The aim of this paper is to prove the sharp estimate on the first nontrivial eigenvalue of the p-Laplacian on a compact Riemannian manifold with nonnegative Ricci curvature and to characterize the equality case. The estimate applies to manifolds with empty or convex boundary, and in this latter case we also assume Neumann boundary conditions for the p-Laplacian. The main tool used for the proof is a gradient comparison based on a generalized p-Bochner formula.
Valtorta, D. (2012). Sharp estimate on the first eigenvalue of the p-Laplacian. NONLINEAR ANALYSIS, 75(13), 4974-4994 [10.1016/j.na.2012.04.012].
Sharp estimate on the first eigenvalue of the p-Laplacian
Valtorta, D
2012
Abstract
The aim of this paper is to prove the sharp estimate on the first nontrivial eigenvalue of the p-Laplacian on a compact Riemannian manifold with nonnegative Ricci curvature and to characterize the equality case. The estimate applies to manifolds with empty or convex boundary, and in this latter case we also assume Neumann boundary conditions for the p-Laplacian. The main tool used for the proof is a gradient comparison based on a generalized p-Bochner formula.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Valtorta-2012-Nonlinear Anal-preprint.pdf
accesso aperto
Descrizione: Article
Tipologia di allegato:
Submitted Version (Pre-print)
Dimensione
254.43 kB
Formato
Adobe PDF
|
254.43 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.