs denotes the standard Gauss–Weierstrass kernel on the real line. Notice the

estimate

(2.13)
∣∣∣∣∣∣PN

t

∣∣∣∣∣∣
q;r
≤ C γ(t)2(1/q−1/r) ∀t > 0,

which is a simple consequence of the subordination formula above and the corresponding

estimate (2.5) for H N
t ; see for instance [15, Corollary 1.5]. It is sometimes convenient

to write PN
t = Q0

t + Q∞t , where

(2.14) Q0
t := t

∫1

0

hRs (t) H N
s

ds

s
and Q∞t := t

∫∞
1

hRs (t) H N
s

ds

s
.

Proposition 2.3. There exists a positive constant C, independent of f , such that

(i)
∣∣∇Q0

t f
∣∣ ≤ eκ

2

Q0
t

(∣∣∇f ∣∣),
(ii) |∇Q∞t f | ≤ C min(t, t−3/2)

∥∥f∥∥
1

(iii)
∥∥Q∞t f∥∥∞ ≤ C min(t, t−1)

∥∥f∥∥
1

for every t > 0.

Proof. First we prove (i). By Bakry’s condition (2.6),

|∇Q0
t f | ≤ t

∫1

0

hRs (t) |∇H N
s f | ds

s
≤ t

∫1

0

hRs (t) eκ
2sH N

s |∇f |
ds

s
,

which is clearly dominated by eκ
2

t

∫1

0

hRs (t) H N
s |∇f |

ds

s
= eκ

2

Q0
t

(∣∣∇f ∣∣), as required.

Next we prove (ii). Observe that, by Propositions 2.1 and 2.2 (i) (with q = 2 and

r =∞), ∥∥|∇Hsf |
∥∥
∞ ≤ C

∥∥|∇(τI + D2)ρHsf |
∥∥

2
.

By arguing much as in (2.10) (with (τI + D2)ρHs in place of F (tD)), we see that∥∥|∇(τI + D2)ρHsf |
∥∥

2
≤ 1√

s

∥∥(τI + D2)ρsD2Hsf
∥∥1/2

2

∥∥(τI + D2)ρHsf
∥∥1/2

2
.

Now, set ω(s) := sup
λ≥0

(τ + λ2)ρ sλ2 e−sλ
2/2. By the spectral theorem,∥∥(τI + D2)ρsD2Hsf

∥∥
2
≤
∣∣∣∣∣∣(τI + D2)ρsD2Hs/2

∣∣∣∣∣∣
2

∥∥Hs/2f
∥∥

2

≤ C ω(s)
∣∣∣∣∣∣Hs/2

∣∣∣∣∣∣
1;2

∥∥f∥∥
1

≤ C max(s−ρ, 1) γ(s)1/2
∥∥f∥∥

1
;

the third inequality above follows from (2.5) and the fact that

ω(s) = sup
v≥0

v2 (τ + v2s−1)ρ e−v
2/2 ≤ max(s−ρ, 1).
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Similarly,
∥∥(τI + D2)ρHsf

∥∥
2
≤ C max(s−ρ, 1) γ(s)1/2

∥∥f∥∥
1
. By combining the esti-

mates above, we see that
∥∥|∇Hsf |

∥∥
∞ ≤

C√
s

max(s−ρ, 1) γ(s)1/2
∥∥f∥∥

1
. Therefore

|∇Q∞t f | ≤ t
∫∞
1

hRs (t)
∥∥|∇Hsf |

∥∥
∞

ds

s
≤ C

∥∥f∥∥
1
t

∫∞
1

hRs (t) s−3/4 ds

s
.

The last integral above is bounded above by C min(1, t−5/2). Indeed, if t ≤ 1, then∫∞
1

hRs (t) s−3/4 ds

s
≤ C

∫∞
1

e−t
2/(4s) s−5/4 ds

s
≤ C

∫∞
1

s−9/4 ds,

which is clearly finite, and, if t ≥ 1, then∫∞
1

hRs (t) s−3/4 ds

s
≤ C

∫∞
1

e−t
2/(4s) s−5/4 ds

s
= C t−5/2

∫ t2/4
0

u1/4e−u du,

which is bounded by C t−5/2. Therefore |∇Q∞t f | ≤ C min(t, t−3/2)
∥∥f∥∥

1
, as required.

Finally, we prove (iii). We use the ultracontractivity of the heat semigroup, and

estimate∥∥Q∞t f∥∥∞ ≤ C ∥∥f∥∥1
t

∫∞
1

hRs (t) s−1/2 ds

s
≤ C

∥∥f∥∥
1
t

∫∞
1

e−t
2/(4s) s−1 ds

s
.‘

Now, the change of variables t2/s = u transforms the last integral to t−2

∫ t2
0

e−u/4 u
du

u
.

This is bounded for t small, and is bounded by C t−2 for t large. By combining the

estimates above, we get that
∥∥Q∞t f∥∥∞ ≤ C min(t, t−1)

∥∥f∥∥
1
, as required. �

2.4. Estimates related to the wave propagator. Define the Fourier transform of an

integrable function η on the real line by η̂(s) =

∫∞
−∞

η(λ) e−isλ dλ. We analyse various

operators by subordinating them to the wave propagator, an idea that originates in [10,

61]. At least formally, we may write η(D) =
1

2π

∫∞
−∞

η̂(s) cos(sD) ds, whenever η is even.

Occasionally we need to integrate by parts in the integral above. We do it with the aid of

[47, Lemma 5.1], which we restate for the reader’s convenience. Hereafter O` denotes the

differential operator s`∂`s, acting on functions on the real line. We set Jν(v) =
Jν(v)

vν
,

where Jν denotes the Bessel function of the first kind and of order ν (see, for instance,

[41, Section 5.3]).

Lemma 2.4. For every positive integer J there exists a polynomial PJ of degree J without

constant term, such that∫∞
−∞

η̂(t) cos(vt) dt =

∫∞
−∞

PJ(O)η̂(t) JJ−1/2(tv) dt,

for all functions η such that O`η̂ ∈ L1(R) ∩ C0(R) for all ` in {0, 1, . . . , J}.

Given a “nice” function f on N , the formula above and the spectral theorem suggest to

establish appropriate norm estimates of JJ−1/2

(
sD
)
f . This is done in the next lemma.
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Lemma 2.5. Suppose that δ > 0 and that J is a positive integer. There exists a con-

stant C such that the following hold:

(i) if J > n/2, then
∥∥JJ−1/2

(
sD
)
f
∥∥

1
≤ C s(α−1)/2 eβs

∥∥f∥∥
1

for every s ≥ δ;
(ii) if J > n/2+2, then

∥∥|∇JJ−1/2

(
sD
)
f |
∥∥

1
≤ C s(α−3)/2 eβs

∥∥f∥∥
1

for every s ≥ δ;
(iii) if J > 2 + n, then

∥∥JJ−1/2

(
sD
)
f
∥∥
W 1,∞(N)

≤ C
∥∥f∥∥

1
for every s ≥ δ.

Proof. Observe preliminarily that we can reduce the problem to the case where the

support of f is contained in Bδ(o), for some point o in N . This is done considering a

smooth partition of unity {ψj} so that the support of ψj is contained in Bδ(xj), for an

appropriate sequence {xj} of points in N . Thus, in the rest of the proof we assume that

the support of f is contained in Bδ(o), for some o in N .

The proof of (i) proceeds along the lines of the proof of (ii), and it is, in fact, simpler.

We leave the details to the interested reader.

Now we prove (ii). Observe that the support of |∇JJ−1/2

(
sD
)
f | is contained in the

ball Bδ+s(o) by finite propagation speed. By Schwarz’s inequality,∥∥|∇JJ−1/2

(
sD
)
f |
∥∥

1
≤ ν

(
Bδ+s(o)

)1/2 ∥∥|∇JJ−1/2

(
sD
)
f |
∥∥

2
.

Observe that if n/2 < 2ρ ≤ J − 2, which is compatible with our assumptions, then by

Proposition 2.2 (iv) there exists a constant C such that

(2.15)

∥∥|∇JJ−1/2

(
sD
)
f |
∥∥

1
≤ C

s
ν
(
Bδ+s(o)

)1/2
γ(s)

∥∥f∥∥
1

≤ C s(α−3)/2 eβs
∥∥f∥∥

1
∀s ∈ [δ,∞),

as required. Notice that the last inequality is a consequence of (2.2).

Finally we prove (iii). By Proposition 2.2 (ii) (with ρ = J/2),∣∣∣∣∣∣JJ−1/2

(
sD
)∣∣∣∣∣∣

1;∞ ≤ C γ(s)2 ‖JJ−1/2‖(J) ≤ C ‖JJ−1/2‖(J) ∀s ≥ δ.

Next we estimate the gradient of JJ−1/2

(
sD
)
. For τ > κ2 we write

∇JJ−1/2

(
sD
)
f = ∇

(
τI + D2

)−ρ/2 (
τI + D2

)ρ/2
JJ−1/2

(
sD
)
f.

Then Proposition 2.1 implies that∣∣∇JJ−1/2

(
sD
)
f
∣∣ ≤ C ((τ − κ2)I + D2

)−ρ/2 ∣∣∇(τI + D2
)ρ/2

JJ−1/2

(
sD
)
f
∣∣.

Now if ρ > n/2, then the operator
(
(τ − κ2)I + D2

)−ρ/2
is bounded from L2(N) to

L∞(N), by Proposition 2.2 (i), whence∥∥|∇JJ−1/2

(
sD
)
f |
∥∥
∞ ≤ C

∥∥|∇(τI + D2
)ρ/2

JJ−1/2

(
sD
)
f |
∥∥

2
.

We can apply Proposition 2.2 (v) (with Fs(λ) = (τ + λ2)ρ/2 JJ−1/2(sλ) and ρ1 > n/4),

and conclude that∥∥|∇(τI + D2
)ρ/2

JJ−1/2

(
sD
)
f |
∥∥

2
≤ C Ξρ1

(Fs)
∥∥f∥∥

1
,
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where 2ρ1 + 2 + ρ < J . Standard estimates of Bessel functions imply that

‖Fs‖(ρ1) = sup
λ≥0

(τ + λ2)ρ1+ρ/2|JJ−1/2(sλ)| ≤ sup
λ≥0

(τ + λ2)ρ1+ρ/2

(1 + sλ)J
.

Clearly for any s ≥ δ this is dominated by sup
λ≥0

(τ + λ2)ρ1+ρ/2

(1 + δλ)J
which is finite. A similar

estimate is satisfied by ‖Fs‖(ρ1+1), and the required bound follows.

It is straightforward to check that the conditions ρ > n/2, ρ1 > n/4 and J ≥ 2ρ1+2+ρ

are compatible provided that J > n+ 2. �

2.5. Laplacian cut-off functions. We need the following result, which will be used in

Section 7. In the rest of the paper for each R > 0 we set

(2.16) ΥR :=
{

(x, y) ∈ N ×N : d(x, y) < R
}
.

Lemma 2.6. Given R > 0, there exists positive constants Q and Q′, depending on κ, n

and R, such that:

(i) for every x ∈ N there exists a function χx in C∞c (N) such that 0 ≤ χx ≤ 1,

χx = 1 on BR/4(x), χx = 0 on BR/2(x)c,
∥∥|∇χx|∥∥∞ ≤ Q and

∥∥∆χx
∥∥
∞ ≤ Q;

(ii) there exists a function ϕ in C∞c (N × N) such that 0 ≤ ϕ ≤ 1, ϕ = 1 in ΥR/4

and ϕ = 0 in Υc
R,
∥∥|∇ϕ|∥∥∞ ≤ Q′ and

∥∥∆ϕ
∥∥
∞ ≤ Q

′.

Proof. For the proof of (i), see [9, Theorem 6.33].

We now prove (ii). Denote by P an R/4-discretization of N , i.e., a set of points

{pj : j = 1, 2, 3, . . .} in N that is maximal with respect to the property

d(pj , pk) > R/8 when j 6= k and d(x,P) < R/4 ∀x ∈ N.

We write Pj instead of pj × pj and Q
R/2
j instead of BR/2(pj) × BR/2(pj). The family{

BR(pj) : j = 1, 2, 3, . . .
}

has the finite overlapping property (see, for instance, [37,

Lemma 1.1]). Hence the same is true for
{
Q
R/2
j : j = 1, 2, 3, . . .

}
. It is straightforward

to check that

ΥR/4 ⊆
∞⋃
j=1

Q
R/2
j ⊆ ΥR.

Indeed, if (x, y) is in ΥR/4, then d(x, y) < R/4. Since P is a R/4-discretization of N ,

there exists an integer j such that d(x, pj) < R/4. The triangle inequality then implies

that d(y, pj) < R/2, whence (x, y) belongs to Q
R/2
j , and the left inclusion above is

proved. The right inclusion follows from the trivial fact that if (x, y) belongs to Q
R/2
j ,

then d(x, y) < R.

For each integer j set φj := χpj ⊗ χpj , where the χpj are cut-offs on N as in (i).

Notice that φj is a smooth function with compact support on N × N , that φj = 1

on Q
R/4
j , φj = 0 on

[
Q
R/2
j ]c,

∥∥|∇φj |∥∥∞ ≤ 2Q and
∥∥∆φj

∥∥
∞ ≤ 2Q, where ∇ and ∆

denote here the gradient and the Laplace–Beltrami operator on N ×N , respectively. Set
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ϕj := φPj

/ ∞∑
k=1

φPk and ϕ :=

∞∑
j=1

ϕj . It is straightforward to check that ϕ possesses the

required properties. We omit the details. �

3. Estimates for the Poisson operator on slices

In this section we consider the Riemannian manifold N × R, endowed with the nat-

ural product metric. Here N satisfies our standing assumptions (see the beginning of

Section 2). We shall often, but not always, denote points in N × R by capital letters

X,Y, Z, . . .. Usually, lower case latin letters x, y, z, . . . will denote points in N . Thus, a

point X in N × R will be often written (x, u), where x is in N and u is a real number.

Denote by D the Riemannian distance on N × R, i.e.,

(3.1) D
(
(x, u), (y, v)

)
:=
√
d(x, y)2 + |u− v|2 ∀x, y ∈ N ∀u, v ∈ R.

The Riemannian measure on N × R will be denoted by Y . Thus, dY (Y ) = dν(y) dv

when Y = (y, v). We shall denote by ∇∇ and ∆∆ the gradient on N ×R and the (negative)

Laplace–Beltrami operators on N × R, respectively. When we choose the natural co-

ordinate system (x, t) on N ×R, where x varies in an open chart of N , and t is in R, we

have that ∇∇F = (∇F, ∂tF ), and ∆∆F = ∆F + ∂2
t F .

Throughout the paper σ will denote a fixed positive number such that

(3.2) σ <
π

4β
min

(
1− 1/n,

√
c
)

where c and β are as in (2.3) and (2.2), respectively. Set

(3.3) λ1 := π/(2σ).

For any η in [0, σ), set Ση := N × (η, 2σ − η) in N ×R. We write Σ for Σ0. Most of our

analysis is concerned with functions defined on the open slice Σ. In particular, we shall

need to consider Ση for some η 6= 0 only in Section 6. We shall write ‖·‖p and ‖·‖Lp(Ση)

for the Lp norms on N and on Ση, respectively. Given a function F on Σ, we denote by

F [ the function on N , defined by

(3.4) F [(x) =

∫2σ

0

F (x, t) dt ∀x ∈ N,

whenever the latter integral makes sense. Observe that, by Hölder’s inequality,

(3.5)
∥∥F [∥∥

p
=
[ ∫

N

dν(x)
∣∣∣∫2σ

0

F (x, u) du
∣∣∣p ]1/p ≤ (2σ)1/p′

∥∥F∥∥
Lp(Σ)

.

For each η in [0, σ) and t in (η, 2σ − η) consider the meromorphic function

Mη
t (λ) =

cosh(t− σ)λ

cosh(σ − η)λ
.
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For the sake of simplicity, we write Mt instead of M0
t . Thus, Mt(λ) :=

cosh(t− σ)λ

cosh(σλ)
. An

elementary computation shows that

Mη
t (λ) = e(η−t)λ +

1

2

[
e(t−σ)λ − e(2η−t−σ)λ

]
Mη
σ (λ).

We shall often work with the special case of the formula above corresponding to η = 0.

Set Pηf(·, t) := Mη
t (D)f. In the case where η < t < σ it is sometimes convenient to use

the expression above for Mη
t and write

(3.6) Pηf(·, t) = PN
t−ηf +

1

2

[
PN
σ−t −PN

σ+t−2η

]
Mη
σ

(
D
)
f.

The operator Pη is called the Poisson operator for Ση with periodic boundary conditions.

The following proposition partially justifies this terminology.

Proposition 3.1. Suppose that f is in C0(N) (continuous functions on N vanishing at

infinity). Then the function equal to Pηf in Ση and to f on ∂Ση, is smooth on Ση,

continuous on Ση, and solves the Dirichlet problem

∆∆u = 0 in Ση u(·, η) = f = u(·, 2σ − η).

We postpone the proof of Proposition 3.1 at the end of this section. We analyse Pη

by subordinating Mη
t (D) to the wave propagator. Denote by Kη

t the Fourier transform

of Mη
t . It is well known (see, for instance, [52, formula 7.19, p. 34]) that

(3.7) Kη
t (s) = 4πδ

sinπδ(t− η) coshπδs

cosh 2πδs− cos 2πδ(η − t)
,

where δ := 1/[2(σ − η)]. We shall write Kt instead of K0
t . Thus,

(3.8) Kt(s) =
2π

σ

sin
πt

2σ
cosh

πs

2σ

cosh
πs

σ
− cos

πt

σ

.

By spectral theory and Fourier inversion formula

Pηf(·, t) =
1

2π

∫∞
−∞

Kη
t (s) cos(sD)f ds

and, when η < t < σ,

Pηf(·, t) = PN
t−ηf +

[
PN
σ−t −PN

σ+t−2η

] 1

4π

∫∞
−∞

Kη
σ(s) cos

(
sD)f ds.

We are led to establish certain properties of Kη
t and of their derivatives. Most of our

applications will involve only Kt. Thus, we mainly concentrate on this special case. Set

S := R × (0, σ]. For each δ in (0, σ) denote by Dδ the disc in the plane with radius δ

centred at the origin. Set Sδ := S \Dδ.

Lemma 3.2. Suppose that δ ∈ (0, σ), ε ∈ (0, λ1), J is a positive integer and ` ∈ {0, 1}.
Then there exists a constant C such that

∣∣∂`tPJ(O)Kt(s)
∣∣ ≤ C min

(
|s|, e(ε−λ1)|s|) for

every (s, t) in Sδ.
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Proof. A straightforward induction argument (using (3.8)) proves that
∣∣∂`t∂jsKt(s)

∣∣ ≤
C min

(
1, e−π|s|/2σ

)
for every (s, t) in Sδ and every nonnegative integer j ≤ J . The

required estimate then follows from the form of the differential operator PJ(O). In

particular, the required estimate for |s| small follows from the fact that PJ has no constant

term. �

Recall that the extended Dunford class E (Sψ) is defined as follows [35, p. 28]

E (Sψ) = H∞0 (Sψ)⊕
〈
(1 + z)−1

〉
⊕ 〈1〉,

where H∞0 (Sψ) denotes the class of all holomorphic functions f in the sector Sψ := {z ∈
C : |arg z| < ψ} for which there exist positive constants C and s such that∣∣f(z)

∣∣ ≤ C |z|s

1 + |z|2s
∀z ∈ Sψ.

The space E (Sψ) is endowed with the uniform norm.

Lemma 3.3. Suppose that 0 < δ < σ. The following hold:

(i) for each positive even integer J there exists a constant C such that∥∥L JMt(D)f
∥∥

2
≤ C

∥∥f∥∥
1

∀t ∈ [δ, 2σ − δ] ∀f ∈ L1(N);

(ii) Mt(D)f is smooth, and there exists a constant C such that∥∥Mt(D)f
∥∥
C1
b (N)

≤ C
∥∥f∥∥

1
∀t ∈ [δ, 2σ − δ] ∀f ∈ L1(N);

(iii) for every ε > 0 and R > 0 there exists a constant C such that

sup
t∈(0,σ]

max
(
|Mt(D)f(x)|, |LMt(D)f(x)|, |∇∇Mt(D)f(x)|

)
≤ C e(ε−λ1)d(x,o)

∥∥f∥∥
1

for every o in N , every x in B2R(o)c and every f in L1(N) with support contained

in the ball BR(o);

(iv) for each ϕ in (π/4, π/2) the function Mσ belongs to E (Sϕ) and there exists a

constant C such that

sup
t∈(0,2σ)

∣∣∣∣∣∣Mt(D)
∣∣∣∣∣∣
p
≤ 1 + C

∥∥Mσ

∥∥
E (Sϕ)

for every p in [1,∞];

(v) for each p in (1,∞] there exists a constant C such that

sup
y∈N

∥∥kMt(D)(·, y)
∥∥
p

=
∣∣∣∣∣∣Mt(D)

∣∣∣∣∣∣
1;p
≤ C t−n/p

′
∀t ∈ (0, σ].

Proof. Part (i) follows from Proposition 2.2 (iii) and the trivial fact that for any ρ1 > 0

(3.9) sup
t∈[δ,2σ−δ]

sup
λ≥0

(1 + λ2)ρ1 λ2JMt(λ) ≤ sup
λ≥0

(1 + λ2)ρ1 λ2JMδ(λ) <∞.

Now we prove (ii). The smoothness of Mt(D)f follows from (i) and a local Sobolev’s

embedding theorem. The estimate
∥∥Mt(D)f

∥∥
∞ ≤ C

∥∥f∥∥
1

is a direct consequence of
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Proposition 2.2 (iii) and of an estimate similar to (3.9). Finally, Proposition 2.1 (i) and

Proposition 2.2 (i),(v) imply that for τ > κ2 and σ1 > n/4∥∥|∇Mt(D)f |
∥∥
∞ ≤ C

∥∥|∇(τI + D2)σ1Mt(D)f |
∥∥

2
≤ C Ξσ1

(
Ft
) ∥∥f∥∥

1
,

where Ft(λ) := (τ + λ2)σ1Mt(λ). It is straightforward to check that sup
t∈[δ,2σ−δ]

Ξσ1

(
Ft
)
<

∞, thereby concluding the proof of (ii).

Next, we prove the estimate in (iii) concerning |∇∇Mt(D)f |. The proofs of the esti-

mates for |Mt(D)f | and |LMt(D)f | are similar, perhaps easier, and we leave the details

to the interested reader. Suppose that d(x, o) ≥ 2R and choose J > n + 2. By finite

propagation speed and Lemmata 2.4 and 2.5 (iii),∣∣∇P0f(x, t)
∣∣ ≤ C ∫

|s|≥d(x,o)−R

∣∣PJ(O)Kt(s)
∣∣ ∣∣∇JJ−1/2

(
sD
)
f
∣∣(x) ds

≤ C
∥∥f∥∥

1

∫
|s|≥d(x,o)−R

∣∣PJ(O)Kt(s)
∣∣ds.

Since (s, t) is in SR, Lemma 3.2 ensures that there exists a constant C such that

sup
t∈(0,σ)

∣∣PJ(O)Kt(s)
∣∣ ≤ C e(ε/2−λ1)|s|.

This and the estimates above imply that∣∣∇P0f(x, t)
∣∣ ≤ C e(ε−λ1)d(x,o)

∥∥f∥∥
1

∫
|s|≥d(x,o)−R

e−ε|s|/2 ds ≤ C e(ε−λ1)d(x,o)
∥∥f∥∥

1
.

The right hand side does not depend on t in (0, 1), and the required estimate (with ∇
in place of ∇∇) follows. It remains to prove a similar estimate for ∂tP0f(x, t). By finite

propagation speed and Lemmata 2.4 and 2.5 (iii),∣∣∂tP0f(x, t)
∣∣ ≤ C ∫

|s|≥d(x,o)−R

∣∣∂tPN (O)Kt(s)
∣∣ ∣∣JJ−1/2

(
sD
)
f(x)

∣∣ ds
≤ C

∥∥f∥∥
1

∫
|s|≥d(x,o)−R

∣∣∂tPN (O)Kt(s)
∣∣ds.

The required estimate follows from this by arguing much as above.

Next we prove (iv). Since Mt = M2σ−t for each t in (0, 2σ), it suffices to prove

the required estimate in the case where 0 < t ≤ σ. The contractivity of the Poisson

semigroup on Lp(N) and (3.6) imply the estimate

(3.10) sup
t∈(0,2σ)

∣∣∣∣∣∣Mt(D)
∣∣∣∣∣∣
p
≤
[
1 +

∣∣∣∣∣∣Mσ(D)
∣∣∣∣∣∣
p

]
.

Since L generates a contraction semigroup on Lp(N), L is a sectorial operator of angle

π/2 on Lp(N), by the easy part of the Hille–Yosida theorem. By abstract nonsense, D is

a sectorial operator of angle π/4 on Lp(N) [35, Proposition 3.1.2]. It is straightforward
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to check that the functions z 7→ 1− e−2σz

eσz + e−σz
and z 7→ e−σz − (1 + z)−1 are in H∞0 (Sϕ).

Furthermore

Mσ(z) =
2

eσz + e−σz
− e−σz + e−σz =

1− e−2σz

eσz + e−σz
+ e−σz − 1

z + 1
+

1

z + 1
,

whence Mσ belongs to the extended Dunford class E (Sϕ). Therefore
∣∣∣∣∣∣Mσ(D)

∣∣∣∣∣∣
p
≤

C
∥∥Mσ

∥∥
E (Sϕ)

[35, Theorem 2.3.3], which, combined with (3.10), yields the required

estimate.

Finally we prove (v). The first equality follows from abstract nonsense (see, for in-

stance, [20, Theorem VI.8.6, p. 508]). Formula (3.6), the contractivity of the Poisson

semigroup on Lp(N) and the estimate
∣∣∣∣∣∣Pt

∣∣∣∣∣∣
1;p
≤ C t−n/p′ (see (2.13)) yield∣∣∣∣∣∣Mt(D)

∣∣∣∣∣∣
1;p
≤
[
C t−n/p

′
+
∣∣∣∣∣∣Mσ(D)

∣∣∣∣∣∣
1;p

]
;

the required bound follows from Proposition 2.2 (ii) and the fact that t is small. �

Given a function f on N , we set

(3.11) N f :=
∥∥f∥∥

1
+
∥∥|∇f |∥∥

1
+
∥∥Df∥∥

1
,

whenever the right hand side makes sense. For each p in [1,∞) we denote by Bp the

space of all measurable functions F : Σ→ C such that∥∥F∥∥
Bp := sup

t∈(0,2σ)

∥∥F (·, t)
∥∥
p
<∞,

endowed with the “norm”
∥∥·∥∥

Bp .

Theorem 3.4. There exists a constant C such that
∥∥|∇∇P0f |

∥∥
B1 ≤ CN f for every

function f such that N f is finite.

Proof. Since P0f(·, t) = P0f(·, 2σ − t), it suffices to restrict t to (0, σ]. By (3.6) and

the assumption Df ∈ L1(N),

∂tP
0f(·, t) = −DPN

t f +
1

2
D
[
PN
σ−t + PN

σ+t

]
Mσ(D)f

= −PN
t Df +

1

2

[
PN
σ−t + PN

σ+t

]
Mσ(D)Df.

The estimate
∥∥∂tP0f(·, t)

∥∥
1
≤ C

∥∥Df∥∥
1
≤ CN f , with C independent of f and t,

follows by arguing as in the proof of Lemma 3.3 (iv)(with Df in place of f). Hence∥∥∂tP0f
∥∥

B1 ≤ CN f .

We now estimate
∥∥|∇P0f(·, t)|

∥∥
1

for t in (0, σ]. Let {Bj} be a covering of N with

geodesic balls of radius 1 and centre pj enjoying the finite overlapping property. Denote

by {ψj} a partition of unity subordinated to this covering with the property that {∇ψj}
are uniformly bounded with respect to j, and write f =

∑
j fj , where fj := ψj f . Then∥∥|∇P0f(·, t)|

∥∥
1
≤
∑
j

∥∥|∇P0fj(·, t)|
∥∥
L1(2Bj)

+
∑
j

∥∥|∇P0fj |(·, t)
∥∥
L1(N\2Bj)

,
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where 2Bj denotes the ball with centre pj and radius 2. Recall that P0f(·, t) = Mt(D)f

By Lemma 3.3 (iii), there exists a constant C, independent of j and of t in (0, σ], such

that ∣∣∇Mt(D)fj(x)
∣∣ ≤ C e(ε−λ1)d(x,pj)

∥∥fj∥∥1
∀x ∈ N \ 2Bj .

Since λ1 > 2β (see (3.2)), the function x 7→ e(ε−λ1)d(x,pj) is, for ε small enough, in L1(N),

with norm bound independent of j, so that

sup
t∈(0,σ]

∑
j

∥∥|∇Mt(D)fj |
∥∥
L1(N\2Bj)

≤ C
∑
j

∥∥fj∥∥1
≤ C

∥∥f∥∥
1
.

Schwarz’s inequality and Proposition 2.2 (v) imply that for any ρ1 > n/4∥∥|∇Mt(D)fj |
∥∥
L1(2Bj)

≤
√
ν
(
2Bj

) ∥∥|∇Mt(D)fj |
∥∥
L2(2Bj)

≤ C
√
ν
(
2Bj

)
Ξρ1

(
Mt

) ∥∥fj∥∥1
.

Note that ν
(
2Bj

)
is uniformly bounded with respect to j, because N has bounded

geometry. Now, fix δ in (0, σ). It is straightforward to check that sup
t∈[δ,σ]

Ξρ1

(
Mt

)
is

finite. Thus, there exists a constant C such that

sup
t∈[δ,σ]

∑
j

∥∥|∇Mt(D)fj |
∥∥
L1(2Bj)

≤ C
∑
j

∥∥fj∥∥1
≤ C

∥∥f∥∥
1

∀t ∈ [δ, σ].

It remains to estimate sup
t∈(0,δ)

∑
j

∥∥|∇Mt(D)fj |
∥∥
L1(2Bj)

. It is convenient to write Mt(D)

as in (3.6). The triangle inequality and the decomposition PN
t = Q0

t + Q∞t (see (2.14))

imply that

|∇Mt(D)fj | ≤ |∇Q0
t fj |+ |∇Q∞t fj |+

1

2

∣∣∇[PN
σ−t −PN

σ+t]Mσ(D)fj
∣∣.

Observe that |∇Q0
t fj | ≤ eκ

2

Q0
t |∇fj | by Proposition 2.3 (i), whence∥∥|∇Q0

t fj |
∥∥
L1(2Bj)

≤ eκ
2 ∥∥Q0

t |∇fj |
∥∥
L1(2Bj)

≤ eκ
2 ∥∥PN

t |∇fj |
∥∥

1
≤ eκ

2 ∥∥|∇fj |∥∥1
;

we have used the contractivity of the Poisson semigroup on L1(N) in the last inequality.

Note that |∇fj | ≤ C |ψj∇f |+ C 1Bj f , so that

sup
t∈(0,δ)

∑
j

∥∥|∇Q0
t fj |

∥∥
L1(2Bj)

≤ C
[∑

j

∥∥|ψj∇f |∥∥1
+
∑
j

∥∥1Bj f∥∥1

]
≤ CN f.

Furthermore, we have trivially

sup
t∈(0,δ)

∑
j

∥∥|∇Q∞t fj |
∥∥
L1(2Bj)

≤
∑
j

ν
(
2Bj

)
sup
t∈(0,δ)

∥∥|∇Q∞t fj |
∥∥
∞≤ C

∑
j

‖fj‖1 ≤ C‖f‖1,

where the second inequality above follows from Proposition 2.3 (ii) and the fact that N

has bounded geometry. Finally, set Ft(λ) := [e(t−σ)λ − e−(σ+t)λ]Mσ(λ). It is straight-

forward to check that if ρ1 > n/4, then sup
t∈(0,δ)

Ξρ1

(
Ft
)
<∞. Then Schwarz’s inequality
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and Proposition 2.2 (v) imply that

sup
t∈(0,δ)

∑
j

∥∥|∇[Ft(D)fj ]|
∥∥
L1(2Bj)

≤
∑
j

√
ν
(
2Bj

)
sup
t∈(0,δ)

∥∥|∇[Ft(D)fj ]|
∥∥
L2(2Bj)

≤ C
∑
j

∥∥fj∥∥1

≤ C
∥∥f∥∥

1
.

The required conclusion follows by combining the estimates above. �

We complete this section by proving Proposition 3.1.

Proof (of Proposition 3.1). The function Pηf is harmonic in Ση, hence smooth therein,

by elliptic regularity. We prove the continuity at the boundary. Note that Pηf(·, t) =

Pηf(·, 2σ− t) for every t in (η, 2σ−η). Thus, it suffices to prove the continuity at t = η.

Fix x in N , and write

Pηf(y, t)− f(x) = Pηf(y, t)− f(y) + f(y)− f(x).

Since f is in C0(N), it is uniformly continuous on N ; hence for every ε > 0 there exists

δ > 0 such that
∣∣f(y)− f(x)

∣∣ < ε whenever d(x, y) < δ.

By (3.6), we can write Pηf(·, t) − f = PN
t−ηf − f +

1

2

[
PN
σ−t −PN

σ+t−2η

]
Mη
σ

(
D
)
f .

The heat semigroup {H N
t } is strongly continuous on C0(N) [17, Lemma 5.2.8]. A

straightforward argument using the subordination formula (2.12) shows that the same

holds for the Poisson semigroup {PN
t }. Hence lim

t↓η

∥∥PN
t−ηf − f

∥∥
C0(N)

= 0.

It remains to prove that

(3.12) lim
t↓η

∥∥[PN
σ−t −PN

σ+t−2η

]
Mη
σ

(
D
)
f
∥∥
∞ = 0.

To this end, fix ε > 0 and consider a sequence {ϕk} ⊂ C∞c (N) such that ‖ϕk− f‖∞ → 0

as k → ∞. The Poisson semigroup is contractive on L∞(N), hence so is on C0(N).

Thus, by a variant of Lemma 3.3 (iv) (with η > 0),∥∥[PN
σ−t −PN

σ+t−2η

]
Mη
σ

(
D
)
(f − ϕk)

∥∥
∞ ≤ 2

∥∥Mη
σ

(
D
)
(f − ϕk)

∥∥
∞

≤ 2
∣∣∣∣∣∣Mη

σ (D)
∣∣∣∣∣∣
∞

∥∥f − ϕk∥∥∞
≤ C

[
1 +

∥∥Mη
σ (D)

∥∥
E (Sϕ)

] ∥∥f − ϕk∥∥∞ .

In particular, we can fix k0 large enough so that

(3.13)
∥∥[PN

σ−t −PN
σ+t−2η

]
Mη
σ

(
D
)
(f − ϕk0

)
∥∥
∞ < ε/2 ∀t ∈ (η, σ).
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Furthermore[
PN
σ−t −PN

σ+t−2η

]
Mη
σ

(
D
)
ϕk0

= −
∫σ+t−2η

σ−t

d

ds
PN
s M

η
σ

(
D
)
ϕk0

ds

=

∫σ+t−2η

σ−t
DPN

s M
η
σ

(
D
)
ϕk0 ds,

=

∫σ+t−2η

σ−t
PN
s DMη

σ

(
D
)
ϕk0 ds,

so that, using also Proposition 2.2 (iii),∥∥[PN
σ−t −PN

σ+t−2η

]
Mη
σ

(
D
)
ϕk0

∥∥
∞ ≤

∫σ+t−2η

σ−t

∥∥PN
s DMη

σ

(
D
)
ϕk0

∥∥
∞ ds

≤
∫σ+t−2η

σ−t

∥∥DMη
σ

(
D
)
ϕk0

∥∥
∞ ds

≤ C (t− η)
∥∥ϕk0

∥∥
2
,

which is smaller than ε/2 for t close enough to η. Together with (3.13), this proves (3.12)

and concludes the proof of the proposition. �

4. Estimates for the Green function on slices

The Dirichlet heat semigroup for Σ is given by H Σ
t = H N

t ⊗H
[0,2σ]
t , where {H [0,2σ]

t :

t > 0} denotes the heat semigroup on [0, 2σ] with Dirichlet boundary conditions. Recall

that λ1 = π/(2σ) (see (3.3)): the number λ2
1 is the first eigenvalue of the operator

−d2/dx2 with Dirichlet boundary conditions on [0, 2σ]. The associated eigenfunction is

sinλ1u. Set

(4.1) %(u) = dist
(
u,R \ [0, 2σ]

)
and observe that %(u) � sinλ1u in (0, 2σ). Let the family {h[0,2σ]

t : t > 0} denote the heat

kernel on [0, 2σ] with Dirichlet boundary conditions and note the following well known

estimate (see, for instance, [67] and the references therein)

(4.2) h
[0,2σ]
t (u, v) ≤

C min
(%(u) %(v)

t
, 1
)
t−1/2 e−|u−v|

2/(4t) ∀t ∈ (0, 1]

C %(u) %(v) e−λ
2
1t ∀t ∈ (1,∞)

for every u and v in [0, 2σ] .

The Green operator GΣ for the slice Σ is defined by

(4.3) GΣ :=

∫∞
0

H Σ
t dt.

It is not hard to prove that given a reasonable function B on Σ (for instance B ∈
C0(Σ) ∩ Lr(Σ) for some r in (1,∞)), the function GΣB solves the problem

−∆∆u = B in Σ u(·, 0) = 0 = u(·, 2σ)
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in the sense of distributions. At least formally, off the diagonal of Σ × Σ the kernel of

GΣ is given by the formula

(4.4) kGΣ

(
(x, u), (y, v)

)
:=

∫∞
0

hNt (x, y)h
[0,2σ]
t (u, v) dt;

here (x, u) and (y, v) are in Σ, (x, u) 6= (y, v). We shall consider the operators G j
Σ,

j = 1, 2, . . ., and their distributional kernels kG jΣ
.

We claim that

(4.5) kG jΣ

(
(x, u), (y, v)

)
=

1

(j − 1)!

∫∞
0

hNt (x, y)h
[0,2σ]
t (u, v) tj−1 dt.

We argue by induction. If j = 1, then (4.5) reduces to (4.4). Assume that (4.5) holds

for j, and consider kG j+1
Σ

. Clearly

kG j+1
Σ

(
(x, u), (z, w)

)
=

∫
Σ

kG jΣ

(
(x, u), (y, v)

)
kGΣ

(
(y, v), (z, w)

)
dν(y) dv

=
1

(j − 1)!

∫
Σ

dν(y) dv

∫∞
0

∫∞
0

h[0,2σ]
s (u, v)hNs (x, y)h

[0,2σ]
t (v, w)hNt (y, z) sj−1 dsdt

=
1

(j − 1)!

∫∞
0

∫∞
0

h
[0,2σ]
s+t (u,w)hNs+t(x, z) s

j−1 dsdt;

we have used the inductive hypothesis in the second equality above and the semigroup

property of the heat kernel in the third. Then we perform two subsequent changes of

variables: we set t = τs in the integral with respect to t and obtain that

kG j+1
Σ

(
(x, u), (z, w)

)
=

1

(j − 1)!

∫∞
0

∫∞
0

h
[0,2σ]
s(1+τ)(u,w)hNs(1+τ)

(
x, z) sj dsdτ ;

then we set s(1 + τ) = σ in the integral with respect to s, and the right hand side of the

formula above transforms to

1

(j − 1)!

∫∞
0

∫∞
0

h[0,2σ]
σ (u,w)hNσ (x, z)

σj

(1 + τ)j+1
dσ dτ.

Integrating with respect to τ gives the required formula (4.5), and concludes the proof

of the claim.

In Proposition 4.2 below we establish pointwise estimates for kG jΣ
. Preliminarily, we

determine the order of magnitude of

J(d) :=

∫∞
1

tj−3/2 e−(λ1

√
t−d
√
c/t)2

dt

as d tends to infinity.

Lemma 4.1. If d tends to infinity, then for every integer j ≥ 1 one has J(d) � dj−1

(i.e., there exist positive constants C1 and C2 such that C1 d
j−1 ≤ J(d) ≤ C2 d

j−1).
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Proof. We write −(λ1

√
t− d

√
c/t)2 = −

√
cλ1d

(√ λ1t√
cd
−

√√
cd

λ1t

)2

, change variables in

the integral (
√
λ1t/
√
cd = τ), and see that

J(d) = 2
(√cd
λ1

)j−1/2
∫∞
√
λ1/(
√
cd)

τ2(j−1) edψ(τ) dτ,

where ψ(τ) := −
√
cλ1(τ − 1/τ)2. Note that the phase ψ(τ) has just one critical point at

1. Fix 0 < τ1 < 1 < τ2. By applying the Laplace method (see, for instance, [24, formula

(2), p. 37]), one checks that ∫ τ2
τ1

τ2(j−1) edψ(τ) dτ � d−1/2

as d tends to infinity. Moreover, for δ > 0 small enough ψ(τ) ≤ −δτ2 in [τ2,∞), so that∫∞
τ2

τ2(j−1) edψ(τ) dτ ≤ e−δdτ
2
2 /2

∫∞
τ2

τ2(j−1) e−δdτ
2/2 dτ ≤ Ce−δdτ

2
2 /2.

Similarly, for γ > 0 small enough ψ(τ) ≤ −γτ−2 in (0, τ1), so that∫ τ1
√
λ1/(
√
cd)

τ2(j−1) edψ(τ) dτ ≤ e−γdτ
−2
1 /2

∫ τ1
0

τ2(j−1) e−γdτ
−2
1 /2 dτ ≤ Ce−γdτ

−2
1 /2.

By combining the estimates above, we see that J has the required asymptotic behaviour

at infinity. �

Proposition 4.2. Suppose that j is a positive integer and that n ≥ 2. There exists a

positive constant C such that the following hold:

(i) if D
(
(x, u), (y, v)

)
≥ 2, then kG jΣ

(
(x, u), (y, v)

)
≤ C d(x, y)j−1 e−2λ1d(x,y)

√
c;

(ii) if D
(
(x, u), (y, v)

)
≤ 2, then

kG jΣ

(
(x, u), (y, v)

)
≤


C D2γ if γ < 0

C log
4

D
if γ = 0

C if γ > 0,

where γ := j − (n+ 1)/2.

Proof. We estimate kG jΣ
from above by inserting in the integral in (4.5) the estimates for

h
[0,2σ]
t in (4.2) and the upper bound (2.3) for hNt (observing that the constant c in (2.3)

is smaller or equal than 1/4). Thus,

kG jΣ

(
(x, u), (z, w)

)
≤ C

[
I
(
(x, u), (z, w)

)
+ J(x, z)

]
,

where

I
(
(x, u), (z, w)

)
=

∫1

0

tγ−1e−cD
2/t dt

and

J(x, z) =

∫∞
1

tj−3/2e−λ
2
1t−cd(x,z)2/t dt.
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We estimate I and J separately. First, changing variables (D2/t = τ), we see that

I = D2γ

∫∞
D2

τ−γ e−cτ
dτ

τ
�


C D2γ if γ < 0

C log
1

D
if γ = 0

C if γ > 0

as D tends to 0. Furthermore,

I ≤ C D2γe−cD
2/2 ≤ C

[
1 + d(x, y)

]j−1
e−2λ1d(x,y)

√
c

when D ≥ 2. Concerning J , clearly it tends to a constant as d tends to 0. Now assume

that d is large and write −λ2
1t− cd2/t = −

(
λ1

√
t− d

√
c/t
)2 − 2λ1d

√
c. Then,

J = e−2λ1d
√
c

∫∞
1

tj−3/2 e−(λ1

√
t−d
√
c/t)2

dt ≤ C dj−1 e−2λ1d
√
c;

the inequality above follows from Lemma 4.1.

The estimates in (i) and (ii) follow directly from the analysis above. �

Remark 4.3. The estimates for kGΣ in Proposition 4.2 are not best possible. In particular,

they do not capture the asymptotic behaviour of kGΣ
near the boundary of Σ. We do

not insist on this point because such behaviour is not needed in the sequel. However,

for later purposes (see the proof of Lemma 6.1), we need the following straightforward

estimate: for each δ > 0 there exists a positive constant C such that

(4.6) kGΣ
(X,Y ) ≤ C min

(
%(u) %(v), e−2λ1d(x,y)

√
c
)

∀X,Y ∈ Σ : D(X,Y ) ≥ δ.

Here X = (x, u) and Y = (y, v) and % is defined in (4.1).

The estimates in Proposition 4.2 imply that kGΣ
(X,Y ) ≤ C e−2λ1d(x,y)

√
c for every X

and Y in Σ such that D(X,Y ) ≥ δ.

To prove that kGΣ(X,Y ) ≤ C %(u) %(v) in the same range of X and Y , we insert in

the integral in (4.5) (with j = 1) the estimates for h
[0,2σ]
t in (4.2) and the upper bound

(2.3) for hNt . Observe that the assumption D(X,Y ) ≥ δ implies that kGΣ
(X,Y ) ≤

C
(
I1 + I2 + I3

)
, where

I1 :=

∫%(u)%(v)

0

t−(n+1)/2 e−cδ
2/t dt, I2 := %(u) %(v)

∫1

%(t)%(u)

t−(n+3)/2 e−cδ
2/t dt

and

I3 := %(u)%(v)

∫∞
1

tj−3/2e−λ
2
1t−cd(x,z)2/t dt.

The required estimate follows directly from this and a straightforward calculation.

Next we establish some mapping properties of G j
Σ. For simplicity, in the sequel we

write Υ instead of Υ2 (see (2.16)). Denote by K0
j : Σ× Σ→ [0,∞) the function defined
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by

(4.7) K0
j =


1ΥD

2j−1−n if j < (n+ 1)/2

1Υ log
4

D
if j = (n+ 1)/2

1Υ if j > (n+ 1)/2,

and by K 0
j the integral operator with kernel K0

j acting on functions defined on N × R.

For each δ > 0 denote by K∞δ : N ×N → [0,∞) the function defined by

(4.8) K∞δ (x, y) = e−δd(x,y) ∀(x, y) ∈ N ×N,

and by K ∞
δ the integral operator with kernel K∞δ acting on functions defined on N .

Notice that, by Proposition 4.2, for every δ < 2λ1
√
c there exists a constant C such that

(4.9)
∣∣G j

ΣF (x, u)
∣∣ ≤ C [K 0

j |F |(x, u) + K ∞
δ |F [|(x)

]
∀(x, u) ∈ Σ,

where F [(x) is as in (3.4). This observation reduces the proof of estimates for G j
Σ to the

proof of similar estimates for K 0
j and K ∞

δ . We study the mapping properties of these

operators in the next proposition.

Proposition 4.4. Suppose that j is a positive integer and that n ≥ 2. The following

hold:

(i) if K 0
j is bounded from Lp(Σ) to Lr(Σ) and K ∞

δ is bounded from Lp(N) to

Lr(N) for some δ < 2λ1
√
c, then G j

Σ is bounded from Lp(Σ) to Lr(Σ);

(ii) G j
Σ is bounded on Lp(Σ) for all p in [1,∞];

(iii) GΣ is bounded from L1(Σ) to weak-L(n+1)/(n−1)(Σ) and from Lp(Σ) to Lr(Σ)

when 1 < p < (n+ 1)/2 and 1/r = 1/p− 2/(n+ 1);

(iv) if r > 1, F is in C0(Σ) ∩ Lr(Σ) and J > (n + 1)/2, then G J
ΣF is a bounded

continuous function on Σ and∥∥G J
ΣF
∥∥
Cb(Σ)

≤ C
∥∥F∥∥

Lr(Σ)
;

(v) GΣ is bounded on Bp for each p in [1,∞) and lim
t→∂(0,2σ)

∥∥GΣF (·, t)
∥∥
p

= 0 for

every F in Bp.

Proof. First we prove (i). Formula (4.9) and the assumptions on K 0
j and K ∞

ε imply

that ∥∥G j
ΣF
∥∥
Lr(Σ)

≤ C
[ ∥∥K 0

j F
∥∥
Lr(Σ)

+
∥∥K ∞

ε F [
∥∥
r

]
≤ C

[ ∥∥F∥∥
Lp(Σ)

+
∥∥F [∥∥

p

]
≤ C

∥∥F∥∥
Lp(Σ)

;

we have used (3.5) in the last inequality.

Now we prove (ii). By interpolation, it suffices to prove that G j
Σ is bounded on L1(Σ)

and on L∞(Σ). Since kG jΣ
is symmetric, a duality argument shows that it suffices to prove

that G j
Σ is bounded on L1(Σ). Now, the boundedness of G j

Σ on L1(Σ) follows from (i)
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and the boundedness of K 0
j on L1(Σ) and of K ∞

δ on L1(N) for some δ in (2β, 2λ1
√
c).

To prove this, it suffices to show that for such values of δ

(4.10) sup
Y ∈Σ

∫
Σ

K 0
j (X,Y ) dY (X) <∞ and sup

y∈N

∫
N

K ∞
δ (x, y) dν(x) <∞.

These estimates can be obtained easily by integrating in polar co-ordinates centred at Y

and at y, respectively. We omit the details.

Now (iii) follows from (i) and the boundedness of K 0
j from Lp(Σ) to Lr(Σ) and of

K ∞
δ from Lr(N) to Lq(N) for all q in [r,∞] and δ in (2β, 2λ1

√
c). Specifically, K∞δ

is bounded, whence K ∞
δ is bounded from L1(N) to L∞(N). We have proved in (ii)

that K ∞
δ is bounded on L1(N). Since K∞δ is symmetric, K ∞

δ is also bounded on

L∞(N). By interpolation and duality, it follows that K ∞
δ maps Lp(N) to Lq(N) for all

1 ≤ p ≤ q ≤ ∞.

The proof that K 0
j maps L1(Σ) to weak-L(n+1)/(n−1)(Σ) and Lp(Σ) to Lr(Σ) when

1 < p < (n + 1)/2 and 1/r = 1/p− 2/(n + 1) can be obtained by adapting the proof of

[55, Theorem 1, p. 119]. We omit the details.

Now we prove (iv). Notice that for each positive integer k ≤ J∥∥∆∆kG J
ΣF
∥∥
Lr(Σ)

=
∥∥G J−k

Σ F
∥∥
Lr(Σ)

≤ C
∥∥F∥∥

Lr(Σ)
;

the last inequality follows from (ii).

For the sake of completeness we give a proof of the continuity of G J
ΣF on Σ, which is,

we believe, quite standard. Suppose that X ∈ Σ. Recall that G J
ΣF is a distributional

solution of ∆∆JV = F on Σ. Choose a harmonic coordinate system (U, φU ) with U ⊂ Σ

open set containing X and φU : U → Rn+1. For any function V on U , set Ṽ := V ◦ φ−1
U .

Then LJ(G̃ J
ΣF ) = (∆∆JG J

ΣF )˜ = F̃ in the sense of distributions on U , where L is the

elliptic operator defined in φU (U) by
∑
i,j

(g ◦ φ−1
U )ij∂2

ij . Since F̃ is continuous, it is in

L2
loc(U). By elliptic theory (see, for instance, [27, Theorem 6.33]), G̃ΣF ∈W 2J,2

loc (U). The

latter inclusion, with n′ = n+ 1, is a consequence of local Sobolev embeddings. Now, if

2J > (n + 1)/2, then W 2J,2
loc (U) is contained in C(U), as required to conclude the proof

of the continuity of G J
ΣF .

It remains to prove that G J
ΣF is bounded on Σ. By (i), in order to prove that G J

ΣF is

bounded, it suffices to prove that K 0
J maps Lr(Σ) to L∞(Σ), and that K ∞

δ maps Lr(N)

to L∞(N). In the proof of (iii), we have already shown that K ∞
δ maps Lr(N) to Lq(N)

for all q in [r,∞] (and δ ∈ (2β, 2λ1
√
c)). Thus, it remains to consider K 0

J . The kernel

K0
J of K 0

J is supported in a neighbourhood of the diagonal in Σ× Σ, and it is bounded

(see (4.7)). Thus, K 0
J maps Lr(Σ) to Lq(Σ) for all q in [p,∞]. This concludes the proof

of (iv).

Finally we prove (v). We already know that
∥∥K ∞

δ F [
∥∥
p
≤ C

∥∥F [∥∥
p

for every δ in

(2β, 2λ1
√
c). Trivially,

∥∥F [∥∥
p
≤
∥∥F∥∥

Bp , whence
∥∥K ∞

δ F [
∥∥
p
≤ C

∥∥F∥∥
Bp .
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Thus, arguing as in (i), it suffices to show that K 0 is bounded on Bp for each p in

[1,∞). Notice that∥∥K 0F
∥∥

Bp ≤ sup
t∈(0,2σ)

[ ∫
N

dν(x)
∣∣∣∫

Σ

(1ΥD
1−n)

(
(x, t), (y, v)

)
F (y, v) dν(y) dv

∣∣∣p]1/p
≤ C sup

t∈(0,2σ)

[ ∫
N

dν(x)
∣∣∣∫
B2(x)

d1−n(x, y)F [(y) dν(y)
∣∣∣p]1/p

≤ C
[ ∫

N

∣∣F [(x)
∣∣p dν(x)

]1/p
≤ C

∥∥F∥∥
Bp :

the penultimate inequality follows from the fact that the kernel 1V d
1−n, where V ={

(x, y) ∈ N ×N : d(x, y) ≤ 2
}

is symmetric and satisfies sup
y∈N

∫
N

[
1V d

1−n](x, y) dν(x) <

∞, whence the corresponding integral operator is bounded on Lp(N) for every p in [1,∞].

Suppose now that F is in Bp. By (4.3),∥∥GΣF (·, t)
∥∥
p
≤

∫∞
0

∥∥H Σ
s F (·, t)

∥∥
p

ds

≤
∫∞
0

ds

∫2σ

0

h[0,2σ]
s (t, u)

∥∥H N
s F (·, u)

∥∥
p

du.

Now,
∥∥H N

s F (·, u)
∥∥
p
≤
∥∥F (·, u)

∥∥
p

, by the contractivity of H N
s on Lp(N), whence

∥∥GΣF (·, t)
∥∥
p
≤
∥∥F∥∥

Bp

∫2σ

0

∫∞
0

h[0,2σ]
s (t, u) dsdu.

Now, the pointwise estimates (4.2) imply that∫∞
1

h[0,2σ]
s (t, u) ds ≤ C %(t) %(u)

∫∞
1

e−λ
2
1s ds ≤ C %(t) ∀u ∈ (0, 2σ).

and∫1

0

h[0,2σ]
s (t, u) ds ≤ C

∫%(t)%(u)

0

e−|t−u|
2/(4s) ds√

s
+ C %(t) %(u)

∫1

%(t)%(u)

e−|t−u|
2/(4s) ds

s3/2

≤ C
∫%(t)%(u)

0

s−1/2 ds+ C %(t)

∫1

%(t)%(u)

s−3/2 ds

≤ C
( %(t)

%(u)

)1/2

∀u ∈ (0, 2σ).

By combining the estimates above, we see that
∥∥GΣF (·, t)

∥∥
p
≤ C %(t)1/2

∥∥F∥∥
Bp , which

tends to 0 as %(t) tends to 0, as required.

This concludes the proof of (v), and of the proposition. �

Remark 4.5. Using (iii), it is straightforward to see that the assumption F ∈ C0(Σ) in

(iv) can be skipped up to choosing larger J .
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5. Maximal inequalities

The purpose of this section is to prove Theorem 5.1, which contains an analogue for the

slice Σ of certain maximal inequalities that Dindoš [19, Section 10] proved in a compact

setting. We emphasize that our result, Theorem 5.1 (i), is concerned with maximal

operators of harmonic functions on Σ, whereas Dindoš proved a similar estimate for

generic functions. Our additional assumption of harmonicity allows us to use Harnack’s

inequality in our proof, thereby simplifying Dindoš’ argument.

We need the following notation. Suppose that α is a (small) real number. For z in N ,

denote by Γα(z) the subset of Σ, symmetric with respect to the “line” t = σ and whose

restriction to the slice N × (0, σ] is the cone {(x, u) ∈ N × (0, σ] : d(x, z) ≤ αu}. We

say that a function F on Σ is symmetric if F (·, u) = F (·, 2σ − u) for every u in (0, 2σ).

Given a nonnegative symmetric function F on Σ, denote by F ∗ its nontangential maximal

function, defined by

(5.1) F ∗(z) := sup
(x,u)∈Γα(z)

F (x, u) ∀z ∈ N.

Theorem 5.1. Suppose that p is in (1,∞), α is small enough and j is a positive integer.

Then there exists a constant C such that the following hold:

(i)
∥∥(G j

ΣH
)∗∥∥

p
≤ C

∥∥H∗∥∥
p

for every positive symmetric harmonic function H on Σ;

(ii) if J > (n+1)/2, then
∥∥(G J

ΣS
)∗∥∥

p
≤ C

∥∥S∥∥
Lp(Σ)

for every nonnegative symmet-

ric function S on Σ.

Proof. We prove (i) in the case where j ≤ b(n+1)/2c. The modifications needed to cover

the case where j > b(n+ 1)/2c are straightforward and are left to the interested reader.

Simply, one needs to use different local estimates for kG jΣ
, depending on the dimension n

(see Proposition 4.2 (ii)).

By (4.9) it is enough to estimate (K 0
j H)∗ and sup

(x,u)∈Γα(z)

K ∞
δ H[(x) when δ is in

(2β, 2λ1
√
c). Notice that, for z in N

sup
X∈Γα(z)

K ∞
δ H[(x) ≤ C sup

x∈Bασ(z)

∫
N

e−δd(x,y)H[(y) dν(y)

≤ C
∫
N

e−δd(z,y)H[(y) dν(y)

= CK ∞
δ H[(z),

where X = (x, u). Since K ∞
δ is bounded on Lp(N) for every p in [1,∞],

(5.2)
∥∥ sup
X∈Γα(·)

K ∞
δ H[(x)

∥∥
p
≤ C

∥∥H[
∥∥
p
≤ C

∥∥H∥∥
Lp(Σ)

.

We now estimate the maximal operator (K 0
j H)∗. In this proof for notational convenience

we shall write γ instead of j − (n + 1)/2. For z in N , consider the set Q(z) := B3(z)×
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(0, 2σ), which is contained in Σ. By (4.7), for any X ∈ Γα(·) with α small enough,

(5.3) K j
0 H(X) ≤ C

∫
Q(z)

D(X,Y )2γ H(Y ) dY (Y ).

It is convenient to split the integral above as the sum of the integrals over Γ2α(z) (which

is contained in Q(z) as long as α is small enough), and Q(z) ∩ Γ2α(z)c.

First we estimate

∫
Γ2α(z)

D(X,Y )2γ H(Y ) dY (Y ). Recall that X is in Γα(z). Since

Y = (y, v) belongs to Γ2α(z), the point Y is in the ball with centre (z, v) and radius

3αv. We choose α so small that B6αv(z, v) (this ball is in N × R) is contained in Σ.

Since H is harmonic, by Harnack’s inequality (apply, for instance, [54, Theorem 5.4.3]

with M = N × R and δ = 1/2. Note that, under our assumptions, N supports a

local Poincaré inequality; see for instance [43, Theorems 1.1]), there exists a constant C,

independent of Y in Γ2α(z) and of z in N , such that H(Y ) ≤ C H(z, v), whence∫
Γ2α(z)

D(X,Y )2γ H(Y ) dY (Y ) ≤ C
∫
Γ2α(z)

D
(
X,Y

)2γ
H(z, v) dν(y) dv

≤ C H∗(z)
∫
Γ2α(z)

D
(
X,Y

)2γ
dY (Y ).

Observe that Γ2α(z) is contained in BR(X) for R big enough (depending on σ and α).

Therefore the last integral is dominated by

∫
BR(X)

D
(
X,Y

)2γ
dY (Y ), which is bounded

with respect to X in Γα(z) as a straightforward integration in polar coordinates shows.

This implies that

(5.4) sup
X∈Γα(z)

∫
Γ2α(z)

D(X,Y )2γ H(Y ) dY (Y ) ≤ C H∗(z).

Next we estimate

∫
Q(z)\Γ2α(z)

D(X,Y )2γ H(Y ) dY (Y ), where X = (x, u) is in Γα(z).

Set Z := (z, u). We claim that, for every Y ∈ Q(z) \ Γ2α(z),

(5.5) D(X,Y ) ≥
(

1−
√

4α2 + 1

2

)
D(Y,Z).

To prove the claim, first observe that, by the triangle inequality,

D(X,Y ) ≥ D(Y, Z)−D(X,Z)

= D(Y, Z)
(

1−
√

4α2 + 1

2

)
+D(Y,Z)

√
4α2 + 1

2
−D(X,Z).

Thus, in order to prove the claim it suffices to show that

D(Y, Z) ≥ 2√
4α2 + 1

D(X,Z).

Denote by W any of the points on ∂Γ2α(z) that realises the distance from Z to Γ2α(z)c.

Elementary geometric considerations show that D(W,Z) = u sin θ′, where θ′ denotes
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half the aperture of Γ2α(z), i.e., tan θ′ = 2α. It is straightforward to check that sin θ′ =
2α√

4α2 + 1
. By combining these formulae, we get that

D(Y, Z) ≥ D(W,Z) = αu
2√

4α2 + 1
≥ D(X,Z)

2√
4α2 + 1

,

as required to complete the proof of the claim. Notice that
2√

4α2 + 1
> 1, provided

that α is small enough (α <
√

3/2 will do).

The claim implies that∫
Q(z)\Γ2α(z)

D(X,Y )2γ H(Y ) dY (Y ) ≤ C
∫
Q(z)\Γ2α(z)

D(Z, Y )2γ H(Y ) dY (Y )

≤ C
∫
B3(z)

d(y, z)2γ H[(y) dν(y),

where the constant C depends on α and n. Therefore

sup
X∈Γα(z)

∫
Q(z)\Γ2α(z)

D(X,Y )2γ H(Y ) dY (Y ) ≤ C
∫
B3(z)

d(y, z)2γ H[(y) dν(y).

By combining this and (5.4), recalling also (5.3), we see that

(
K j

0 H
)∗

(z) ≤ C
[
H∗(z) +

∫
B3(z)

d(y, z)2γ H[(y) dν(y)
]
,

so that ∥∥(K j
0 H

)∗∥∥
p
≤ C

∥∥H∗∥∥
p

+ C
∥∥∥∫
B3(·)

d(·, y)2γ H[(y) dν(y)
∥∥∥
p

≤ C
[ ∥∥H∗∥∥

p
+
∥∥H[

∥∥
p

]
≤ C

∥∥H∗∥∥
p
,

as required.

Next we prove (ii). By Proposition 4.4 (iv) and Proposition 4.2 (i)-(ii), the function

G J
ΣS is continuous and for each δ in (2β, 2λ1

√
c) there exists a constant C such that

kG JΣ
(X,Y ) ≤ C e−δD(X,Y ) for every X and Y in Σ. It is straightforward to check that

there exists a constant C such that

sup
X∈Γα(z)

e−δD(X,Y ) ≤ C e−δd(z,y) ∀z ∈ N ∀Y ∈ Σ.

Here y is the component in N of the point Y in Σ. Consequently, (G J
ΣS)∗ ≤ CK ∞

δ S[,

whence ∥∥(G J
ΣS)∗

∥∥
p
≤ C

∥∥K ∞
δ S[

∥∥
p
≤ C

∥∥S[∥∥
p
≤ C

∥∥S∥∥
Lp(Σ)

,

as required. �
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6. The function G

In this section we adapt some ideas of Dindoš to our case (see [19, Chapter 6], especially

Proposition 6.4 therein). The main result of this section is Theorem 6.3 below, which is

a counterpart in our setting of a classical result of Stein and Weiss. First we need a of

technical lemma. Recall the space Bp, introduced just above Proposition 4.4.

Lemma 6.1. Suppose that p is in (1,∞), and that F is a nonnegative continuous function

in Bp satisfying lim
d(x,o)→∞

sup
t∈[η,2σ−η]

F (x, t) = 0 for every η ∈ (0, σ). Suppose further that

for some constant α the function G := F − αGΣF is subharmonic in Σ. Then the

following hold:

(i) there exists a sequence {εk} such that εk → 0 as k tends to infinity, and a

nonnegative function h in Lp(N) such that w − lim
k→∞

G(·, εk) = h (weak limit in

Lp(N)) and
∥∥h∥∥

p
≤ min

( ∥∥F∥∥
Bp ,

∥∥G∥∥
Bp

)
;

(ii) G ≤Pη
[
G(·, η)

]
in Ση;

(iii) G ≤P0h in Σ, where h is as in (i).

Proof. First we prove (i). By the weak compactness of the unit sphere of Lp(N), there

exists a sequence εk, which tends to 0+ as k tends to infinity, such that F (·, εk) is weakly

convergent in Lp(N) to a function, h say. By abstract nonsense
∥∥h∥∥

p
≤ sup

k

∥∥F (·, εk)
∥∥
p
.

Furthermore, h is nonnegative, because so is F by assumption.

By Proposition 4.4 (v),
∥∥GΣF (·, εk)

∥∥
p

tends to 0 as k tends to infinity. A fortiori

{GΣF (·, εk)} tends to 0 weakly in Lp(N). Thus, w- lim
k→∞

G(·, εk) = h in Lp(N), whence,

by abstract nonsense,
∥∥h∥∥

p
≤ sup

k

∥∥G(·, εk)
∥∥
p
.

Next we prove (ii). By elliptic regularity, GΣF is continuous on Σ, for F is continuous

therein by assumption. Consequently so isG. For the sake of completeness we give a proof

of the continuity of GΣF , which is, we believe, quite standard. Suppose that X ∈ Σ.

Recall that GΣF is a distributional solution of ∆∆V = F on Σ. Choose a harmonic

coordinate system (U, φU ) with U ⊂ Σ open set containing X and φU : U → Rn+1. For

any function V on U , set Ṽ := V ◦ φ−1
U . Clearly, V is continuous if and only if Ṽ is.

Then

LG̃ΣF = F̃

in the sense of distributions on U , where L is the elliptic operator defined in φU (U) by∑
i,j

(g ◦ φ−1
U )ij∂2

ij . Since F̃ is continuous, it is in Lploc(U) for every p ∈ [1,∞). By elliptic

theory (see, for instance, [27, Theorem 6.33]), G̃ΣF ∈W 2,2
loc (U) ⊂W 1, 2n′

n′−2 (U). The latter

inclusion, with n′ = n+ 1, is a consequence of local Sobolev embeddings. Moreover the

Euclidean Laplacian ∆∆0 of G̃ΣF satisfies

|∆∆0G̃ΣF | ≤ C |LG̃ΣF | = C F̃ ∈ L
2n′
n′−2

loc (U).
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By a local Euclidean Calderón–Zygmund inequality, we obtain that G̃ΣF ∈W
2, 2n′
n′−2

loc (U).

Indeed, from [30, Theorem 9.9] there exists a function w ∈ W
2, 2n′
n′−2

loc solving Lw = F̃

in a neighbourhood of X. Since w − G̃ΣF solves L(w − G̃ΣF ) = 0 and is thus smooth,

we get that also G̃ΣF ∈ W
2, 2n′
n′−2

loc . In particular, G̃ΣF ∈ W
1, 2n′
n′−4

loc (U) by a local Sobolev

embedding. Since ∆∆0G̃ΣF ∈ L
2n′
n′−4

loc (U), we can iterate the argument, thus obtaining

that G̃ΣF ∈ W
2, 2n′
n′−2k

loc (U) for every positive integer k such that 2k < n′. As soon as

2k > n′− 4, by a local Sobolev embedding W
2, 2n′
n′−2k

loc ⊂ C0, thereby concluding the proof

of the continuity of GΣF .

To prove (ii), first notice that both sides of the desired inequality are continuous on

N × [η, 2σ − η] (the continuity of the right hand side follows from Proposition 3.1), the

left hand side and the right hand side are subharmonic and harmonic in N × (η, 2σ− η),

respectively.

We claim that G(·, η) is in C0(N). By assumption, F (·, η) is in C0(N). Thus, it

remains to prove that GΣF (·, η) is in C0(N). Suppose that ε > 0. Choose γ in (0, η)

so that %(γ) < ε (recall that %(γ) = sinλ1γ, see the beginning of Section 4; clearly it

suffices to choose γ < ε/λ1). The estimate (4.6) implies that there exists a constant C

such that kGΣ
(X,Y ) ≤ C min

(
%(v), e−2λ1d(x,y)

√
c
)

whenever X = (x, η), Y := (y, v) and

D(X,Y ) ≥ η − γ. Thus, in particular, kGΣ
(X,Y ) < C ε if Y := (y, v) belongs either to

N × (0, γ] or to N × [2σ − γ, 2σ) (this just because D(X,Y ) ≥ η − γ > 0). Therefore

kGΣ
(X,Y ) = kGΣ

(X,Y )δ kGΣ
(X,Y )1−δ ≤ C εδ e−2(1−δ)λ1d(x,y)

√
c

for any δ in (0, 1). Therefore, if δ is small enough, then τ := 2(1− δ)λ1
√
c > 2β and

(6.1)

∫
Σ\Σγ

kGΣ(X,Y )F (Y ) dY (Y ) ≤ C εδ
∫
Σ\Σγ

e−τd(x,y) F (Y ) dY (Y )

≤ C εδ
[ ∫

Σ

e−τp
′d(x,y) dY (Y )

]1/p′ ∥∥F∥∥
Lp(Σ)

≤ C εδ
∥∥F∥∥

Bp .

Furthermore, by assumption, there exists R > 0 such that F (y, u) < ε when (y, u)

belongs to BR(o)c × [γ, 2σ − γ]. Hence

(6.2)

∫
BR(o)c×[γ,2σ−γ]

kGΣ(X,Y )F (Y ) dY (Y ) ≤ C ε;

we have used Proposition 4.4 (ii) in the last inequality. Finally, if Y belongs to BR(o)×
[γ, 2σ − γ] =: Qγ,R and d(x, o) is big enough, then there exists a constant C such that

kGΣ
(X,Y ) ≤ C e−2λ1d(x,y)

√
c (see Proposition 4.2 (i)). This and the fact that d(x, y) ≥

d(x, o)−R whenever d(x, o) is large and y belongs to BR(o) imply that∫
Qγ,R

kGΣ
(X,Y )F (Y ) dY (Y ) ≤ C eCR e−2λ1d(x,o)

√
c

∫
Qγ,R

F (Y ) dY (Y ).
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By Hölder’s inequality∫
Qγ,R

F (Y ) dY (Y ) ≤ C ν
(
BR(o)

)1/p′ [ ∫
Qγ,R

F (Y )p dY (Y )
]1/p

≤ C eCR
∥∥F∥∥

Bp .

Thus, we may conclude that

(6.3)

∫
Qγ,R

kGΣ
(X,Y )F (Y ) dY (Y ) ≤ C eCR e−2λ1d(x,o)

√
c
∥∥F∥∥

Bp ,

By combining (6.1), (6.2) and (6.3), we see that

GΣF (x, η) ≤ C ε
( ∥∥F∥∥

Bp + 1
)

+ C eCR e−2λ1d(x,o)
√
c
∥∥F∥∥

Bp .

Now we take the limit of both sides as d(x, o) tends to infinity, and obtain that

lim
d(x,o)→∞

GΣF (x, η) ≤ C ε
( ∥∥F∥∥

Bp + 1
)
,

from which the claim follows directly.

Note that

(6.4) lim
d(x,o)→∞

sup
t∈[η,2σ−η]

Pη
[
G(·, η)

]
(x, t) = 0.

Indeed, since G(·, η) is in C0(N), for every ε > 0 there exists R such that G(x, η) < ε for

every x such that d(x, o) > R. Then∣∣[PηG(·, η)
]
(x, t)

∣∣ ≤ ∣∣∣∫
BR(o)

kMη
t (D)(x, y)G(y, η) dν(y)

∣∣∣+ ε

∫
BR(o)c

∣∣kMη
t (D)(x, y)

∣∣dν(y).

The operator Mη
t (D) satisfies on the slice Ση estimates similar to those of Mt(D) on Σ.

The proofs of such estimates for Mη
t (D) are almost verbatim the same as the correspond-

ing proofs for Mt(D). In particular, for each ε > 0, there exists a positive constant C

such that for every function f in L1(N) with support contained in BR(o)

sup
t∈(η,2σ−η)

∣∣Mη
t (D)f(x)

∣∣ ≤ C e(ε−λη1 )d(x,o)
∥∥f∥∥

1

for every x in B2R(o)c, where λη1 =
π

2(σ − η)
(see the proof of Lemma 3.3 (iii)). Therefore

for every x in B2R(o)c we have the estimate

sup
t∈(η,2σ−η)

∣∣∣∫
BR(o)

kMη
t (D)(x, y)G(y, η) dν(y)

∣∣∣ ≤ C e(ε−λη1 )d(x,o)
∥∥1BR(o)G(·, η)

∥∥
1
,

which tends to 0 as d(x, o) tends to infinity. Furthermore,∫
BR(o)c

∣∣kMη
t (D)(x, y)

∣∣ dν(y) ≤
∥∥kMη

t (D)(x, ·)
∥∥

1
≤ C

[
1 +

∥∥Mη
σ

∥∥
E (Sϕ)

]
;

the last inequality follows from Lemma 3.3 (iv) (with p = ∞). The right hand side is

independent of t in (η, 2σ − η). By combining the estimates above, we get that

lim
|x|→∞

sup
t∈[η,2σ−η]

∣∣[PηG(·, η)
]
(x, t)

∣∣ ≤ ε,
which, of course, implies the required estimate (6.4).
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Now, consider the function Ξ(x, t) := G(x, t)−
[
PηG(·, η)

]
(x, t), which is continuous

on Ση (by Proposition 3.1). Notice that Ξ(x, η) = 0 = Ξ(x, 2σ − η) for every x in N .

Since G is subharmonic on Σ and Pη
[
G(·, η)

]
is harmonic on Ση, Ξ is subharmonic on

Ση. For R > 0 consider the compact set KR := BR(o) × [η, 2σ − η]. Fix ε > 0. Our

assumptions and (6.4) yield sup
(x,t)∈∂KR

Ξ(x, t) < ε for R large enough. By the maximum

principle for subharmonic functions (see, for instance, [29, Corollary 1, p. 479]) applied

to Ξ and KR, we have the estimate Ξ ≤ ε on KR. By letting ε tend to 0 (and R to

infinity), we may conclude that Ξ ≤ 0 on Ση, as required.

Finally, we prove (iii). It suffices to show that

(6.5) lim
k→∞

[
PεkG(·, εk)

]
(x, t) = P0h(x, t)

for almost every (x, t) in Σ, where {εk} denotes (possibly a subsequence of) the sequence

whose existence is established in (i). Indeed, this and (ii) would imply that G(x, t) ≤
P0h(x, t) for almost every (x, t) in Σ. Since both G(x, t) and P0h(x, t) are continuous

functions on Σ, the latter equality would hold everywhere, as required.

In order to prove (6.5), we consider preliminarily the function mε
t (z) := Mε

t (z)−Mt(z)

for ε > 0 and t in (0, σ]. We claim that for each ϕ in (0, π/2)

(6.6) lim
ε↓0

sup
z∈Sϕ

∣∣mε
t (z)

∣∣ = 0.

Here Sϕ and Sϕ denote the sector {z ∈ C : |arg z| < ϕ} and its closure, respectively.

A straightforward computation shows that given ϕ in (0, π/2) and t in (0, σ] there

exists a constant C such that sup
z∈Sϕ

∣∣mε
t (z)

∣∣ ≤ C for every ε ≤ t/2. By the Phragmen–

Lindelöf principle sup
z∈Sϕ

∣∣mε
t (z)

∣∣ ≤ sup
z∈∂Sϕ

∣∣mε
t (z)

∣∣. Observe that

(6.7)

∣∣mε
t (re

iϕ)
∣∣ =

∣∣cosh[(σ − t)reiϕ]
∣∣ ∣∣∣ 1

cosh[σreiϕ]
− 1

cosh[(σ − ε)reiϕ]

∣∣∣
≤
∣∣cosh[(σ − t)reiϕ]

∣∣ rε sup
u∈(σ−ε,σ)

∣∣sinh(ureiϕ)
∣∣∣∣cosh2[ureiϕ]
∣∣

≤ Cεr e(ε−t)r cosϕ;

the first inequality follows from the mean value theorem, applied to the function u 7→
1/ cosh[ureiϕ]. Now we take the supremum of both sides with respect to r in (0,∞), and

obtain

sup
r>0

∣∣mε
t (re

iϕ)
∣∣ ≤ Cε

(t− ε) cosϕ
→ 0

as ε tends to 0. Since mε
t (z) = mε

t (z), we can conclude that lim
ε↓0

sup
z∈∂Sϕ

∣∣mε
t (z)

∣∣ = 0,

thereby concluding the proof of the claim.

By using (6.7), it is easy to check that the function mε
t belongs to the algebra H∞0 (Sϕ),

which is included in the Dunford class E (Sϕ) (see page 15 for the definitions). Thus, if
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π/4 < ϕ < π/2, then the natural functional calculus [35, Theorem 2.3.3] implies that

(6.8)
∣∣∣∣∣∣mεk

t (D)
∣∣∣∣∣∣
p
≤ C

∥∥mε
t

∥∥
E (Sϕ)

= C
∥∥mε

t

∥∥
H∞0 (Sϕ)

,

because D is sectorial of angle π/4. Write

(6.9) Mεk
t (D)G(·, εk)−Mt(D)h = mεk

t (D)G(·, εk) +Mt(D)
[
G(·, εk)− h

]
.

In order to prove (6.5), it suffices to show that both summands on the right hand side

of (6.9) tend to 0 pointwise a.e. Since {G(·, εk)} is uniformly bounded in Lp(N),∥∥mεk
t (D)G(·, εk)

∥∥
p
≤ C

∣∣∣∣∣∣mεk
t (D)

∣∣∣∣∣∣
p
,

which, by (6.8) and (6.6), tends to 0 as k tends to infinity. Hence, by abstract nonsense,

a suitable subsequence of mεk
t (D)G(·, εk) is pointwise convergent a.e. to 0. Next,

Mt(D)
[
G(·, εk)− h

]
(x) =

∫
N

kMt(D)(x, y)
[
G(·, εk)− h

]
(y) dν(y),

which tends to 0 as k tends to infinity, because G(·, εk) − h is weakly convergent to

0 in Lp(N), and
∥∥kMt(D)(x, ·)

∥∥
p′

is uniformly bounded with respect to x in N by

Lemma 3.3 (v) (and the symmetry of Mt(D)).

This concludes the proof of (iii), and of the lemma. �

We shall apply Lemma 6.1 to the case where F = |∇∇u|q and u is a harmonic function

on Σ. Suppose that β is a positive number. We say that a function S is β-subharmonic

provided that ∆∆S ≥ −β S in the sense of distributions. The following result, which

generalises old ideas of Stein and Weiss (see for instance [55, pp. 217–220]), is due to

Dindoš [19, Section 6.3].

Proposition 6.2. Suppose that RicN×R ≥ −κ2. If (n − 1)/n ≤ q ≤ 1 and u is a

harmonic function on an open subset Ω of N ×R, then |∇∇u|q is qκ2-subharmonic in Ω.

Theorem 6.3. Suppose that u is a harmonic function on Σ. Then the following are

equivalent:

(i) |∇∇u|∗ is in L1(N);

(ii) |∇∇u| is in B1, and lim
d(x,o)→∞

sup
t∈[η,2σ−η]

|∇∇u(x, t)| = 0 for every η in (0, 2σ).

Furthermore, there exists a constant C, independent of u, such that

(6.10)
∥∥|∇∇u|∥∥

B1 ≤
∥∥|∇∇u|∗∥∥

1
≤ C

∥∥|∇∇u|∥∥
B1 .

Proof. We prove that (i) implies (ii), and that the left hand inequality in (6.10) holds.

Observe that
∣∣∇∇u∣∣∗(x) ≥

∣∣∇∇u(x, t)
∣∣ for every t in (0, 2σ), so that∥∥|∇∇u|∥∥
B1 ≤

∫
N

∣∣∇∇u∣∣∗(x) dν(x).
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It remains to prove that sup
t∈[η,2σ−η]

∣∣∇∇u(·, t)
∣∣ vanishes at infinity for each η in (0, 2σ). We

argue by contradiction. Suppose that lim sup
d(x,o)→∞

sup
t∈[η,2σ−η]

∣∣∇∇u(x, t)
∣∣ =: β > 0 for some η

in (0, 2σ). Then there exists a sequence {xk} such that d(xk, o) tends to infinity as k

does and lim sup
k→∞

sup
t∈[η,2σ−η]

∣∣∇∇u(xk, t)
∣∣ = β. Clearly

∣∣∇∇u∣∣∗(x) ≥ β/2 for all x in Bαη(xk)

and k large enough (here α denotes the aperture of the cone Γα in (5.1)). By possibly

passing to a subsequence, we may assume that the balls Bαη(xk) are mutually disjoint.

Therefore ∫
N

∣∣∇∇u∣∣∗(x) dν(x) ≥
∑
k

∫
Bαη(xk)

∣∣∇∇u∣∣∗(x) dν(x) =∞,

which clearly contradicts our assumption.

Next we prove that (ii) implies (i) and the right hand inequality in (6.10) holds. Choose

q in
(
(n − 1)/n, 1

)
. Since

∣∣∇∇u∣∣ is in B1,
∣∣∇∇u∣∣q is in B1/q. Furthermore

∣∣∇∇u∣∣q is qκ2-

subharmonic in Σ by Proposition 6.2, whence G :=
∣∣∇∇u∣∣q− qκ2GΣ

∣∣∇∇u∣∣q is subharmonic

therein. We may apply Lemma 6.1 (iii) (with
∣∣∇∇u∣∣q, qκ2 and 1/q in place of F , α and

p, respectively), and conclude that

(6.11) |∇∇u|q ≤P0h+ qκ2GΣ

(
|∇∇u|q

)
.

Fix an integer J > (n+ 1)/2. The inequality (6.11) can be iterated J times, to wit

|∇∇u|q ≤P0h+ C
( J−1∑
j=1

G j
ΣP0h+ G J

Σ

(
|∇∇u|q

))
.

We raise both sides of the last inequality to the power 1/q, and obtain that

|∇∇u| ≤ C
{

(P0h)1/q +

J−1∑
j=1

(
G j

ΣP0h
)1/q

+
(
G J

Σ |∇∇u|q
)1/q}

.

This implies the following inequality for the associated nontangential maximal functions

(6.12) |∇∇u|∗ ≤ C
{[(

P0h
)∗]1/q

+

J−1∑
j=1

[(
G j

ΣP0h
)∗]1/q

+
[(

G J
Σ |∇∇u|q

)∗]1/q}
.

Suppose that p is in (1,∞). Observe that there exists a constant C such that

(6.13)
∥∥(P0h

)∗∥∥
p
≤ C

∥∥h∥∥
p

∀h ∈ Lp(N).

Indeed, a straightforward argument, using the subordination formula (2.12), shows that

sup
t∈(0,σ]

∣∣PN
t f
∣∣ ≤ sup

0<t

∣∣H N
t f

∣∣.
By the Littlewood–Paley–Stein theory [57, p. 73] (see also [14, Theorem 7]), for each p

in (1,∞], there exists a constant Ap such that∥∥ sup
0<t

∣∣H N
t f

∣∣∥∥
p
≤ Ap

∥∥f∥∥
p

∀f ∈ Lp(N).
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The subordination formula (2.12) implies that a similar estimate holds for the Poisson

maximal operator. Since P0h(·, t) = P0h(·, 2σ − t),

sup
X∈Γα(z)

∣∣P0h(X)
∣∣ = sup

X∈Γα(z)′

∣∣P0h(X)
∣∣,

where Γα(z)′ :=
{

(x, t) ∈ Γα(z) : 0 < t < σ
}

. In the case where X = (x, t) is in Γα(z)′,

formula (3.6) and the Markovianity of the Poisson semigroup imply that

(6.14)
∣∣P0h(x, t)

∣∣ ≤PN
t h(x) +

1

2

[
PN
σ−t|Mσ

(
D
)
h|(x) + PN

t |e−σDMσ

(
D
)
h|(x)

]
.

Clearly, the right hand side of the above inequality is a positive harmonic function on

N × (0,∞). If the aperture α is small enough and (x, t) is in Γα(z)′, then the ball in

N × R with centre (z, t) and radius 2d(x, z) is contained in N × (0,∞). Therefore, by

Harnack’s principle (see, for instance, [54, Theorem 5.4.3]), there exists a constant C

such that

PN
t h(x) ≤ CPN

t h(z) ∀(x, t) ∈ Γα(z)′ ∀z ∈ N,

and a similar estimate holds for the other summands on the right hand side of (6.14).

Set h0 := h, h1 :=
∣∣Mσ

(
D
)
h
∣∣ and h2 :=

∣∣e−σDMσ

(
D
)
h
∣∣. Then

∥∥(P0h
)∗∥∥

p
≤ C

2∑
j=0

∥∥ sup
0<t

∣∣PN
t hj

∣∣∥∥
p
≤ C

2∑
j=0

∥∥hj∥∥p ≤ C ∥∥h∥∥p ;

the last inequality follows from the boundedness of the operatorsMσ

(
D
)

and e−σDMσ

(
D
)

on Lp(N), which follows from Lemma 3.3 (iv) and the contractivity of the Poisson semi-

group. This proves (6.13).

Similarly, by Theorem 5.1 (i), for every positive integer j there exists a constant C

such that

(6.15)
∥∥(G j

ΣP0h
)∗∥∥

p
≤ C

∥∥(P0h
)∗∥∥

p
.

By combining (6.13) and (6.15) we obtain that
∥∥(G j

ΣP0h
)∗∥∥

p
≤ C

∥∥h∥∥
p

In particular,

the last estimate holds for p = 1/q. This and (6.12) imply that

∥∥|∇∇u|∗∥∥
1
≤ C

{ ∥∥(P0h
)∗∥∥1/q

1/q
+

J−1∑
j=1

∥∥(G j
ΣP0h

)∗∥∥1/q

1/q
+
∥∥(G J

Σ |∇∇u|q
)∗∥∥1/q

1/q

}
≤ C

{ ∥∥h∥∥1/q

1/q
+
∥∥(G J

Σ |∇∇u|q
)∗∥∥1/q

1/q

}
.

Since J > (n+ 1)/2, Theorem 5.1 (ii) yields∥∥(G J
Σ |∇∇u|q

)∗∥∥1/q

1/q
≤ C

∥∥|∇∇u|q∥∥1/q

L1/q(Σ)
≤ C

∥∥|∇∇u|∥∥
B1 .

By combining the estimates above and using the estimate for
∥∥h∥∥

1/q
in Lemma 6.1 (i),

we get that
∥∥|∇∇u|∗∥∥

1
≤ C

∥∥|∇∇u|∥∥
B1 , as required. �
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7. Analysis of the local Riesz transform

7.1. Goldberg-type spaces. We introduce the Goldberg-type space h1(N) (also re-

ferred to as local Hardy space), which generalises the Goldberg space h1(Rn) and plays

a fundamental role in our analysis.

Definition 7.1. Fix a positive number s. Suppose that p is in (1,∞]. A standard p-atom

at scale s is a function a in L1(N) supported in a ball B of radius at most s satisfying

the following conditions:

(i) size condition: ‖a‖p ≤ ν(B)−1/p′ ;

(ii) cancellation condition:

∫
B

a dν = 0.

A global p-atom at scale s is a function a in L1(N) supported in a ball B of radius

exactly equal to s satisfying the size condition above (but possibly not the cancellation

condition). Standard and global p-atoms will be referred to simply as p-atoms.

Definition 7.2. Suppose that s is a positive number. The local atomic Hardy space

h1,p
s (N) is the space of all functions f in L1(N) that admit a decomposition of the form

f =
∑∞
j=1 λj aj , where λj ∈ C, the aj ’s are p-atoms at scale s and

∑∞
j=1 |λj | <∞. The

norm ‖f‖h1,p
s

is the infimum of
∑∞
j=1 |λj | over all decompositions of f as above.

It is well known that h1,p
s (N) is independent of p and of s and the corresponding norms

‖·‖h1,p
s

are pairwise equivalent (see [51, Proposition 1]); henceforth, the space h1,2
s (N)

will be denoted simply by h1(N). The fact that h1,2
s (N) is independent of s and p will

be used without further comment in the sequel. Hereafter, atomic decompositions of

functions in h1(N) will consist of atoms at scale 1.

The definition of the space h1(N) is similar to that of the atomic Hardy space H1(N),

introduced by A. Carbonaro, G. Mauceri and Meda [6, 7], the only difference being that

atoms in H1(N) are just standard atoms in h1(N), and there are no global atoms. As a

consequence, the integral of functions in H1(N) vanishes, a property not enjoyed by all

the functions in h1(N). Thus, trivially, H1(N) is properly and continuously contained

in h1(N).

We need the following result, which is one of the main contributions of [45].

Theorem 7.3. Suppose that σ > 0. Under our geometric assumptions, h1(N) agrees

with the space h1
P(N) of all functions f in L1(N) such that PN

∗ f := sup
s∈(0,σ)

|PN
s f | is in

L1(N). Furthermore, there exist positive constants C1 and C2 such that

C1

∥∥f∥∥
h1(N)

≤
∥∥PN
∗ f
∥∥

1
≤ C2

∥∥f∥∥
h1(N)

.

We need also the following simple result.



38 S. MEDA AND G. VERONELLI

Proposition 7.4. Suppose that ε > 0. Then there exists a constant C such that if h is

a measurable function on N satisfying |h(x)| ≤ A e−(2β+ε)d(x,o) for some o in N , then∥∥h∥∥
h1(N)

≤ C A.

Proof. A corollary of [51, proof of Lemma 2] is that for any p in (1,∞] there exists a

constant C such that every function f in Lp(N) supported in a ball B is in h1(N) and

(7.1)
∥∥f∥∥

h1(N)
≤ C ν(B)1/p′

∥∥f∥∥
p
.

Consider an exhaustion of N with B1(o) and annuli Aj := Bj+1(o) \ Bj(o), where j =

1, 2, . . .. Correspondingly, write

h = 1B1(o) h+

∞∑
j=1

1Aj h.

Clearly 1B1(o) h is in h1(N), for it is a multiple of a global h1(N) atom. Next, by (7.1)

(with p = 2), ∥∥1Aj h∥∥h1(N)
≤ C ν

(
Bj+1(o)

)1/2 ∥∥h∥∥
L2(Aj)

The pointwise estimate of h implies that
∥∥h∥∥

L2(Aj)
≤ CA e−(2β+ε)j ν(Aj)

1/2, whence∥∥1Aj h∥∥h1(N)
≤ CAν

(
Bj+1(o)

)
e−(2β+ε)j ≤ CA e−εj/2.

The required estimate follows by summing the estimates above with respect to j. �

7.2. Analysis of the Riesz transform. For any τ > 0 consider the operator Dτ :=√
Lτ , obtained by analytic continuation from the analytic family of operators {L −α/2τ :

Reα > 0}. We write D−1
τ = J 0

τ +J∞
τ , where J 0

τ and J∞
τ are the operators associated

to the kernels

(7.2) kJ 0
τ

= ϕkD−1
τ

and kJ∞
τ

= (1− ϕ) kD−1
τ
,

where ϕ : N × N → [0, 1] is the smoooth function introduced in Lemma 2.6 (ii) (with

R = 1). We further decompose J 0
τ as J 0,0

τ + J 0,∞
τ , where

kJ 0,0
τ

=
ϕ√
π

∫1

0

t−1/2 e−τt hNt dt and kJ 0,∞
τ

=
ϕ√
π

∫∞
1

t−1/2 e−τt hNt dt.

Recall the definition of ΥR (see (2.16)).

Lemma 7.5. There exists a positive constant C such that the following hold:

(i) kD−1
τ
≤ C

[
d1−n 1Υ1

+ e−2d
√
τc 1Υc1

]
, where c is as in (2.3);

(ii) D−1
τ is bounded from L1(N) to h1(N) provided that τ > β2/c.

Proof. First we prove (i). From the estimates (2.3) for hNt , we deduce that

kD−1
τ
≤ C

∫1

0

t(1−n)/2 e−τt−cd
2/t dt

t
+ C

∫∞
1

e−τt−cd
2/t dt

t
.

Changing variables (d2/t = u) we see that the first integral above is � d1−n as d tends

to 0 and decays superexponentially as d tends to infinity.
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Clearly, the second integral above is bounded as d tends to 0. For d large we write

τt + cd2/t = 2d
√
τc +

(√
τt − d

√
c/t)2, and the second integral above may be written

as e−2d
√
τc J(d) � d−1/2 e−2d

√
τc, where J(d) is as in Lemma 4.1 (with j = 1/2 and

√
τ

instead of λ1). The required estimate follows by combining the estimates above.

To prove (ii), write g =
∑
j gj , where gj := g 1Bj and {Bj} is a covering of N by

balls of radius 1 with the finite overlapping property. Choose p in
(
1, n/(n − 1)

)
. We

claim that there exist a constant C, independent of j, and a function hj , with support

contained in 2Bj , such that

(7.3)
∣∣D−1

τ gj(x)
∣∣ ≤ hj + C e−2

√
τc d(x,cj)

∥∥gj∥∥1

and
∥∥hj∥∥p ≤ C ∥∥gj∥∥1

. Here cj denotes the centre of Bj .

Note that hj/
(
ν(2Bj)

1/p′
∥∥hj∥∥p ) is a global h1,p

2 (N) atom. Hence
∥∥hj∥∥h1(N)

≤
ν(2Bj)

1/p′
∥∥hj∥∥p ≤ C

∥∥gj∥∥1
. Notice also that, by Proposition 7.4, each of the func-

tions x 7→ e−2
√
τc d(x,cj) is in h1(N) with norm uniformly bounded with respect to j.

Thus, given (7.3), we may conclude that∥∥D−1
τ g

∥∥
h1(N)

≤
∑
j

∥∥D−1
τ gj

∥∥
h1(N)

≤ C
∑
j

∥∥gj∥∥1
≤ C

∥∥g∥∥
1
,

as required.

Thus, it remains to prove (7.3). Note that, by (i),∣∣D−1
τ gj(x)

∣∣ ≤ C hj(x) + C 1(2Bj)c(x)

∫
Bj

e−2
√
τc d(x,y) gj(y) dν(y),

where hj(x) := 12Bj (x)

∫
Bj

d(x, y)1−n gj(y) dν(y). Since the integral operator with ker-

nel (x, y) 7→ 12Bj (x) d(x, y)1−n 1Bj (y) is bounded from L1(N) to Lp(N), the required

estimate for
∥∥hj∥∥p follows. By the triangle inequality d(x, y) ≥ d(x, cj) − d(y, cj) ≥

d(x, cj)− 1, so that∣∣∣∫
Bj

e−2
√
τc d(x,y) gj(y) dν(y)

∣∣∣ ≤ C e−2
√
τc d(x,cj)

∥∥gj∥∥1
.

This concludes the proof of the claim and of (ii). �

Lemma 7.6. Suppose that τ > β2/c, where c is as in (2.3). Then there exists a con-

stant C such that∥∥DτJ
0,∞
τ f

∥∥
h1(N)

≤ C
∥∥f∥∥

1
and

∥∥DτJ
∞
τ f

∥∥
h1(N)

≤ C
∥∥f∥∥

1

for every function f in L1(N) with compact support in a ball of radius ≤ 1.

Proof. We assume that the support of f is contained in BR(o), with R ≤ 1. Since

DτJ 0,∞
τ f = D−1

τ LτJ 0,∞
τ f and DτJ∞

τ f = D−1
τ LτJ∞

τ f , Lemma 7.5 (ii) implies

that it suffices to show that there exists a constant C, independent of f , such that

(7.4)
∥∥LτJ

0,∞
τ f

∥∥
1
≤ C

∥∥f∥∥
1

and
∥∥LτJ

∞
τ f

∥∥
1
≤ C

∥∥f∥∥
1
.
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The first inequality above will follow from the fact that LτJ 0,∞
τ f is a bounded func-

tion with support contained in B2(o) and the estimate
∥∥LτJ 0,∞

τ f
∥∥
∞ ≤ C

∥∥f∥∥
1

.

Since LτJ 0,∞
τ f = L J 0,∞

τ f + τJ 0,∞
τ f , it suffices to show that both J 0,∞

τ f and

L J 0,∞
τ f are bounded functions with compact support contained in B2(o) and the es-

timates
∥∥J 0,∞

τ f
∥∥
∞ ≤ C

∥∥f∥∥
1

and
∥∥L J 0,∞

τ f
∥∥
∞ ≤ C

∥∥f∥∥
1

hold. Observe that

J 0,∞
τ f(x) =

1√
π

∫
BR(o)

dν(y)ϕ(x, y) f(y)

∫∞
1

t−1/2 e−τt hNt (x, y) dt.

By our choice of ϕ and the fact that the support of f is contained in B1(o), the support

of J 0,∞
τ f is contained in B2(o). The upper estimate (2.3) for hNt (x, y) implies that

the inner integral above is dominated by a constant independent of x and y. Therefore∥∥J 0,∞
τ f

∥∥
1
≤ C

∥∥f∥∥
1

, as required. We now prove that the same is true of L J 0,∞
τ f .

Notice that for each y in N

L
[
ϕhNt

]
(·, y) = Lϕ(·, y)hNt (·, y)− 2

〈
∇ϕ(·, y),∇hNt (·, y)

〉
+ ϕ(·, y) L hNt (·, y);

note also that, by our choice of ϕ, the first and the second summand on the right

hand side vanish when d(·, y) ≤ 1/4. Correspondingly, L J 0,∞
τ f may be written as

B1f −B2f + B3f , where

B1f =
1√
π

∫
BR(o)

dν(y) Lϕ(·, y) f(y)

∫∞
1

t−1/2 e−τt hNt (·, y) dt,

B2f =
2√
π

∫
BR(o)

dν(y)

〈
∇ϕ(·, y)f(y),

∫∞
1

t−1/2 e−τt∇hNt (·, y) dt

〉
and

B3f =
1√
π

∫
BR(o)

dν(y)ϕ(·, y) f(y)

∫∞
1

t−1/2 e−τt L hNt (·, y) dt.

We estimate B3f . The estimates of B1f and B2f are easier, for the kernels of these

operators are supported in Υ1 \ Υ1/4 (recall also that |∇ϕ(·, y)| and |Lϕ(·, y)| are uni-

formly bounded; see Lemma 2.6 (ii)), and are left to the interested reader. Notice that

L hNt (·, y) = −∂thNt (·, y). Then, by integrating by parts in the inner integral, we find

that

B3f =
1

2
√
π

∫
BR(o)

dν(y)ϕ(·, y) f(y)
[
2e−τ hN1 −

∫∞
1

t−3/2 e−τt (1 + 2τt)hNt (·, y) dt
]
.

The upper estimate in (2.3) and simple considerations show that
∣∣B3f

∣∣ is dominated

by

∫
BR(o)

k(·, y)
∣∣f(y)

∣∣dν(y), where k is bounded, nonnegative and supported in Υ1 (see

(2.16) for the notation). Consequently,
∣∣B3f

∣∣ is a bounded function with support con-

tained in B2(o) and
∥∥B3f

∥∥
∞ ≤ C

∥∥f∥∥
1

. This concludes the proof of the first inequality

in (7.4).
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Next we prove the second inequality in (7.4). Recall that

J∞
τ f =

1√
π

∫
BR(o)

dν(y)
[
1− ϕ(·, y)

]
f(y)

∫∞
0

t−1/2 e−τt hNt (·, y) dt

=
1√
π

∫
BR(o)

[
1− ϕ(·, y)

]
kD−1

τ
(x, y) f(y) dν(y).

This and the estimates for kD−1
τ

in Lemma 7.5 (i) imply that there exists a constant

C such that
∣∣J∞

τ f(x)
∣∣ ≤ C e−2d(x,o)

√
τc
∥∥f∥∥

1
for every x in N . Thus,

∥∥J∞
τ f

∥∥
1
≤

C
∥∥f∥∥

1
, because, by assumption, τ > β2/c. Since LτJ∞

τ f = L J∞
τ f + τJ∞

τ f , it

remains to show that L J∞
τ f satisfies a similar estimate. Now,

L
[
(1−ϕ)hNt

]
(·, y) = −Lϕ(·, y)hNt (·, y)+2

〈
∇ϕ(·, y),∇hNt (·, y)

〉
+
[
1−ϕ(·, y)

]
L hNt (·, y);

note that each of the summands on the right hand side vanishes in Υ1/4. Correspondingly,

L J∞
τ f may be written as A1f + A2f + A3f , where

A1f = − 1√
π

∫
BR(o)

dν(y) Lϕ(·, y) f(y)

∫∞
0

t−1/2 e−τt hNt (·, y) dt,

A2f = − 2√
π

∫
BR(o)

dν(y)

〈
∇ϕ(·, y)f(y),

∫∞
0

t−1/2 e−τt∇hNt (·, y) dt

〉
and

A3f =
1√
π

∫
BR(o)

dν(y)
[
1− ϕ(·, y)

]
f(y)

∫∞
0

t−1/2 e−τt L hNt (·, y) dt.

We estimate A3f . The estimates of A1f and A2f are easier, for the kernel of these oper-

ators are supported in Υ1 \Υ1/4 (recall also that |∇ϕ(·, y)| and |Lϕ(·, y)| are uniformly

bounded; see Lemma 2.6 (ii)), and are left to the interested reader.

Notice that L ht(·, y) = −∂tht(·, y). Then, by integrating by parts in the inner inte-

gral, we find that

A3f = − 1

2
√
π

∫
BR(o)

dν(y)
[
1− ϕ(·, y)

]
f(y)

∫∞
0

t−3/2 e−τt (1 + 2τt)ht(·, y) dt.

The inner integral is dominated by

C

∫1

0

t−(n+3)/2 e−cd
2/t dt+ C

∫∞
1

t−1 e−(τt+cd2/t) dt.

We need to estimate these integrals in the case where d is large (because of the cutoff

1− ϕ). The first is bounded above by

C e−cd
2/2

∫1

0

t−(n+3)/2 e−cd
2/(2t) dt = C

e−cd
2/2

dn+1

∫∞
d2

u(n−1)/2 e−cu/2 du ≤ C e−cd
2/2

dn+1
,

and the second by C e−2d
√
τc (see the proof of Lemma 7.5 (i)), which is integrable at

infinity because τ > β2/c. These estimates imply that
∥∥A3f

∥∥
1
≤ C

∥∥f∥∥
1

. A similar

conclusion applies also to A1f and A2f . Thus,
∥∥L J∞

τ f
∥∥

1
≤ C

∥∥f∥∥
1

, as required to

conclude the proof of the second inequality in (7.4). �
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Denote by kRτ
the distributional kernel of Rτ , and write kRτ

as the sum of ϕkRτ

and (1 − ϕ) kRτ , where ϕ is the smooth function on N × N given by Lemma 2.6 (with

R = 1). Denote by R0
τ and by R∞τ the operators associated to the kernels ϕkRτ and

(1− ϕ) kRτ
, respectively. Obviously,

(7.5) Rτ = R0
τ + R∞τ .

Observe that

kR0
τ
(x, y) =

ϕ(x, y)√
π

∫∞
0

t−1/2 e−τt∇xhNt (x, y) dt .

It is convenient to further decompose the operator R0
τ as the sum of the operators R0,0

τ

and R0,∞
τ , which are associated to the kernels kR0,0

τ
and kR0,∞

τ
, defined by

kR0,0
τ

(x, y) =
ϕ(x, y)√

π

∫1

0

t−1/2 e−τt∇xhNt (x, y) dt

and

kR0,∞
τ

(x, y) =
ϕ(x, y)√

π

∫∞
1

t−1/2 e−τt∇xhNt (x, y) dt.

Notice that kR0,0
τ

(x, y) = ∇xkJ 0,0
τ

(x, y)−kV (x, y), where kV :=
∇xϕ√
π

∫1

0

t−1/2 e−τthNt dt.

Lemma 7.7. For each ε > 0 there exists a constant C such that for every p in N and

every function f ∈ L1(N) with support contained in a ball with centre p and radius ≤ 1

the following hold:

(i)
∣∣∣Mσ(D)J 0,0

τ f(x)
∣∣∣ ≤ C e(ε−λ1)d(x,p)

∥∥f∥∥
1

;

(ii)
∣∣∣LMσ(D)J 0,0

τ f(x)
∣∣∣ ≤ C e(ε−λ1)d(x,p)

∥∥f∥∥
1

.

Consequently, Mσ(D)J 0,0
τ f and LMσ(D)J 0,0

τ f are in h1(N) and their norms in h1(N)

are controlled by C
∥∥f∥∥

1
.

Proof. By Proposition 2.2 (ii), Mσ(D) and LMσ(D) are bounded from L1(N) to L∞(N).

Moreover, clearly J 0,0
τ is bounded in L1(N). Therefore,

(7.6)
∥∥Mσ(D)J 0,0

τ f
∥∥
∞ ≤ C

∥∥J 0,0
τ f

∥∥
1
≤ C

∥∥f∥∥
1

and a similar estimate holds for LMσ(D)J 0,0
τ f . Furthermore, since J 0,0

τ f is supported

in B2(p) for some p ∈ N , Lemma 3.3 (iii) gives that

(7.7)

∣∣Mσ(D)J 0,0
τ f(x)

∣∣ ≤ C e(ε−λ1)d(x,p)
∥∥J 0,0

τ f
∥∥

1

≤ C e(ε−λ1)d(x,p)
∥∥f∥∥

1
∀x ∈ B4(p)c.

Now (i) follows by combining (7.6) and (7.7).

The assertion in (ii) follows in a similar way. The last statement of the lemma is a

direct consequence of (i), (ii) and Proposition 7.4. �
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Theorem 7.8. There exists a constant C such that∥∥f∥∥
h1(N)

≤ C
[ ∥∥|R0,0

τ f |
∥∥

1
+
∥∥f∥∥

1

]
.

for every function f with support contained in a ball of radius ≤ 1 for which the right

hand side is finite.

Proof. Let o be the centre of the ball of radius R ≤ 1 which contains the support

of f . Then the support of J 0,0
τ f is contained in a ball of radius R + 1 ≤ 2. Define

H := P0(J 0,0
τ f). By Theorem 3.4, there exists a constant C such that∥∥|∇∇H|∥∥

B1 ≤ CN
(
J 0,0
τ f

)
.

Furthermore, by Lemma 3.3 (iii), for every ε > 0 there exists a constant C such that

sup
t∈(0,2σ)

|∇∇H(x, t)| ≤ C e(ε−λ1)d(x,o)
∥∥J 0,0

τ f
∥∥

1
≤ C e(ε−λ1)d(x,o)

∥∥f∥∥
1

for every x in B4(o)c. Hence |∇∇H| satisfies the assumptions of Theorem 6.3 (ii), whence

there exists a constant such that
∥∥|∇∇H|∗∥∥

1
≤ C

∥∥|∇∇H|∥∥
B1 . By combining the esti-

mates above we see that ∥∥|∇∇H|∗∥∥
1
≤ CN (J 0,0

τ f),

provided that the right hand side is finite (as we shall prove below). The required norm

estimate will follow from the following two facts:

(a) there exists a constant C such that N (J 0,0
τ f) ≤ C

[ ∥∥|R0,0
τ f |

∥∥
1

+
∥∥f∥∥

1

]
;

(b) there exists a constant C such that
∥∥f∥∥

h1(N)
≤ C

[ ∥∥|∇∇H|∗∥∥
1

+
∥∥f∥∥

1

]
.

First we prove (a). Recall that N (J 0,0
τ f) :=

∥∥J 0,0
τ f

∥∥
1

+
∥∥|∇J 0,0

τ f |
∥∥

1
+
∥∥DJ 0,0

τ f
∥∥

1
.

Clearly
∥∥J 0,0

τ f
∥∥

1
≤ C

∥∥f∥∥
1

. Notice that

∇(J 0,0
τ f) = R0,0

τ f + V (J 0,0
τ f),

where V is the operator with kernel kV :=
∇xϕ√
π

∫1

0

t−1/2 e−τthNt dt. It is straightforward

to check that there exists a constant C such that∥∥|V (J 0,0
τ f)|

∥∥
1
≤ C

∥∥J 0,0
τ f

∥∥
1
≤ C

∥∥f∥∥
1
.

We leave the verification of this fact to the interested reader. Therefore∥∥|∇(J 0,0
τ f)|

∥∥
1
≤ C

[ ∥∥|R0,0
τ f |

∥∥
1

+
∥∥f∥∥

1

]
.

The proof of (a) will be complete, once the following claim will be proved. There exists

a constant C such that

(7.8)
∥∥DJ 0,0

τ f
∥∥

1
≤ C

∥∥f∥∥
1
.

Write

(7.9) DJ 0,0
τ f =

[
D −Dτ

]
J 0,0
τ f + DτJ

0,0
τ f.
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The operator D − Dτ corresponds to the spectral multiplier
√
λ −
√
τ + λ of L . The

latter function is in E (Sϕ) for every ϕ in (0, π). Indeed,

√
λ−
√
τ + λ = − τ√

λ+
√
τ + λ

= τ
[ 1√

τ + λ
− 1√

λ+
√
τ + λ

]
− τ√

τ + λ
.

It is straightforward to check that the function within square brackets is in H∞0 (Sϕ) and

(τ+λ)−1/2 is in E (Sϕ) by [35, Lemma 2.2.3]. The operator L is sectorial of angle π/2 on

h1(N) [44, Theorem 3.1]. Therefore the natural functional calculus [35, Theorem 2.3.3]

implies that D −Dτ is bounded on h1(N). It is straightforward to check that J 0,0
τ f is a

function in Lp(N) for each p ∈ [1, n/(n− 1)), and that its support is contained in B2(o).

Furthermore, ∥∥J 0,0
τ f

∥∥
h1(N)

≤ C ν
(
B2(o)

)1/p′ ∥∥f∥∥
1
.

Thus, ∥∥[D −Dτ ]J 0,0
τ f

∥∥
h1(N)

≤ C
∥∥J 0,0

τ f
∥∥
h1(N)

≤ C
∥∥f∥∥

1
.

In particular, DJ 0,0
τ f − DτJ 0,0

τ f is in L1(N). By (7.9), DJ 0,0
τ f is in L1(N) if and

only if DτJ 0,0
τ f is. Recall that J 0,0

τ f + J 0,∞
τ f + J∞

τ f = D−1
τ f . Thus,

(7.10) DτJ
0,0
τ f = DτD

−1
τ f −DτJ

0,∞
τ f −DτJ

∞
τ f.

By Lemma 7.6, the second and the third summands on the right hand side are in h1(N),

hence in L1(N). Furthermore, f belongs to L1(N) by assumption, whence so does

DτJ 0,0
τ f , equivalently so does DJ 0,0

τ f . Thus, the L1 norm of each of the summands

is dominated by C
∥∥f∥∥

1
. This implies the claim (7.8), and concludes the proof of (a).

Next we prove (b). Notice that

(7.11) ∂tH = −PN
t (DJ 0,0

τ f) +
1

2

[
PN
σ−t + PN

σ+t

]
DMσ(D)(J 0,0

τ f).

We claim that there exists a constant C, independent of f , such that

(7.12)
∥∥DMσ(D)(J 0,0

τ f)
∥∥
h1(N)

≤ C
∥∥f∥∥

1
.

Given the claim, Theorem 7.3 implies that∥∥∥ sup
s∈(0,2σ)

∣∣PN
s DMσ(D)(J 0,0

τ f)
∣∣∥∥∥

1
≤ C

∥∥DMσ(D)(J 0,0
τ f)

∥∥
h1(N)

≤ C
∥∥f∥∥

1
.

This and (7.11) imply that∥∥∥ sup
t∈(0,σ)

∣∣PN
t (DJ 0,0

τ f)
∣∣∥∥∥

1
≤ C

[ ∥∥|∂tH|∗∥∥1
+
∥∥f∥∥

1

]
.

A further application of Theorem 7.3 and the trivial inequality
∥∥|∂tH|∗∥∥1

≤
∥∥|∇∇H|∗∥∥

1

yield ∥∥DJ 0,0
τ f

∥∥
h1(N)

≤ C
∥∥PN
∗ DJ 0,0

τ f
∥∥

1
≤ C

[ ∥∥|∇∇H|∗∥∥
1

+
∥∥f∥∥

1

]
.

as required.
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Thus it remains to prove (7.12). In the proof of fact (a) above we have shown that

D −Dτ is bounded on h1(N). Then Lemma 7.7 implies that∥∥(D −Dτ )Mσ(D)(J 0,0
τ f)

∥∥
h1(N)

≤ C
∥∥f∥∥

1
.

Thus, in order to prove the claim it suffices to prove that
∥∥DτMσ(D)(J 0,0

τ f)
∥∥
h1(N)

≤
C
∥∥f∥∥

1
. Write

DτMσ(D)(J 0,0
τ f) = D−1

τ [(L + τ)Mσ(D)(J 0,0
τ f)].

By Lemma 7.7 (i)-(ii), for each ε > 0 there exists a constant C such that∣∣∣(L + τ)Mσ(D)J 0,0
τ f(x)

∣∣∣ ≤ C e(ε−λ1)d(x,o)
∥∥f∥∥

1
∀x ∈ N.

We use the estimate for the kernel of D−1
τ contained in Lemma 7.5, and obtain that∣∣Dτ [Mσ(D)(J 0,0

τ f)](x)
∣∣ ≤ C ∥∥f∥∥

1

[ ∫
B1(x)

d(x, y)1−ne(ε−λ1)d(y,o) dν(y)

+

∫
B1(x)c

e−2d(x,y)
√
τc+(ε−λ1)d(y,o) dν(y)

]
By the triangle inequality, the sum of the last two integrals is dominated by

e(ε−λ1)d(x,o)
[ ∫

B1(x)

d(x, y)1−ne(λ1−ε)d(y,x) dν(y) +

∫
B1(x)c

e(λ1−ε−2
√
τc)d(x,y) dν(y)

]
By integrating in polar coordinates centred at x, it is straightforward to see that the

integral above are convergent, provided that τ > λ2
1/(4c) and ε is small enough. Thus,

we may conclude that∣∣Dτ [Mσ(D)(J 0,0
τ f)](x)

∣∣ ≤ C e(ε−λ1)d(x,o)
∥∥f∥∥

1
∀x ∈ N.

Then Proposition 7.4 yields
∥∥DτMσ(D)(J 0,0

τ f)
∥∥
h1(N)

≤ C
∥∥f∥∥

1
. This concludes the

proof of (7.12) and of the theorem. �

Recall that the local Riesz–Hardy space h1
Rτ

(N) is defined in (1.1). The main result

of the paper is the following.

Theorem 7.9. Suppose that N is an n-dimensional complete, connected noncompact

Riemannian manifold with Ricci curvature bounded from below and positive injectivity

radius. Assume that τ is a large positive number. Then h1
Rτ

(N) = h1(N) and their

norms are equivalent.

In particular, the conclusion of Theorem 7.9 holds provided that τ > λ2
1/4c (this implies

that τ > β2/c, where β and c are as in (2.2) and (2.3)), and is so large that Proposition

7.12 holds.

Remark 7.10. We observe that the claim of Theorem 7.9 is invariant under rescaling

of the Riemannian metric by a constant conformal factor, since the spaces h1
Rτ

(N) and

h1(N) are invariant, and their norms rescale by the same factor. Accordingly, instead of
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choosing σ small enough depending on β (see (3.2)), one could have fixed σ and rescaled

the Riemannian metric of N in order to make β small enough.

The proof of Theorem 7.9 occupies the rest of this section. First we analyse the kernel

of R0,0
τ .

Lemma 7.11. Under the same assumption as in Theorem 7.9, there exists a constant

C such that ∣∣kR0,0
τ

(x, y)
∣∣ ≤ C ϕ(x, y) d(x, y)−n

off the diagonal.

Proof. The proof is a straightforward consequence of the definition of R0,0
τ and the

pointwise estimate [18, Theorem 6, Case II] for the gradient of the heat kernel on N . We

leave the details to the interested reader. �

Denote by {ψj} a locally uniformly finite partition of unity on N such that the following

holds: the support of ψj is contained in the ball Bj with radius 1, 0 ≤ ψj ≤ 1, ψj = 1

on (1/4)Bj , and there exists a constant C, independent of j, such that

(7.13)
∣∣ψj(x)− ψj(y)

∣∣ ≤ C d(x, y) ∀x, y ∈ N.

For the construction of such a partition of unity see, for instance, [37, Lemma 1.1 and

pp. 59–60]. We recall the following norm estimate for the local Riesz transform on N ,

due to E. Russ [53, proof of Theorem 14]; see also [51, Theorem 8].

Proposition 7.12. For every τ > 0 large enough there exists a constant C such that∥∥|Rτf |
∥∥

1
≤ C

∥∥f∥∥
h1(N)

for every f in h1(N).

Lemma 7.13. Under the same assumption as in Theorem 7.9, the following hold:

(i) the operator R∞τ is bounded on L1(N);

(ii) the operator R0,∞
τ is bounded on L1(N).

(iii) if f is in h1
Rτ

(N), then
∣∣R0,0

τ f
∣∣ is in L1(N);

(iv) for each p such that 1 ≤ p < n/(n− 1) there exists a constant C, independent of

j, such that if f is in h1
Rτ

(N), then∥∥|R0,0
τ (ψjf)− ψj R0,0

τ f |
∥∥
p
≤ C

∥∥f∥∥
L1(2Bj)

;

(v) there exists a constant C, independent of j, such that∥∥|R0,0
τ (ψjf)|

∥∥
L1(2Bj)

≤ C
[ ∥∥f∥∥

L1(2Bj)
+
∥∥|R0,0

τ f |
∥∥
L1(2Bj)

]
.

Proof. First we prove (i). By [53, Theorem 14], sup
y∈N

∫
N

∣∣kR∞τ (x, y)
∣∣ dν(x) < ∞. Conse-

quently the operator R∞τ is bounded on L1(N), as required.
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To prove (ii) observe that, at least formally,

R0,∞
τ f(x) =

1√
π

∫∞
1

dt

t1/2
e−τt

∫
N

ϕ(x, y)∇xhNt (x, y) f(y) dν(y).

Therefore∥∥|R0,∞
τ f |

∥∥
1
≤ 1√

π

∫∞
1

dt

t1/2
e−τt

∫
N

dν(y)
∣∣f(y)

∣∣ ∫
N

ϕ(x, y)
∣∣∇xhNt (x, y)

∣∣ dν(x)

≤ 1√
π

∫∞
1

dt

t1/2
e−τt

∫
N

dν(y)
∣∣f(y)

∣∣ ∫
B1(y)

∣∣∇xhNt (x, y)
∣∣dν(x)

≤ C
∫∞
1

dt

t1/2
e−τt

∫
N

∣∣f(y)
∣∣ ∥∥|∇xhNt (·, y)|

∥∥
2

dν(y),

where the last inequality follows from Schwarz’s inequality and the uniform ball size

condition of N . Observe that∥∥|∇xhNt (·, y)|
∥∥2

2
=
(
∇xhNt (·, y),∇xhNt (·, y)

)
=
(
Lxh

N
t (·, y), hNt (·, y)

)
≤
∥∥Lxh

N
t (·, y)

∥∥
2

∥∥hNt (·, y)
∥∥

2
.

Now, the ultracontractivity of the heat semigroup and [47, Proposition 2.2] imply that

the supremum with respect to y in N of the right hand side is dominated by a constant

multiple of t−3/2. Therefore we may conclude that∥∥|R0,∞
τ f |

∥∥
1
≤ C

∫∞
1

dt

t5/4
e−τt

∫
N

∣∣f(y)
∣∣dν(y) ≤ C

∥∥f∥∥
1
,

i.e., the operator R0,∞
τ is bounded on L1(N), as required.

Next we prove (iii). The assumption that f is in h1
Rτ

(N) together with the decompo-

sition (7.5) and (i) above yields that
∣∣R0

τf
∣∣ in L1(N). Since R0,0

τ f = R0
τf −R0,∞

τ f and

both
∣∣R0

τf
∣∣ and

∣∣R0,∞
τ f

∣∣ are in L1(N) (by (i) and (ii)), the same is true of
∣∣R0,0

τ f
∣∣, as

required.

To prove (iv) observe that, at least formally,

R0,0
τ (ψjf)(x)− ψj(x) R0,0

τ (f)(x) =

∫
N

kR0,0
τ

(x, y)
[
ψj(y)− ψj(x)

]
f(y) dν(y).

If x is not in 2Bj , then ψj(x) vanishes, and so does kR0,0
τ

(x, y) as long as y belongs to

Bj . Hence R0,0
τ (ψjf)− ψj R0,0

τ f vanishes at x. In particular∥∥R0,0
τ (ψjf)− ψj R0,0

τ f
∥∥
p

=
∥∥R0,0

τ (ψjf)− ψj R0,0
τ f

∥∥
Lp(2Bj)

If, instead, x is in 2Bj , then we use the estimates for kR0,0
τ

in Lemma 7.11, the uniform

Lipschitz property of ψj , and conclude that there exists a constant C, independent of j,

such that ∣∣R0,0
τ (ψjf)(x)− ψj(x) R0,0

τ f(x)
∣∣ ≤ C ∫

2Bj

ϕ(x, y)

d(x, y)n−1

∣∣f(y)
∣∣dν(y).
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It is not hard to check that if 1/p > 1 − 1/n, then the integral operator with kernel

12Bj (x)
ϕ(x, y)

d(x, y)n−1
12Bj (y) is bounded from L1(2Bj) to Lp(2Bj) uniformly in j. There-

fore there exists a constant C such that∥∥R0,0
τ (ψjf)− ψj R0,0

τ f
∥∥
Lp(2Bj)

≤ C
∥∥f∥∥

L1(2Bj)
,

as required to conclude the proof of (iv).

Now we prove (v). Clearly R0,0
τ (ψjf) = R0,0

τ (ψjf) − ψjR0,0
τ f + ψjR0,0

τ f. By (iv),

the function R0,0
τ (ψjf)− ψjR0,0

τ (f) is in Lp(2Bj) with norm ≤ C
∥∥f∥∥

L1(2Bj)
. Hölder’s

inequality, together with local Ahlfors regularity, imply that∥∥R0,0
τ (ψjf)− ψjR0,0

τ f
∥∥
L1(2Bj)

≤ C
∥∥f∥∥

L1(2Bj)
.

Therefore∥∥R0,0
τ (ψjf)

∥∥
L1(2Bj)

≤ C
[ ∥∥R0,0

τ (ψjf)− ψjR0,0
τ f

∥∥
L1(2Bj)

+
∥∥R0,0

τ (f)
∥∥
L1(2Bj)

]
≤ C

[ ∥∥f∥∥
L1(2Bj)

+
∥∥R0,0

τ (f)
∥∥
L1(2Bj)

]
,

as required to conclude the proof of (v), and of the lemma. �

Proof of Theorem 7.9. The containment h1(N) ⊆ h1
Rτ

(N) is a direct consequence of

Proposition 7.12.

It remains to prove that h1
Rτ

(N) ⊆ h1(N). Suppose that f is in h1
Rτ

(N). By

Lemma 7.13 (iii),
∣∣R0,0

τ f
∣∣ is in L1(N). Then, by Lemma 7.13 (v),∥∥|R0,0

τ (ψjf)|
∥∥
L1(2Bj)

≤ C
[ ∥∥f∥∥

L1(2Bj)
+
∥∥|R0,0

τ f |
∥∥
L1(2Bj)

]
.

By Theorem 7.8, there exists a constant C, independent of j, such that∥∥ψjf∥∥h1(N)
≤ C

∥∥|R0,0
τ (ψjf)|

∥∥
1

+ C
∥∥ψjf∥∥1

.

Then, using also Lemma 7.13 (i), (ii) and (iv),∥∥f∥∥
h1(N)

≤
∑
j

∥∥ψjf∥∥h1(N)

≤ C
∑
j

∥∥|R0,0
τ (ψjf)|

∥∥
1

+ C
∑
j

∥∥ψjf∥∥1

≤ C
∑
j

∥∥ψj |R0,0
τ f |

∥∥
1

+ C
∑
j

[ ∥∥|R0,0
τ (ψjf)− ψjR0,0

τ f |
∥∥

1
+
∥∥ψjf∥∥1

]
≤ C

∥∥|R0,0
τ f |

∥∥
1

+ C
∥∥f∥∥

1

≤ C
[ ∥∥|Rτf |

∥∥
1

+
∥∥|R0,∞

τ f |
∥∥

1
+
∥∥|R∞τ f |∥∥1

+
∥∥f∥∥

1

]
≤ C

[
‖|Rτf |‖1 + ‖f‖1

]
,

as required. �
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[19] M. Dindoš, Hardy Spaces and Potential Theory on C1 Domains in Riemannian Manifolds,

Mem. Amer. Math. Soc. 191 (2008), no. 894, vi+78 pp.



50 S. MEDA AND G. VERONELLI

[20] N. Dunford and J.T. Schwartz, Linear Operators. Part I. General Theory, Wiley Classic

Library Edition, 1988.
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