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COMPACT MANIFOLD WITH NONNEGATIVE RICCI CURVATURE

DANIELE VALTORTA

Abstract. We prove the sharp estimate on the first nonzero eigenvalue of the p-Laplacian on a compact
Riemannian manifold with nonnegative Ricci curvature and possibly with convex boundary (in this case
we assume Neumann b.c. on the p-Laplacian). The proof is based on a gradient comparison theorem.
We will also characterize the equality case in the estimate.
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1. Introduction

Let M be a compact Riemannian manifold with nonnegative Ricci curvature and possibly with
convex boundary, and let d be its diameter. For a function u ∈ W1,p(M), we define its p-Laplacian as

∆p(u) ≡ div(|∇u|p−2
∇u) ,(1.1)
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where the equality is in the weak W1,p(M) sense. We will denote the first positive eigenvalue of this
operator as λp, assuming Neumann boundary conditions on the boundary if necessary. In particular,
λp is the smallest positive real number such that there exists a nonzero u ∈ W1,p(M) satisfying in the
weak sense ∆p(u) = −λp |u|p−2 u on M

〈∇u|n̂〉 = 0 on ∂M .
(1.2)

In this article, we will prove the following sharp estimate:

λp

p − 1
≥
π

p
p

dp ,(1.3)

where

πp =

∫ 1

−1

ds
(1 − |s|p)1/p =

2π
p sin(π/p)

.

Moreover, we will also prove that equality in this estimate can occur if and only if M is a one dimen-
sional circle or a segment.

In the case where p = 2, this problem has been intensively studied, in particular in [ZY84] the
sharp estimate

λ2 ≥
π2

d2

is obtained assuming that M has nonnegative Ricci curvature.
The main tool used in this article is a gradient estimate for the function u, technique which was

used by P. Li and S. T. Yau to get eigenvalue estimates for the usual Laplacian (see [LY80] and also
[SY94]). They were able to prove that:

Lemma 1.1. On a compact manifold M with nonnegative Ricci curvature, if a function u is such that
∆u = −λ2u and |u| ≤ 1, the following estimate is valid where u , ±1

|∇u|2

1 − u2 ≤ λ2 .

Note that where u = ±1, ∇u = 0.

Sketch of the proof. The proof is based on a very common argument: consider the function F ≡ |∇u|2

1+ε−u2

on the manifold M. Necessarily F attains a maximum, and at this point ∇F = 0 and ∆F ≤ 0. From
these two relations, one proves that F ≤ λ2. �

With this gradient estimate Li and Yau proved that

λ2 ≥
π2

4d2 .

For the reader’s convenience, we briefly sketch the proof of this estimate. Rescale the eigenfunction u
in such a way that m = min{u} = −1 and 0 < M = max{u} ≤ 1 and consider a unit speed minimizing
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geodesic γ joining a minimum point x− and a maximum point x+ for u, then a simple change of
variables yields:

π

2
=

∫ 0

−1

du
√

1 − u2
<

∫ M

m

du
√

1 − u2
≤

∫
γ

|∇u|
√

1 − u2
dt

∫
γ

|∇u|
√

1 − u2
dt ≤

√
λ2d

Note that the strict inequality in this chain forces this estimate to be non-sharp, inequality which
arises from the fact that max{u} = M > 0. If in addition we suppose that M = 1, we can improve this
estimate and get directly the sharp one. This suggests that it is important to consider the behaviour
of the maximum of the eigenfunction to improve this partial result. In fact Li and Yau were able to
sharpen their estimate by using the function F ≡ |∇u|2

(u−m)(M−u) for their gradient estimate, which led them

to prove that λ2 ≥
π2

2d2 .
J. Zhong and H. Yang obtained the sharp estimate using a barrier argument to improve further the

gradient estimate (see [ZY84] and also [SY94]).
Later on M. Chen and F. Wang in [CW97] and [CW94] and independently P. Kroger in [Krö92]

(see also [Krö97] for explicit bounds) with different techniques were able to estimate the first eigen-
value of the Laplacian by using a one dimensional model. Note that their work also applies to generic
lower bounds for the Ricci curvature. The main tool in [CW94] is a variational formula, while [Krö92]
uses a gradient comparison technique. This second technique was also adapted by D. Bakry and Z.
Qian in [BQ00] to obtain eigenvalue estimates for weighted Laplace operators with assumptions on
the Bakry-Emery Ricci curvature. In this article we will follow this latter technique based on the
gradient comparison. Roughly speaking, the basic idea is to find the right function w : R → R such
that |∇u| ≤ |ẇ| |w−1(u) on M. In order to find what conditions w must satisfy and to prove the gradient
comparison, Bakry and Qian use, among other instruments, some estimates related to the Bochner
formula. For the sake of extending this estimates in our setting, we will prove a generalized version
valid for any p ∈ (1,∞) of this well-known formula.

In the generic p case, some estimates on the first eigenvalue of the p-Laplacian are known, in
particular see [Zha07] and [KN03]; [Tak98] presents different kind of estimates, and for a general
review on the problem with a variational twist see [Lê06]. In [Zha07] and [KN03] the general idea
of the estimate is the same as in the linear case, in fact the authors get a gradient estimate via the
maximum principle, but instead of using the usual Laplacian in ∆F ≤ 0 at the maximum point, they
use the linearized p-Laplacian, which will be introduced later in this work.

By estimating the function F = |∇u|2

1−u2 , [KN03] is able to prove that on a compact Riemannian
manifold with Ric ≥ 0 and for p ≥ 2

λp ≥
1

p − 1

(
π

4d

)p
,

while [Zha07] uses F = |∇u|p

1−up and assumes that the Ricci curvature is quasi-positive (i.e. Ric ≥ 0 on
M but with at least one point where Ric > 0), to prove that for p > 1

λp ≥ (p − 1)
(πp

2d

)p
.
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The estimate proved in this article is better than both these estimates and it is sharp. In fact, as we
will see, on any one dimensional circle or segment the first nontrivial eigenvalue of the p-Laplacian
is exactly λp

p−1 =
(
πp

d

)p
.

As for the applications of this result, recall that the first eigenvalue of the p-Laplacian is related to
the Poincaré constant, which is by definition

Cp = inf


∫

M
|∇u|p d Vol∫

M
|u|p d Vol

with u ∈ M s.t.
∫

M
|u|p−2 u d Vol = 0

 .

In particular by standard variational techniques one shows that Cp = λp, so a sharp estimate on the
first eigenvalue is of course a sharp estimate on the Poincaré constant. Recall also that in the case of a
manifold with boundary this equivalence holds if one assumes Neumann boundary conditions on the
p-Laplacian. Using different techniques and in Euclidean setting, a sharp estimate similar to the one
in this article has been obtained independently in [ENT13].

Other applications (surprisingly also of practical interest) related to the p-Laplacian are discussed
in [Wal98, Pag. 2] and [Día85].

It is worth mentioning that very recent studies have been made on the connection of the first
eigenvalue of the p-Laplacian with the Ricci flow, see [WWZ10].

The article is organized as follows: first we briefly discuss the case n = 1 where the eigenfunction
assumes an explicit form, then we define the linearized p-Laplacian and prove a sort of p-Bochner
formula. Using some technical lemmas needed to study the one dimensional model functions, we
will be able to state and prove the gradient comparison theorem, and as a consequence also the main
theorem on the spectral gap, which is:

Theorem 1.2. Let M be a compact Riemannian manifold with nonnegative Ricci curvature, diameter
d and possibly with convex boundary. Let λp be the first nontrivial (=nonzero) eigenvalue of the p-
Laplacian (with Neumann boundary condition if necessary), i.e.

∆p(u) = −λp |u|p−2 u

for some nonconstant function u. Then the following sharp estimate holds

λp

p − 1
≥
π

p
p

dp .

Moreover a necessary (but not sufficient) condition for equality to hold in this estimate is that

max{u} = −min{u} .

The characterization of the equality case is dealt with in the last section. In [HW07], this charac-
terization is proved in the case where p = 2 to answer a problem raised by T. Sakai in [Sak05].
Unfortunately, this proof relies on the properties of the Hessian of a 2-eigenfunction, which are not
easily generalized for generic p.
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1.1. Positive and negative lower bounds on Ricci. If the manifold M has Ricci curvature bounded
from below by a positive constant, the sharp estimate for λ1,p is obtained in [Mat00], where the author
uses Levy-Gromov isoperimetric inequality to prove a generalized version of Obata’s theorem. For
negative lower bounds on Ricci, the sharp estimate (for generic p ∈ (1,∞)) is proved in the later work
[NV].

1.2. Notation. We will use the following conventions. (M, 〈·|·〉) will indicate a Riemannian manifold
with nonnegative Ricci curvature, diameter d and dimension n. Throughout the article, we fix p > 1
(so we will write λ for λp), and we will define for any w ∈ R

w(p−1) ≡ |w|p−2 w = |w|p−1 sign(w) .

Given a function u : M → R, Hu will denote its Hessian where defined, and we set

Au ≡
Hu (∇u,∇u)
|∇u|2

.

We will use the convention

ui j = ∇ j∇iu

and the Einstein summation convention. We will consider the Hessian as a (2, 0) or (1, 1) tensor, so
for example

Hu(∇u,∇ f ) = ui jui f j .

|Hu| will indicate the Hilbert-Schmidt norm of Hu, so that

|Hu|
2 = ui jui j .

In the following we will (sometimes implicitly) use the regularity theorems valid for solutions of
equation (1.2). In general, the solution belongs to W1,p(M) ∩ C1,α(M) for some α > 0, and elliptic
regularity ensures that u is a smooth function where ∇u , 0 and u , 0. If ∇u(x) , 0 and u(x) = 0, then
u ∈ C3,α(U) if p > 2 and u ∈ C2,α(U) for 1 < p < 2, where U is a suitably small neighborhood of x.
The standard reference for these results is [Tol84], where the problem is studied in local coordinates.

2. One dimensional p-Laplacian

The first nontrivial eigenfunction of the p-Laplacian is very easily found if n = 1. In this case it is
well-known that M is either a circle or a segment, moreover equation (1.2) assumes the form

(p − 1) |u̇|p−2 ü + λu(p−1) = 0 .(2.1)

In order to study this eigenvalue problem, we define the function sinp(x) on
[
−
πp

2 ,
3πp

2

]
byx =

∫ sinp(x)

0
ds

(1−sp)1/p if x ∈
[
−
πp

2 ,
πp

2

]
sinp(πp − x) if x ∈

[
πp

2 ,
3πp

2

]
and extend it on the whole real line as a periodic function of period 2πp. It is easy to check that for
p , 2 this function is smooth around noncritical points, but only C1,α(R) for α = min{p−1, (p−1)−1}.
For a more detailed study of the p-sine, we refer the reader to [DŘ05] and [dPDM99, pag. 388].
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Define the quantity

e(x) =

(
|u̇|p +

λ |u|p

p − 1

) 1
p

.(2.2)

If u is a solution to (2.1), then e is constant on the whole manifold, so by integration we see that all
solutions of (2.1) are of the form A sinp(λ1/px+B) for some real constants A, B. Due to this observation
our one-dimensional eigenvalue problem is easily solved.

In fact, identify the circumference of length 2d with the real interval [0, 2d] with identified end-
points. It is easily seen that the first eigenfunction on this manifold is, up to translations and dilata-
tions, u = sinp(αx), where α =

πp

d . Then by direct calculation we have

λ

p − 1
=

(πp

d

)p
.(2.3)

The case with boundary (i.e. the one-dimensional segment) is completely analogous, so at least in
the n = 1 case the proof of Theorem 1.2 is quite straightforward.

Remark 2.1. Note that in this easy case, the absolute values of the maximum and minimum of the
eigenfunction always coincide and the distance between a maximum and a minimum is always d =

πp

α
.

Note also that if we call cosp(x) ≡ d
dx sinp(x), then the well known identity sin2(x) + cos2(x) = 1

generalizes to
∣∣∣sinp(x)

∣∣∣p +
∣∣∣cosp(x)

∣∣∣p = 1.

3. Linearized p-Laplacian and p-Bochner formula

In this section we introduce the linearized operator of the p-Laplacian and study some of its prop-
erties.

First of all, we calculate the linearization of the p-Laplacian near a function u in a naif way, i.e.,
we define

Pu(η) ≡
d
dt

∣∣∣∣∣
t=0

∆p(u + tη) =

= div
(
(p − 2) |∇u|p−4

〈∇u|∇η〉 ∇u + |∇u|p−2
∇η

)
=

= (p − 2)∆p(u)
〈∇u|∇η〉
|∇u|2

+ (p − 2) |∇u|p−2
〈
∇u

∣∣∣∣∣∣∇〈∇u|∇η〉
|∇u|2

〉
+

+(p − 2) |∇u|p−4 Hu (∇u,∇η) + |∇u|p−2 ∆η =

= |∇u|p−2 ∆η + (p − 2) |∇u|p−4 Hη (∇u,∇u) + (p − 2)∆p(u)
〈∇u|∇η〉
|∇u|2

+

+2(p − 2) |∇u|p−4 Hu

(
∇u,∇η −

∇u
|∇u|

〈
∇u
|∇u|

∣∣∣∣∣∇η〉) .
If u is an eigenfunction of the p-Laplacian, this operator is defined pointwise only where the gradient
of u is non zero (and so u is locally smooth) and it is easily proved that at these points it is strictly
elliptic. For convenience, denote by PII

u the second order part of Pu, which is

Pu
II(η) ≡ |∇u|p−2 ∆η + (p − 2) |∇u|p−4 Hη (∇u,∇u) ,
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or equivalently

Pu
II(η) ≡

[
|∇u|p−2 δ

j
i + (p − 2) |∇u|p−4

∇iu∇ ju
]
∇i∇ jη .(3.1)

Note that Pu(u) = (p − 1)∆p(u) and PII
u (u) = ∆p(u).

The main property enjoyed by the linearized p-Laplacian is the following version of the celebrated
Bochner formula.

Proposition 3.1 (p-Bochner formula). Given x ∈ M, a domain U containing x, and a function
u ∈ C3(U), if ∇u|x , 0 on U we have

1
p

PII
u (|∇u|p) =

|∇u|2(p−2)
{|∇u|2−p [

〈
∇∆pu

∣∣∣∇u
〉
− (p − 2)Au∆pu]+

+ |Hu|
2 + p(p − 2)A2

u + Ric(∇u,∇u)} .

In particular this equality holds if u is an eigenfunction of the p-Laplacian, p ≥ 2 and ∇u|x , 0; or
also if 1 < p < 2 and ∇u|x , 0 and u(x) , 0.

Proof. Just as in the usual Bochner formula, the main ingredients for this formula are the commutation
rule for third derivatives and some computations.

First, compute ∆(|∇u|p), and to make the calculation easier consider a normal coordinate system
centered at the point under consideration. Using the notation introduced in Section 1.2 we have

1
p

∆(|∇u|p) = ∇i
(
|∇u|p−2 u jiu j

)
=

= |∇u|p−2
(

p − 2
|∇u|2

uisusuikuk + ukiiuk + uikuik

)
.

The commutation rule now allows us to interchange the indexes in the third derivatives. In particular
remember that in a normal coordinate system we have

ui j = u ji ui jk − uik j = −Rli jkul(3.2)

ukii = uiki = uiik + Ricik ui .

This shows that

1
p

∆(|∇u|p) =(3.3)

= |∇u|p−2
(

p − 2
|∇u|2

|Hu(∇u)|2 + 〈∇∆u|∇u〉 + Ric(∇u,∇u) + |Hu|
2
)
.

In a similar fashion we have

1
p
∇i∇ j |∇u|p = (p − 2) |∇u|p−4 uisusu jkuk + |∇u|p−2 (uki juk + uikuk

j) ,
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which leads us to

1
p
∇i∇ j(|∇u|p)∇iu∇ ju

|∇u|2
=

= |∇u|p−2
(
(p − 2)A2

u +
∇i∇ j∇ku ∇iu∇ ju∇ku

|∇u|2
+
|Hu(∇u)|2

|∇u|2

)
.

The last computation needed is〈
∇∆pu

∣∣∣∇u
〉

= ∇i

[
|∇u|p−2 (∆u + (p − 2)Au)

]
∇iu =

=
〈
∇(|∇u|p−2)

∣∣∣∇u
〉
|∇u|2−p ∆pu+

+ |∇u|p−2
[
〈∇∆u|∇u〉 + (p − 2)

〈
∇ |∇u|−2

∣∣∣∇u
〉

Hu (∇u,∇u)
]
+

+(p − 2) |∇u|p−4
[
(∇Hu)(∇u,∇u,∇u) + 2 |Hu(∇u)|2

]
= (p − 2)Au∆pu+

|∇u|p−2
{
〈∇∆u|∇u〉 + (p − 2)

[
−2A2

u +
∇i∇ j∇ku∇iu∇ ju∇ku

|∇u|2
+ 2
|H(∇u)|2

|∇u|2

]}
.

Using the definition of PII
u given in (3.1), the p-Bochner formula follows form a simple exercise of

algebra. �

In the proof of the gradient comparison, we will need to estimate PII
u (|∇u|p) from below. If Ric ≥ 0

and ∆pu = −λu(p−1), one could use the very rough estimate |Hu|
2
≥ A2

u to obtain

1
p

PII
u (|∇u|p) ≥

≥ (p − 1)2 |∇u|2p−4 A2
u + λ(p − 2) |∇u|p−2 u(p−1)Au − λ(p − 1) |∇u|p |u|p−2 .

This estimate is used implicitly in proof of [SY94, Li and Yau, Theorem 1 p.110] (where only the
usual Laplacian is studied), and also in [KN03] and [Zha07].
A more refined estimate on |Hu|

2 which works in the linear case is the following

|Hu|
2
≥

(∆u)2

n
+

n
n − 1

(
∆u
n
− Au

)2

.

This estimate is the analogue of the curvature-dimension inequality and plays a key role in [BQ00]
to prove the comparison with the one dimensional model. Note also that this estimate is the only
point where the dimension of the manifold n and the assumption on the Ricci curvature play their
role. A very encouraging observation about the p-Bochner formula we just obtained is that the term
|Hu|

2 + p(p − 2)A2
u seems to be the right one to generalize this last estimate, in fact we can prove

Lemma 3.2. At a point where u is C2 and ∇u , 0 we have

|∇u|2p−4
(
|Hu|

2 + p(p − 2)A2
u

)
≥

≥
(∆pu)2

n
+

n
n − 1

(
∆pu

n
− (p − 1) |∇u|p−2 Au

)2

.
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Proof. The proof consists only in some calculations that for simplicity can be carried out in a normal
coordinate system for which |∇u| |x = u1(x). At x we can write

|∇u|2−p ∆p(u) = ∆u + (p − 2)
Hu (∇u,∇u)
|∇u|2

= (p − 1)u11 +

n∑
j=2

u j j .

By the standard inequality
∑n−1

k=1 a2
k ≥

1
n−1

(∑n−1
k=1 ak

)2
we get

|Hu|
2 + p(p − 2)A2

u = (p − 1)2u2
11 + 2

n∑
j=1

u2
1 j +

n∑
i, j=2

u2
i j ≥

≥ (p − 1)2u2
11 +

1
n − 1

 n∑
i=2

uii

2

.(3.4)

On the other hand it is easily seen that(
|∇u|2−p ∆p(u)

)2

n
+

n
n − 1

 |∇u|2−p ∆p(u)
n

− (p − 1)Au

2

=

=
1
n

(p − 1)u11 +

n∑
i=2

uii

2

+
n

n − 1

−n − 1
n

(p − 1)u11 +
1
n

n∑
i=2

uii

2

=

= (p − 1)2u2
11 +

1
n − 1

 n∑
i=2

uii

2

.

This completes the proof. �

Corollary 3.3. If u is an eigenfunction relative to the eigenvalue λ, and at a point where ∇u , 0 and
u , 0 we can estimate

1
p

PII
u |∇u|p ≥

λ2u2p−2

n − 1
+

2(p − 1)λ
n − 1

u(p−1) |∇u|p−2 Au +
n

n − 1
(p − 1)2 |∇u|2p−4 A2

u+

−λ(p − 1)up−2 |∇u|p + λ(p − 2) |∇u|p−2 Auu(p−1) .

The assumption u , 0 is not necessary if p ≥ 2.

Note that if we substitute n with n ≤ m ∈ R in the conclusion of Lemma 3.2, a simple algebraic
computation shows that the conclusion still holds, in particular we have the following corollary.

Corollary 3.4. Under the hypothesis of Lemma 3.2, if u is defined on a n-dimensional Riemannian
manifold we have for any n ≤ m ∈ R

|∇u|2p−4
(
|Hu|

2 + p(p − 2)A2
u

)
≥

≥
(∆pu)2

m
+

m
m − 1

(
∆pu
m
− (p − 1) |∇u|p−2 Au

)2

.
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Proof. The proof follows directly from the fact that for every x, y ∈ R

x2

n
+

n
n − 1

( x
n
− y

)2
−

(
x2

m
+

m
m − 1

( x
m
− y

)2
)

=

=

(
1

n − 1
−

1
m − 1

)
(x − y)2 ≥ 0 .

�

We close this section with the following computation that will be useful in the proof of the main
theorem

Lemma 3.5. Let x ∈ M and U be a domain containing x. If φ : R → R is a function of class C2 is a
neighborhood of u(x) and ∇u|x , 0, then at x we have

PII
u (φ(u)) = φ̇(u)∆pu + (p − 1)φ̈(u) |∇u|p .

4. Gradient comparison

In this section we prove a gradient comparison theorem that will be the essential tool to prove
our main theorem. Since the proof is almost the same, we prove the theorem on a manifold without
boundary, and then state the version for convex boundary and Neumann boundary conditions pointing
out where the proof is different. To complete the proof, we will need some technical lemmas which,
for the sake of clarity, will be postponed to the next section.

Theorem 4.1 (Gradient comparison theorem). Let M be an n-dimensional compact Riemannian man-
ifold without boundary, u be a eigenfunction of the p-Laplacian belonging to the eigenvalue λ, and
let w be a solution on (0,∞) of the one dimensional ODE d

dt ẇ
(p−1) − Tẇ(p−1) + λw(p−1) = 0

w(a) = −1 ẇ(a) = 0
(4.1)

where T can be either − n−1
x or T = 0, and a ≥ 0. Let b(a) > a be the first point such that ẇ(b) = 0 (so

that ẇ > 0 on (a, b)). If [min(u),max(u)] ⊂ [−1,w(b) = max(w)], then for all x ∈ M

|∇u(x)| ≤ ẇ|w−1(u(x)) .

Remark 4.2. The differential equation (4.1) and its solutions will be studied in the following section,
in particular we will prove existence and continuous dependence on the parameters for any a ≥ 0 and
the oscillatory behaviour of the solutions. Moreover, the solution always belongs to the class C1(0,∞).

For the sake of simplicity, we will use the following notational convention. For finite values of a,
w will be the solution to the ODE (4.1) with T = − n−1

x , while a = ∞ will indicate the solution of the
same ODE with T = 0 and any a as initial condition. Recall that in this latter case all the solutions
are invariant under translations, so the conclusions of the theorem do not change if the starting point
of the solution w is changed.
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Proof. First of all, in order to avoid problems at the boundary of [a, b], we assume that

[min{u},max{u}] ⊂ (−1,w(b)) ,

so that we only have to study our 1d-model on compact subintervals of (a, b). We can obtain this by
multiplying u by a constant ξ < 1. If we let ξ → 1, then the original statement is proved.

Consider the function defined on the manifold M

F ≡ ψ(u)
[
|∇u|p − φ(u)

]
,

where ψ : R→ R is a generic positive C2 functions on M which will be specified later, and φ(u(x)) =

ẇp|u(x). We want to prove that F ≤ 0 on all of M.
Note that we introduced the function ψ in the definition of F since it is not easy to prove that

|∇u|p − φ(u) ≤ 0 directly.
Let xm be a point of maximum for F on M. If ∇u|xm = 0, there is nothing to prove. If also u(xm) , 0,

then u is smooth around xm, but if u(xm) = 0, then u has only C2,α regularity around xm for 1 < p < 2,
and C3,α if p ≥ 2.

In the following, we will assume that u is a C3 function around xm, and we will explain in Remark
4.5 how to modify the proof if this is not the case (in particular, if 1 < p < 2 and u(xm) = 0).

Since Pu is an elliptic operator at xm we have

∇F|xm = 0 PII
u F|xm ≤ 0 .

The first equation above implies

∇
[
|∇u|p − φ(u)

]
= −

Fψ̇
ψ2 ∇u ,(4.2)

|∇u|p−2 Au ≡ |∇u|p−2 Hu (∇u,∇u)
|∇u|2

= −
1
p

(
ψ̇

ψ2 F − φ̇
)
.

In order to study the second inequality, note that

∇i∇ jF = ψ̈[|∇u|p − φ(u)]∇iu∇ ju + ψ̇[|∇u|p − φ(u)]∇i∇ ju+

+ψ̇∇ j[|∇u|p − φ(u)]∇iu + ψ̇∇i[|∇u|p − φ(u)]∇ ju+

+ψ
[
∇i∇ j |∇u|p − ∇i∇ jφ(u)

]
.

Using equation (4.2), we have at xm

∇i∇ jF = ψ̈[|∇u|p − φ(u)]∇iu∇ ju + ψ̇[|∇u|p − φ(u)]∇i∇ ju+

−2
Fψ̇2

ψ2 ∇ ju∇iu + ψ
[
∇i∇ j |∇u|p − ∇i∇ jφ(u)

]
.

By a straightforward calculation[
|∇u|p−2 δi j + (p − 2) |∇u|p−4

∇iu∇ ju
]
∇iu∇ ju = (p − 1) |∇u|p ,
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and applying the definition of PII
u (see equation (3.1)), we get

0 ≥ PII
u (F) = −2(p − 1)F

ψ̇2

ψ2

(
F
ψ

+ φ(u)
)
− F

ψ̇

ψ
λu(p−1)+

+(p − 1)
ψ̈

ψ
F

(
F
ψ

+ φ(u)
)

+ pψ
(

1
p

PII
u |∇u|p

)
− ψPII

u (φ) ,

and using Corollary 3.3 and Lemma 3.5 we obtain the following relation valid at xm

a1F2 + a2F + a3 ≤ 0 ,

where

a3 = pψ
[
λ2u2p−2

n − 1
+

n + 1
n − 1

p − 1
p

λu(p−1)φ̇+(4.3)

+
n(p − 1)2

p2(n − 1)
φ̇2 − λ(p − 1)φ |u|p−2

−
p − 1

p
φφ̈

]
,

a2 = −(p − 1)
ψ̇

ψ
λu(p−1) n + 1

n − 1
− λp(p − 1) |u|p−2 +(4.4)

−
2n(p − 1)2

p(n − 1)
ψ̇

ψ
φ̇ − (p − 1)φ̈ + (p − 1)φ

(
ψ̈

ψ
− 2

ψ̇2

ψ2

)
,

a1 =
p − 1
ψ

[
ψ̈

ψ
+
ψ̇2

ψ2

(
n(p − 1)
p(n − 1)

− 2
)]
.(4.5)

Note that here both ψ and φ are defined as functions of u(x).
Now we want to have two smooth positive functions ψ and φ such that a3 = 0 and a1 and a2 are strictly
positive everywhere, so that

F(a1F + a2) ≤ 0

and necessarily F is nonpositive at its point of maximum, so it is nonpositive on the whole manifold
M.
Coefficient a3. Since a3 is a function of u(x), we can eliminate this dependence and rewrite a3 as
a3 ◦ u−1:

a3(s) = pψ
[
λ2 |s|2p−2

n − 1
+

n + 1
n − 1

p − 1
p

λs(p−1)φ̇+(4.6)

+
n(p − 1)2

p2(n − 1)
φ̇2 − λ(p − 1)φ |s|p−2

−
p − 1

p
φφ̈

]
,

where s ∈ [−ξ, ξmax{u}]. Recall that φ = ẇp|w−1(s), so computing its derivatives it is important not to
forget the derivative of w−1, in particular

φ̇ = p |ẇ|p−2 ẅ .

Remember that for a function of one variable, the p-Laplacian is

∆pw ≡ (p − 1)ẇp−2ẅ
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so that we have

p − 1
p

φ̇ = ∆pw ;
p − 1

p
φ̈ =

d(∆pw)
dt

1
ẇ
.(4.7)

With these substitutions, a3 (or better a3 ◦ w : [w−1(−ξ),w−1(ξmax{u})]→ R) can be written as

a3

pψ
=

n + 1
n − 1

λw(p−1)∆pw − λ(p − 1) |w|p−2 ẇp+

+
λ2 |w|2p−2

n − 1
− ẇp−1 d(∆pw)

dt
+

n
n − 1

(∆pw)2 .

Let T be a solution to the ODE Ṫ = T 2/(n − 1), i.e. either T = 0 or T = − n−1
t (note that from our

point of view, there’s no difference between n−1
t and n−1

c+t , it’s only a matter of shifting the variable t).
A simple calculation shows that we can rewrite the last equation as

a3

pψ
=

1
n − 1

(
∆pw − Tẇ(p−1) + λw(p−1)

) (
n∆pw + Tẇ(p−1) + λw(p−1)

)
+

−ẇ(p−1) d
dx

(
∆pw − Tẇ(p−1) + λw(p−1)

)
.

This shows that if our one dimensional model satisfies the ordinary differential equation

∆pw = Tẇ(p−1) − λw(p−1) ,(4.8)

then a3 = 0. Note that intuitively equation (4.8) is a sort of damped (if T , 0) p-harmonic oscillator.
Remember that we are interested only in the solution on an interval where ẇ > 0.

Coefficients a1 and a2. To complete the proof, we only need to find a strictly positive

ψ ∈ C2[−ξ, ξmax{u}]

such that both a1(u) and a2(u) are positive on all M. The proof is a bit technical, and relies on some
properties of the model function w that will be studied in the following section.

In order to find such a function, we use a technique similar to the one described in [BQ00, pag.
133-134]. First of all, set by definition

X ≡ λ
1

p−1
w(t)
ẇ(t)

ψ(s) ≡ e
∫

h(s) f (t) ≡ −h(w(t))ẇ(t) ,(4.9)

so that

ḟ = −ḣ|wẇ2 − h|wẅ = −ḣ|wẇ2 −
h|wẇ
p − 1

[T − X(p−1)] =

= −ḣ|wẇ2 +
f

p − 1
[T − X(p−1)] .

From equation (4.5), with our new definitions we have that

a1(w(t))ψ(w(t))
p − 1

ẇ|2t = +
f

p − 1

[
T − X(p−1)

]
+ f 2

(
p − n

p(n − 1)

)
− ḟ ≡ η( f ) − ḟ ,(4.10)
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while if we use equations (4.7) and the differential equation (4.8) in equation (4.4), simple algebraic
manipulations give

a2

(p − 1)ẇp−2 = −
pT

p − 1

( n
n − 1

T − X(p−1)
)
+

− f 2 + f
[(

2n
n − 1

+
1

p − 1

)
T −

p
p − 1

X(p−1)
]
− ḟ ≡

≡ β( f ) − ḟ .

The proof of the theorem now follows from Lemma 5.2.
�

Analyzing the case with boundary, the only difference in the proof of the gradient comparison is
that the point xm may lie in the boundary of M, and so it is not immediate to conclude ∇F|xm = 0.
However, once this is proved it is evident that PII

u F|xm ≤ 0 and the rest of proof proceeds as before. In
order to prove that xm is actually a stationary point for F, the (nonstrict) convexity of the boundary is
crucial. In fact we have

Lemma 4.3. Let M be as in Theorem 4.1, but allow M to have a (nonstrictly) convex C2 boundary, and
let ∆p be the p-Laplacian with Neumann boundary conditions. Then, using the notation introduced
above, if ∇u|xm , 0

∇F|xm = 0 .(4.11)

Proof. We can assume that xm ∈ ∂M, otherwise there would be nothing to prove. Let n̂ be the outward
normal derivative of ∂M.

Since xm is a point of maximum for F, we know that all the derivatives of F along the boundary
vanish, and that the normal derivative of F is nonnegative

〈∇F|n̂〉 ≥ 0 .

Neumann boundary conditions on ∆p ensure that 〈∇u|n̂〉 = 0, and by direct calculation we have

〈∇F|n̂〉 =
[
(|∇u|p − φ(u)) ψ̇ − ψφ̇

]
〈∇u|n̂〉+

+pψ(u) |∇u|p−2 Hu(∇u, n̂) = pψ(u) |∇u|p−2 Hu(∇u, n̂) .

Using the definition of second fundamental form II(·, ·), we can conclude

0 ≤ 〈∇F|n̂〉 = pψ(u) |∇u|p−2 Hu(∇u, n̂) = −pψ(u) |∇u|p−2 II(∇u,∇u) ≤ 0 ,

and this proves the claim. �

Corollary 3.4 basically asserts that the fundamental estimate to prove the previous theorem is valid
for any n′ ≥ n, so we can prove that

Remark 4.4. The conclusions of Theorem 4.1 are still valid if we replace n with any real n′ ≥ n.

Note that while n is the dimension of the Riemannian manifold under consideration, n′ does not
represent any Riemannian entity.
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Remark 4.5. Before we end this section, we address the regularity issue in the gradient comparison
theorem.

In the gradient comparison theorem, we assumed for simplicity C3 regularity for u around the point
xm. Since, as we have seen, we can assume without loss of generality that ∇u|xm , 0, C3 regularity is
guaranteed if p ≥ 2 or if 1 < p < 2 and u(xm) , 0.

If we are in the case where u(xm) = 0 and 1 < p < 2, PII
u (F) is not well defined. In particular, there

are two terms diverging in this computation, one is −λψ(u) |u|p−2
|∇u|p coming from ψ(u)PII

u (|∇u|2);
the other is −ψ(u)φ̈(u) |∇u|p, which comes from −ψ(u)PII

u (φ(u)).
However, since ∇u|x , 0 in a neighborhood U of xm, we can still compute PII

u (F) on U \ {u = 0},
which is an open dense set in U.

If we assume that φ(u) = ẇp|w−1(u), with w satisfying (4.8), it is easy to see that these two diverging
terms precisely cancel each other in U \{u = 0}, and all the remaining terms in PII

u (F) are well-defined
and continuous on U. Thus, even in this low-regularity case, the relation PII

u (F)|xm ≤ 0 is still valid,
although the single terms PII

u (|∇u|p) and PII
u (φ(u)) are not well defined separately.

5. One dimensional model

This section contains the technical lemmas needed to study the properties of the solutions of the
ODE ∆pw ≡ (p − 1)ẇp−2ẅ = Tẇ(p−1) − λw(p−1)

w(a) = −1 ẇ(a) = 0
(5.1)

where either T = − n−1
t or T = 0. This second case has already been studied in Section 2, so we will

concentrate on the first one.
To underline that this equation is to be considered on the real interval [0,∞) and not on the manifold
M, we will denote by t its independent variable. Notice that this ODE could be rewritten as

d
dt

(tn−1ẇ(p−1)) + λtn−1w(p−1) = 0 ,

where n ≥ 2 is the dimension of the manifold. Note that we define u(x) = w(r(x)) on Rn, this equation
characterizes the radial eigenfunction of the p-Laplacian. First of all we cite some known results on
the solutions of this equation.

Theorem 5.1. If a ≥ 0, equation (5.1) has always a unique solution which is of regularity C1(0,∞)
with ẇ(p−1) ∈ C1(0,∞), moreover if a = 0 the solution belongs to C0[0,∞). The solution depends
continuously on the parameters in the sense of local uniform convergence of w and ẇ in (0,∞).
Moreover every solution is oscillatory, meaning that there exists a sequence tk → ∞ such that w(tk) =

0.

Proof. Existence, uniqueness and continuity with respect to the initial data and parameters is proved
for example in [Wal98, Theorem 3, pag 179], and its oscillatory behaviour has been proved in the
n > p in [KN97, Theorem 3.2], or in [DŘ05, Theorems 2.2.11 and 2.3.4(i)], while the n ≤ p case
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is treated for example in [WA96, Theorem 2.1] and [DŘ05, Theorem 2.2.10]. Note that all these
reference deal with much more general equations than the one we are interested in. �

In the following we will be interested only in the restriction of the solution w to the interval
[a, b(a)], where b(a) > a is the first point where ẇ(b) = 0. It is easily seen that ẇ ≥ 0 on [a, b(a)],
with strict inequality in the interior of the interval. Set by definition t0 to be the only point in [a, b(a)]
such that w(t0) = 0.

First of all, we state and prove the lemma needed to complete the gradient comparison. Fix a and
the corresponding solution w, and define for simplicity on (a, b)

X(t) ≡ λ
1

p−1
w(t)
ẇ(t)

T (t) = −
n − 1

t
.

By direct calculation
d
dx

X(p−1) = (p − 1)λ
1

p−1 |X|p−2
− T X(p−1) + |X|2(p−1)(5.2)

Ẋ = λ
1

p−1 −
1

p − 1
T X +

1
p − 1

|X|p .(5.3)

Lemma 5.2. Let η(s, t) and β(s, t) be defined by:

η(s, t) =
s

p − 1

[
T − X(p−1)

]
+ s2

(
p − n

p(n − 1)

)
,

β(s, t) = −
pT

p − 1

( n
n − 1

T − X(p−1)
)
− s2+

+s
[(

2n
n − 1

+
1

p − 1

)
T −

p
p − 1

X(p−1)
]
.

For every ε > 0, there exists a function f : [a + ε, b(a) − ε]→ R such that

ḟ < min{η( f (t), t), β( f (t), t)}(5.4)

Proof. We will prove that there exists a function f : (a, b(a))→ R which solves the ODE ḟ = min{η( f (t), t), β( f (t), t)}
f (t0) =

p
p−1T0 ,

(5.5)

where we set T0 = T (t0). Then the lemma follows by considering the solution to ḟη = min{η( fη(t), t), β( fη(t), t)} − η
fη(t0) =

p
p−1T (t0) ≡ p

p−1T0 .
(5.6)

Thanks to standard comparison theorems for ODE, if η > 0 is small enough the solution fη is defined
on [a + ε, b(a) − ε] and satisfies the inequality (5.5).

Consider that by Peano theorem there always exists a solution to (5.4) defined in a neighborhood
of t0. We will show that this solution does not explode to infinity inside (a, b), while we allow the
solution to be infinity at the boundary of the interval. First of all note that for each t ∈ (a, b(a))

lim
s→±∞

min{η(s, t), β(s, t)} = −∞ .(5.7)
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Then the solution f is bounded from above in (t0, b) and bounded from below on (a, t0).
A simple calculation shows that

η( f ) − β( f ) =
p − 1

p
n

n − 1
( f − y1)( f − y2) ,(5.8)

where

y1 ≡
p

p − 1

(
T −

n − 1
n

X(p−1)
)

y2 ≡
p

p − 1
T .

Now we will prove that f > y1 on (t0, b) and f < y1 on (a, t0), and this will complete the proof of
the lemma. First we prove the inequality only in a neighborhood of t0, i.e., we show that that there
exists ε > 0 such that

f (t) > y1(t) for t0 < t < t0 + ε ,(5.9)

f (t) < y1(t) for t0 − ε < t < t0 .

In fact, using the ODE (5.4), at t0 we have

ḟ |t0 =
p

(p − 1)(n − 1)
T 2

0 ,

while, where defined,

ẏ1 =
p

p − 1

[
T 2

n − 1
− λ

1
p−1

(n − 1)(p − 1)
n

|X|p−2 +

+
n − 1

n
T X(p−1) −

n − 1
n
|X|2(p−1)

]
.

If p = 2, ḟ |t0 − ẏ|t0 > 0, and if p < 2

lim
t→t0

ḟ |t − ẏ|t = +∞ .

Thus, if p ≤ 2, it is easy to conclude that (5.9) holds. Unfortunately, if p > 2, y1 ∈ C1((a, b)) but
ḟ |t0 − ẏ|t0 = 0.

However, by equation (5.8), η(y1) = β(y1) = min{η(y1), β(y1)}. In particular

η(y1) −
p

(p − 1)(n − 1)
T 2 = −

p(2p − 1)
(p − 1)2n

T X(p−1)+(5.10)

+
p2(n − 1)

(p − 1)2n2 |X|
2(p−1) = c1X(p−1) + o(X(p−1)) ,

while

ẏ1 −
p

(p − 1)(n − 1)
T 2 = −c2 |X|p−2 + O(X(p−1)) ,

where c2 > 0. If follows that in a neighborhood of t0, y1 solves the differential inequalityẏ1 ≤ min{η(y1), β(y1)}
y1(t0) =

p
p−1T0

and, applying a standard comparison theorem for ODE (see for example [Har02, Theorem 4.1 in
Chapter 3]), we can prove that the inequalities (5.9) hold in a neighborhood of t0.
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To prove that they are valid on all (a, b), suppose by contradiction that there exists some t1 ∈ (a, t0)
such that f (t1) = y1(t1). The same argument works verbatim if t0 < t1 < b.

Define d(t) ≡ f (t) − y1(t). By (5.8), ḟ |t1 = η( f (t1), t1) = η(y1(t1), t1), which implies that

ḋ(t1) =
p(n − 1)

n
λ

1
p−1 |X|p−2

−
p(n(p − 1) + p)

n(p − 1)2 T X(p−1)+

+
(n − 1)p(n(p − 1) + p)

n2(p − 1)2 |X|2p−2 =

= p(n − 1) |X|p−2

λ 1
p−1

n
+

n(p − 1) + p
(p − 1)2n2 X

(
X(p−1) −

n
n − 1

T
) ≡

≡
p(n − 1)

(p − 1)2n2 |X|
p−2 κ(t1) .

where we set:

κ(x) ≡ n(p − 1)2λ
1

p−1 + (n(p − 1) + p)X
(
X(p−1) −

n
n − 1

T
)
.(5.11)

Now we claim that κ(t) is strictly positive for t , t0, so that it is impossible for d to be zero in a
point different from t0.

If a > 0, it is evident that

lim inf
t→a,t0,b

κ(t) > 0 .(5.12)

If a = 0 the same conclusion holds thanks to an approximation argument.
To show that k(t) is positive everywhere, we argue by contradiction. Consider a point z ∈ (t0, b)

where κ(z) = 0 (the same argument works also if z ∈ (a, t0). At z we have

X(p−1) = −
n(p − 1)2λ

1
p−1

(n(p − 1) + p)X
+

n
n − 1

T

and

k̇ = −Ẋ
n(p − 1)2λ

1
p−1

X
+ (n(p − 1) + p)X

(
d
dt

X(p−1) −
nT 2

(n − 1)2

)
.

Using equation (5.2) and some algebraic manipulations, we obtain

κ̇ = −
n(−1 + p)2 p2

(n(−1 + p) + p)X
λ

2
p−1 .(5.13)

This expression has a constant sign on (t0, b), and is never zero. For this reason, z cannot be a
minimum point for k, and so there exists a point z′ ∈ (z, b) such that k(z′) = 0 and k(z) > 0 on (z′, b).
Since k̇(z) and k̇(z′) have the same sign, we have a contradiction.

�

As will be clear later on, in order to obtain a sharp estimate on the first eigenvalue of the p-
Laplacian we need to study the difference δ(a) = b(a) − a and find its minimum as a function of a.
Note that if T = 0, then the solution w is invariant under translations and in particular δ(a) is constant
and equal to πp

α
, so we will restrict our study to the case T , 0. For ease of notation, we extend the

definition of δ setting δ(∞) =
πp

α
.
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In order to study the function δ(a), we introduce the Prüfer transformation (see [DŘ05, section
1.1.3] for a more detailed reference). Roughly speaking, the Prüfer transformation defines new vari-
ables e and ϕ, which are the p-polar coordinates in the phase space of the solution w.

We set

e(t) ≡ (ẇp + αpwp)1/p , ϕ(t) ≡ arctanp

(
αw
ẇ

)
.(5.14)

Recall that α =
(

λ
p−1

)1/p
, so that

αw = e sinp(ϕ) , ẇ = e cosp(ϕ) .

Differentiating, simplifying and using equation (5.1), we get the following differential equations for
ϕ and e

ϕ̇ = α −
T (t)
p − 1

cosp
p−1(ϕ) sinp(ϕ) = α +

n − 1
(p − 1)t

cosp
p−1(ϕ) sinp(ϕ)(5.15)

ė
e

=
T (t)
p − 1

cosp
p(ϕ) = −

n − 1
(p − 1)t

cosp
p(ϕ) .

Rewritten in this form, it is quite straightforward to prove existence, uniqueness and continuous de-
pendence of the solutions of the ODE (5.1) at least in the case a > 0. Moreover, note that the deriv-
ative of ϕ is strictly positive. Indeed, this is obviously true at the points a, b(a) where ẇ = 0 implies
cosp(ϕ) = 0, while at the points where ϕ̇ = 0 we have by substitution that ϕ̈ = α

t , which is always pos-
itive, so it is impossible that ϕ̇ reaches zero. Moreover, a slight modification of this argument shows
that ϕ̇ is in fact bounded from below by α

n . Indeed, consider by contradiction a point where ϕ̇ = α
n − ε,

then

ϕ̈ =
1
t

(
−

n − 1
(p − 1)t

cosp
p−1(ϕ) sinp(ϕ) +

n − 1
p − 1

(1 − p
∣∣∣sinp(ϕ)

∣∣∣p)ϕ̇
)
≥

n
t
ε .

Since ϕ̇(a) = α, it is evident that such a point cannot exist. This lower bound on φ̇ proves directly the
oscillatory behaviour of the solutions of ODE (5.1).

Note that, for every solution, e is decreasing (strictly if T , 0), which means that the absolute
value of local maxima and minima decreases as t increases.

Now we are ready to prove the following lemma

Theorem 5.3. For any n > 1, the difference δ(a), which is a continuous function on [0,+∞), is always
strictly greater than πp/α, i.e. the difference δ(a) in the case T = 0. Moreover, let m(a) ≡ w(b(a)),
then for every a ∈ [0,∞)

lim
a→∞

δ(a) =
πp

α
= δ(∞) , m(a) < 1 , lim

a→∞
m(a) = 1 .

Proof. Continuity follows directly from Theorem 5.1. To prove the estimate, we rephrase the question
in the following way: consider the solution ϕ of the initial value problemϕ̇ = α + n−1

(p−1)t cosp
p−1(ϕ) sinp(ϕ)

ϕ(a) = −
πp

2
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then b(a) is the first value b > a such that ϕ(b) =
πp

2 . Denote t0 ∈ (a, b) the only value where ϕ(t0) = 0,
then it is easily seen that

n − 1
(p − 1)t

cosp
p−1(ϕ) sinp(ϕ) ≤

n − 1
(p − 1)t0

cosp
p−1(ϕ) sinp(ϕ) ,

so that ϕ satisfies

0 < ϕ̇ ≤ α + γ cosp
p−1(ϕ) sinp(ϕ) ,

where γ = n−1
(p−1)t0

. By a standard comparison theorem for ODE, ϕ ≤ ψ on [a, b], where ψ is the solution
of the initial value problem ψ̇ = α + γ cosp

p−1(ψ) sinp(ψ)
ψ(a) = −

πp

2

We can solve explicitly this ODE via separation of variables. Letting c(a) be the first value c > a such
that ψ(c) = πp/2, we have

c(a) − a =

∫ πp
2

−
πp
2

dψ
α + γ cosp

p−1(ψ) sinp(ψ)
.

Applying Jansen’s inequality, and noting that cosp
p−1(ψ) sinp(ψ) is an odd function, we obtain the

estimate

c(a) − a
πp

=
1
πp

∫ πp/2

−πp/2

dψ
α + γ cosp

p−1(ψ) sinp(ψ)
≥(5.16)

≥

[
1
πp

∫ πp/2

−πp/2

(
α + γ cosp

p−1(ψ) sinp(ψ)
)

dψ
]−1

=
1
α
.(5.17)

Note that the inequality is strict if γ , 0, or equivalently if T , 0.
Since ϕ ≤ ψ, it is easily seen that b(a) ≥ c(a), and we can immediately conclude that δ(a) ≥ πp/α

with equality only if a = ∞.
The behaviour of δ(a) as a goes to infinity is easier to study if we perform a translation of the t

axis, and study the equation ϕ̇ = α + n−1
(p−1)(t+a) cosp

p−1(ϕ) sinp(ϕ)
ϕ(0) = −

πp

2

Continuous dependence on the parameters of the equation allows us to conclude that if a goes to
infinity, then ϕ tends to the affine function ϕ0(t) = −

πp

2 + αt in the local C1 topology. This proves the
first claim. As for the statements concerning m(a), note that the inequality m(a) < 1 follows directly
from the fact that ė

e < 0 if T , 0. Moreover we can see that m(a) = w̃(δ(a)), where w̃ is the solution of∆pw̃ = (p − 1) ˜̇wp−2 ˜̈w = − n−1
x+a

˜̇w(p−1) − λw̃(p−1)

w̃(0) = −1 ˜̇w(0) = 0 .
(5.18)

The function w̃ converges locally uniformly to sinp(αt − πp

2 ) as a goes to infinity, and since δ(a) is
bounded from above, it is straightforward to see that lima→∞m(a) = 1. �
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As an immediate consequence of the above theorem, we have the following important

Corollary 5.4. The function δ(a) : [0,∞]→ R+ is continuous and

δ(a) >
πp

α
for a ∈ [0,∞) ,(5.19)

δ(a) =
πp

α
for a = ∞ .(5.20)

Recall that a = ∞ if and only if m(a) = 1, and also δ(a) =
πp

α
if and only if m(a) = 1.

6. Volume estimates

The next comparison theorem will allow us to compare the maxima of eigenfunctions with the
maxima of the model functions, so it is essential for the proof of the main theorem. We begin with
some definitions.

Definition 6.1. Given u eigenfunction and w as before, let t0 ∈ (a, b) be the unique zero of w and let
g ≡ w−1 ◦ u. We define the measure m on [a, b] by

m(A) ≡ Vol(g−1(A)) ,

where Vol is the Riemannian measure on M. Equivalently, for any bounded measurable f : [a, b] →
R, we have ∫ b

a
f (s)dm(s) =

∫
M

f (g(x))d Vol(x) .

Theorem 6.2. Let u and w be as above, and let

E(s) ≡ − exp
(
λ

∫ s

t0

w(p−1)

ẇ(p−1) dt
) ∫ s

a
w(r)(p−1)dm(r)

Then E(s) is increasing on (a, t0] and decreasing on [t0, b).

Before the proof, we note that this theorem can be rewritten in a more convenient way. Consider
in fact that by definition ∫ s

a
w(p−1)(r) dm(r) =

∫
{u≤w(s)}

u(x)(p−1) d Vol(x) .

Moreover, note that the function w satisfies
d
dt

(tn−1ẇ(p−1)) = −λtn−1w(p−1) ,

−λ
w(p−1)

ẇ(p−1) =
d
dt

log(tn−1ẇ(p−1)) ,

and therefore

−λ

∫ s

a
w(p−1)(t)tn−1dt = sn−1ẇ(p−1)(s) ,

exp
(
λ

∫ s

t0

w(p−1)

ẇ(p−1) dt
)

=
tn−1
0 ẇ(p−1)(t0)
sn−1ẇ(p−1)(s)

.
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Thus, the function E(s) can be rewritten as

E(s) = C

∫ s

a
w(p−1)(t) dm(r)∫ s

a
w(p−1)(t) tn−1dt

= C

∫
{u≤w(s)}

u(x)(p−1) d Vol(x)∫ s

a
w(t)(p−1) tn−1dt

,

where λC−1 = tn−1
0 ẇ(p−1)(t0), and the previous theorem can be restated as follows.

Theorem 6.3. Under the hypothesis of the previous theorem, the ratio

E(s) =

∫ s

a
w(p−1)(r) dm(r)∫ s

a
w(p−1)(t) tn−1dt

=

∫
{u≤w(s)}

u(x)(p−1) d Vol(x)∫ s

a
w(t)(p−1)tn−1dt

is increasing on [a, t0] and decreasing on [t0, b].

Proof of Theorem 6.2. Chose any smooth nonnegative function H(s) with compact support in (a, b),
and define G : [−1,w(b)]→ R in such a way that

d
dt

[
G(w(t))(p−1)

]
= H(t) G(−1) = 0 .

It follows that

G(p−1)(w(t)) =

∫ t

a
H(s)ds (p − 1) |G(w(t))|p−2 Ġ(w(t))ẇ(t) = H(t) .

Then choose a function K such that (tK(t))′ = K(t) + tK̇(t) = G(t). By the chain rule we obtain

∆p(uK(u)) = G(p−1)(u)∆p(u) + (p − 1) |G(u)|p−2 Ġ(u) |∇u|p .

Using the weak formulation of the divergence theorem, it is straightforward to verify that∫
M

∆p(uK(u))d Vol = 0

, and so we get

λ

p − 1

∫
M

u(p−1)G(p−1)(u)d Vol(x) =

∫
M
|G(u)|p−2 Ġ(u) |∇u|p d Vol .

Applying the gradient comparison theorem (Theorem 4.1), noting that we consider only λ > 0, we
have

λ

p − 1

∫
M

u(p−1)G(p−1)(u)d Vol(x) ≤
∫

M
|G(u)|p−2 Ġ(u)(ẇ ◦ w−1(u))pd Vol .

By definition of dm, the last inequality can be written as

λ

p − 1

∫ b

a
w(p−1)(s)G(p−1)(w(s))dm(s) ≤

≤

∫ b

a
|G(w(s))|p−2 Ġ(w(s))(ẇ(s))pdm(s) ,
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and recalling the definition of G we deduce that

λ

∫ b

a
w(p−1)(s)

(∫ s

a
H(t)dt

)
dm(s) = λ

∫ b

a

(∫ b

s
w(p−1)(t)dm(t)

)
H(s)ds ≤

≤

∫ b

a
H(s)ẇ(p−1)(s) dm(s) .

Since
∫ b

a
w(p−1)(t)dm(t) = 0, we can rewrite the last inequality as∫ b

a
H(s)

[
−λ

∫ s

a
w(p−1)(t)dm(t)

]
ds ≤

∫ b

a
H(s)ẇ(p−1)(s) dm(s) .

Define the function A(s) ≡ −
∫ s

a
w(p−1)(r)dm(r). Since the last inequality is valid for all smooth non-

negative function H with compact support, then

ẇ(p−1)(s)dm(s) − λA(s)ds ≥ 0

in the sense of distributions, and therefore the left hand side is a positive measure. In other words, the
measure λAds + ẇ(p−1)

w(p−1) dA is nonpositive. Of if we multiply the last inequality by w(p−1)

ẇ(p−1) , and recall that
w ≥ 0 on [t0, b) and w ≤ 0 on (a, t0], we conclude that the measure

λ
w(p−1)

ẇ(p−1) Ads + dA

is nonnegative on (a, t0] and nonpositive on [t0, b), or equivalently the function

E(s) = A(s) exp
(
λ

∫ s

t0

w(p−1)

ẇ(p−1) (r)dr
)

is increasing on (a, t0] and decreasing on [t0, a). �

Before we state the comparison principle for maxima of eigenfunctions, we need the following
lemma. The definitions are consistent with the ones in Theorem 4.1.

Lemma 6.4. For ε sufficiently small, the set u−1[−1,−1 + ε) contains a ball of radius r = rε , which is
determined by

rε = w−1(−1 + ε) − a .

Proof. This is a simple application of the gradient comparison principle (Theorem 4.1). Let x0 be a
minimum point of u, i.e. u(x0) = −1, and let x̄ be another point in the manifold. Let γ : [0, l]→ M be
a unit speed minimizing geodesic from x0 to x̄, and define f (t) ≡ u(γ(t)). It is easy to see that∣∣∣ ḟ (t)

∣∣∣ =
∣∣∣∣〈∇u|γ(t)

∣∣∣γ̇(t)
〉∣∣∣∣ ≤ ∣∣∣∇u|γ(t)

∣∣∣ ≤ ẇ|w−1( f (t)) .(6.1)

Since
d
dt

w−1( f (t)) ≤ 1 ,

we have that a ≤ w−1( f (t)) ≤ a + t, and since ẇ is increasing in a neighborhood of a, we can deduce
that

ẇ|w−1 f (t) ≤ ẇ|a+t .
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By the absolute continuity of u and γ, we can conclude that

| f (t) + 1| ≤
∫ t

0
ẇ|a+sds = (w(a + t) + 1) .

This means that if l = d(x0, x̄) < w−1(−1 + ε) − a, then u(x̄) < −1 + ε. �

And now we are ready to prove the comparison theorem.

Theorem 6.5. If u is an eigenfunction on M such that min{u} = −1 = u(x0) and max{u} ≤ m(0) =

w(b(0)), then for every r > 0 sufficiently small, the volume of the ball centered at x0 and of radius r is
controlled by

Vol(B(x0, r)) ≤ crn .

Proof. Denote by ν the measure tn−1dt on [0,∞). For k ≤ −1/2p−1, applying Theorem 6.3 we can
estimate

Vol({u ≤ k}) ≤ −2
∫
{u≤k}

u(p−1)d Vol ≤

≤ −2C
∫
{w≤k}

w(p−1)dν ≤ 2Cν({w ≤ k}) .

If we set k = −1 + ε for ε small enough, it follows from Lemma 6.4 that there exist constants C and
C′ such that

Vol(B(x0, rε)) ≤ Vol({u ≤ k}) ≤

≤ 2Cν({w ≤ −1 + ε}) = 2Cν([0, rε]) = C′rn
ε .

�

Corollary 6.6. As a corollary, we get that max{u} ≥ m. In fact, suppose by contradiction that max{u} <
m. Then, by the continuous dependence of solutions of ODE (5.1) on the parameters, there exists
n′ > n (n′ ∈ R) such that max{u} ≤ m(n′), i.e., there exists an n′ such that the solution w′ to the ode

(p − 1)ẇ′p−2ẅ′ − n′−1
t ẇ′(p−1) + λw′(p−1) = 0

w′(0) = −1
ẇ′(0) = 0

has a first maximum which is still greater than max{u}. By Remark 4.4, the gradient estimate |∇u| ≤
ẇ′|w′−1(u) is still valid and so is also the volume comparison. But this is contradicts the fact that the
dimension of the manifold is n. In fact one would have that for small ε (which means for rε small)
Vol(B(x0, rε)) ≤ crn′

ε . Note that the argument applies even in the case where M has a C2.

7. Sharp estimate

Now we are ready to state and prove the main theorem.
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Theorem 7.1. Let M be a compact Riemannian manifold with nonnegative Ricci curvature, diameter
d and possibly with convex boundary. Let λp be the first nontrivial (=nonzero) eigenvalue of the p-
Laplacian (with Neumann boundary condition if necessary). Then the following sharp estimate holds:

λp

p − 1
≥
π

p
p

dp .

Moreover a necessary (but not sufficient) condition for equality to hold is that max{u} = −min{u}.

Proof. First of all, we rescale u in such a way that min{u} = −1 and 0 < max{u} = k ≤ 1. Given a
solution to the differential equation (5.1), let m(a) ≡ w(b(a)) the first maximum of w after a. We know
that this function is a continuous function on [0,∞), and

lim
a→∞

m(a) = 1 .

By Corollary 6.6, k ≥ m(0). This means that for every eigenfunction u, there exists a such that
m(a) = k. If k = 1, then k = m(∞).

We can rephrase this statement as follows: for any eigenfunction u, there exists a model function
w such that min{u} = min{w} = −1 and 0 < max{u} = max{w} = k ≤ 1. Once this statement is proved,
the eigenvalue estimate follows easily. In fact, consider a minimum point x and a maximum point y
for the function u, and consider a unit speed minimizing geodesic (of length l ≤ d) joining x and y.
Let f (t) ≡ u(γ(t)), and consider the subset I of [0, l] with ḟ ≥ 0. Then changing variables we get

d ≥
∫ l

0
dt ≥

∫
I
dt ≥

∫ k

−1

dy
ḟ ( f −1(y))

≥

∫ k

−1

dy
ẇ(w−1(y))

=

=

∫ b(a)

a
1dt = δ(a) ≥

πp

α
,

where the last inequality is proved in Corollary 5.4. This yields to

λ

p − 1
≥
π

p
p

dp .

Note that by Corollary 5.4, for any a, δ(a) ≥ πp

α
and equality holds only if a = ∞, i.e. only if

max{u} = −min{u} = max{w} = −min{w}. �

Remark 7.2. Note that max{u} = max{w} is essential to get a sharp estimate, and it is the most
difficult point to achieve. Analyzing the proof of the estimate in [Zha07] with the tools developed in
this article, it is easy to realize that in some sense the only model function used in [Zha07] is sinp(αx),
which leads to φ(u) = λ

p−1 (1−|u|p). Since the maximum of this model function is 1, which in general is
not equal to max{u}, the last change of variables in the proof does not hold. Nevertheless max{u} > 0,
and so one can estimate that

d ≥
∫ k

−1

dy
ẇ(w−1(y))

>

∫ 0

−1

dy
ẇ(w−1(y))

=

∫ 0

−1

dy
α(1 − yp)1/p =

πp

2α
,

which leads to
λ

p − 1
>

(πp

2d

)p
.
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8. Characterization of equality

In this section we characterize the equality in the estimate just obtained, and prove that equality
can be achieved only if M is either a one dimensional circle or a segment.

In [HW07], this characterization is proved for p = 2 to answer an open problem raised by T. Sakai
in [Sak05]. Unfortunately, this proof relies on the properties of the Hessian of a 2-eigenfunction,
which are not easily generalized for generic p. In particular, any 2-eigenfunction is smooth every-
where and at a minimum point its Hessian is positive semidefinite. Moreover, H(v, v) is the second
derivative of the function f (t) = u(γ(t)) where γ is the geodesic such that v = γ̇. All these properties
are essential for the proof given in [HW07] to work, and the lack of them forces us to choose another
way to prove the characterization.

Before we prove the characterization theorem, we need the following lemma, which is similar in
spirit to [HW07, Lemma 1].

Lemma 8.1. Assume that all the assumptions of Theorem 7.1 are satisfied and assume also that
equality holds in the sharp estimate. Then we can rescale u in such a way that −min{u} = max{u} = 1,
and in this case ep = |∇u|p + λ

p−1 |u|
p is constant on the whole manifold M, in particular ep = λ

p−1 .
Moreover, all integral curves of the vector field X ≡ ∇u

|∇u| are minimizing geodesics on the open set

E ≡ {∇u , 0} = {u , ±1} and for all geodesics γ,
〈
γ̇
∣∣∣∣ ∇u
|∇u|

〉
is constant on each connected component

of γ−1(E).

Proof. Using the model function w(t) = sinp(αt) in the gradient comparison, we know that

|∇u|p ≤ |ẇ| |pw−1(u) =
λ

p − 1
(1 − |u|p) ,

so that ep ≤ λ
p−1 everywhere on M. Let x and y be a minimum and a maximum point of u respectively,

and let γ be a unit speed minimizing geodesic joining x and y. Define f (t) ≡ u(γ(t)). Following the
proof of Theorem 7.1, we know that

d ≥
∫ 1

−1

ds
ḟ ( f −1(s))

≥

∫ 1

−1

ds
ẇ(w−1(s))

=
πp

α
.

By the equality assumption, αd = πp, and this forces ḟ (t) = ẇ|w−1 f (t). So, up to a translation in the
domain of definition, f (t) = w(t), and on the curve γ ep|γ = λ

p−1 .
Now the statement of the lemma is a consequence of the strong maximum principle (see for ex-

ample [GT01, Theorem 3.5 pag 34]). Indeed, consider the operator

L(φ) = Pu(φ) −
(p − 1)2

p |∇u|2

〈
∇

(
|∇u|p −

λ

p − 1
up

)∣∣∣∣∣∣∇φ
〉

+

+(p − 2)2 |∇u|p−4 Hu

(
∇u,∇φ −

∇u
|∇u|

〈
∇u
|∇u|

∣∣∣∣∣∇φ〉) .
The second order part of this operator is PII

u , so it is locally uniformly elliptic in the open set E ≡
{∇u , 0}, while the first order part (which plays no role in the maximum principle) is designed in
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such a way that L(ep) ≥ 0 everywhere. In fact, after some calculations we have that

L(ep)
p |∇u|2p−4 =

(
|Hu|

2
−
|Hu(∇u)|2

|∇u|2

)
+ Ric(∇u,∇u) ≥ 0 .(8.1)

Then by the maximum principle the set {ep = λ
p−1 } is open and close in Z ≡ {u , ±1}, so it contains

the connected component Z1 containing γ.
Let Z2 be any other connected component of Z and choose xi ∈ Zi with u(xi) = 0 for i = 1, 2.

Let σ a unit speed minimizing geodesic joining x1 and x2. Necessarily there exists t̄ such that σ(t̄) ⊂
u−1{−1, 1}, otherwise Z1 = Z2. Without loss of generality, let u(t̄) = 1 and define f (t) ≡ u(σ(t)).
Arguing as before we can conclude

d ≥
∫ l

0
dt =

∫ t̄

0
dt +

∫ l

t̄
dt ≥

∫
I1

dt +

∫
I2

dt ≥∫ 1

0

dy
ḟ ( f −1(y))

−

∫ 1

0

dy
ḟ ( f −1(y))

≥ 2
∫ 1

0

dy
ẇ(w−1(y))

≥
πp

α
,

where I1 ⊂ [0, t̄] is the subset where ḟ > 0 and I2 ⊂ [t̄, l] is where ḟ < 0. The equality assumption
forces αd = πp and so ḟ ( f −1(t)) = ẇ(w−1(t)) a.e. on [0, t̄] and ḟ ( f −1(t)) = −ẇ(w−1(t)) a.e. on [t̄, l],
which implies that, up to a translation in the domain of definition, f (t) = w(t) = sinp(αt). This proves
that for any connected component Z2, there exists a point inside Z2 where ep = λ

p−1 , and by the
maximum principle ep = λ

p−1 on all Z. This also proves that E = Z. Moreover, for equality to hold in
(8.1), the Ricci curvature has to be identically equal to zero on Z and

|Hu|
2 =
|Hu(∇u)|2

|∇u|2
.(8.2)

Now the fact that ep is constant implies by differentiation that where ∇u , 0, i.e. on Z, we have

|∇u|p−2 Hu(∇u) = −
λ

p − 1
up−1∇u ,

and so

|∇u|p−2 Hu (X, X) = −
λ

p − 1
up−1 .

This and equation (8.2) imply that on Z

|∇u|p−2 Hu = −
λ

p − 1
up−1X? ⊗ X? .(8.3)

Now a simple calculation shows that

∇XX =
1
|∇u|
∇∇u
∇u
|∇u|

=
1
|∇u|

(Hu(X) − Hu(X, X)X) = 0 .

Which proves that integral curves of X are geodesics. The minimizing property follows from an
adaptation of the proof of Theorem 7.1.

As for the last statement, we have
d
dt

〈
γ̇

∣∣∣∣∣ ∇u
|∇u|

〉
=

1
|∇u|

Hu(γ̇, γ̇) − 〈γ̇|∇u〉
1
|∇u|3

Hu (∇u, γ̇)
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and, by equation (8.3), the right hand side is equal to 0 where ∇u , 0.
�

As promised, now we are ready to state and prove the characterization.

Theorem 8.2. Let M be a compact Riemannian manifold with Ric ≥ 0 and diameter d such that

λp

p − 1
=

(πp

d

)p
.(8.4)

If M has no boundary, then it is a one dimensional circle; if M has boundary then it is a one dimen-
sional segment.

Proof. We will prove the theorem studying the connected components of the set N = u−1(0), which,
according to Lemma 8.1, is a regular submanifold. We divide our study in two cases, and we will
show that in both cases M must be a one dimensional manifold (with or without boundary).
Case 1, N has more than one component. Suppose that N has more than one connected component.
Let x and y be in two different components of N and let γ be a unit speed minimizing geodesic joining
them. Since

〈
γ̇
∣∣∣∣ ∇u
|∇u|

〉
is constant on E, either γ(t) = 0 for all t, which is impossible since by assumption

x and y belong to two different components, or γ must pass through a maximum or a minimum. Since
the length of γ is less than or equal to the diameter, we can conclude as in the previous lemma that
γ(t) = ± sinp(t) on [0, d]. This in particular implies that 〈γ̇|∇u〉 = ± |∇u| at t = 0, and since only
two tangent vectors have this property, there can be only two points y = exp(x, γ̇, d). Therefore the
connected components of N are discrete, and the manifold M is one dimensional.
Case 2, N has only one component. Now suppose that N has only one connected component. Set
I = [−d/2, d/2] and define the function h : N × I → M by

h(y, s) = exp(y, X, s).

We will show that this function is a diffeomorphism and metric isometry.
First of all, let h̃ be the restriction of the map h to N × I◦ and note that if |s| < d/2, by Lemma

8.1, h̃(y, s) is the flux of the vector field X emanating from y evaluated at time s. Now it is easy to see
that u(h(y, s)) = w(s) for all s. This is certainly true for all y if s = 0. For the other cases, fix y, let
γ(s) ≡ h̃(y, s) and f (s) ≡ u(h̃(y, s)). Then f satisfies

γ̇ =
∇u
|∇u|

,

ḟ = 〈∇u|γ̇〉 = |∇u| |h̃(y,s) = ẇ|w−1 f (s) .

Since ẇ|w−1(x) is a smooth function, the solution of the above differential equation is unique and so
u(h̃(y, s)) = f (s) = w(s) for all y and |s| < d/2. Note that by the continuity of u, we can also conclude
that u(h(y, s)) = w(s) on all of N × I.

The function h̃ is injective, in fact if h̃(y, s) = h̃(z, t), then w(s) = u(h̃(y, s)) = u(h̃(z, t)) = w(t)
implies s = t. Moreover, since the flux of a vector at a fixed time in injective, also y = z.
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Now we prove that h̃ is also a Riemannian isometry on its image. Let 〈·|·〉 be the metric on M, 〈·|·〉N
the induced metric on N and 〈〈·|·〉〉 the product metric on N × I. We want to show that 〈〈·|·〉〉 = h̃? 〈·|·〉.
The proof is similar in spirit to [PRS08, Lemma 9.7, step 7]. It is easily seen that

h̃? 〈·|·〉 (∂s, ∂s) =

〈
∇u
|∇u|

∣∣∣∣∣ ∇u
|∇u|

〉
= 1 ,

and for every V ∈ T(y,s)N we have

h̃? 〈·|·〉 (∂s,V) =

〈
∇u
|∇u|

∣∣∣∣∣dh̃(V)
〉

= 0 .(8.5)

In fact, since |∇u| is constant on all level sets of u, if σ(t) is a curve with image in N × {s} and with
σ(0) = (y, s) and σ̇(0) = V , then

d
dt

(
|∇u| ◦ h̃

)
σ(t) = 0 .

Recalling that Hu = − λ
p−1u(p−1) |∇u|p−2 ∇u

|∇u| ⊗
∇u
|∇u| , we also have

d
dt
|∇u| ◦

(
h̃(σ(t))

)
= −

λ

p − 1
u(p−1) |∇u|p−2

〈
∇u
|∇u|

∣∣∣∣∣dh̃(V)
〉
,

and the claim follows.
Fix any V,W ∈ T N, for any |t| < d/2 note that, by the properties of the Lie derivative, we have

d
ds

∣∣∣∣∣
s=t

(h̃? 〈·|·〉)(V,W) = L∂s[dh̃ 〈·|·〉](V,W) = [dh̃ LX 〈·|·〉](V,W) =

=

〈
∇dh̃(V)

∇u
|∇u|

∣∣∣∣∣dh̃(W)
〉

+

〈
dh(V)

∣∣∣∣∣∇dh̃(W)
∇u
|∇u|

〉
.

It is easy to see that dh̃(W)(|∇u|) = dh̃(V)(|∇u|) = 0 since |∇u| is constant on the level sets, and
therefore

d
ds

∣∣∣∣∣
s=t

(h? 〈·|·〉)(V,W) = 2Hu(dh̃(V), dh̃(W)) = 0 .

This implies that for every y ∈ N fixed and any V,W ∈ T N, h̃?|y,s 〈·|·〉 (V,W) is constant on (−d/2, d/2),
and since h̃ is a Riemannian isometry by definition on the set N × {0}, we have proved that h? 〈·|·〉 =

〈〈·|·〉〉.
Now, h is certainly a differentiable map being defined as an exponential map, and it is the unique

differentiable extension of h̃.
Injectivity and surjectivity for h are a little tricky to prove, in fact consider the length space N ×

I/ ∼, where (y, s) ∼ (z, t) if and only if s = t = ±d/2, endowed with the length metric induced by
h̃. It is still possible to define h as the continuous extension of h̃, and N × I/ ∼ is a length space of
diameter d, but evidently h is not injective. This shows that injectivity of h has to be linked to some
Riemannian property of the manifold M.
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h is surjective. For any point x ∈ M such that u(x) , ±1 the flux of the vector field X joins x with a
point on the surface N and vice versa, so h is surjective on the set E. The set of points u−1(1) (and in
a similar way the set u−1(−1)) has empty interior since u is an eigenfunction with positive eigenvalue.
Fix any x ∈ u−1(1). The estimate |∇u|p + λ

p−1 |u|
p
≤ λ

p−1 implies that any geodesic ball Bε(x) contains a
point xε with w(πp/2 − ε) < u(xε) < 1. Let γ(t) be the flux of X emanating from xε . By the property
of X, the curve γ intersects N in a single point yε , moreover there exists a unique zε ∈ u−1(1) which is
an accumulation point for γ. If we define

γ(t) = exp(yε , X, t) = h(yε , t)

f (t) = u(γ(t)) ,

we know that γ is a minimizing geodesic on [−d/2, d/2] and that f (t) = w(t) = sinp(αt). Since
u(xε) > w(πp/2 − ε)

d(xε , zε) < w−1(1) − w−1(w(πp/2 − ε)) = ε .

Let ε go to zero and take a convergent subsequence of {yε} with limit y, then by continuity of the
exponential map h(y, d/2) = x. Since x was arbitrary, surjectivity is proved.
h is injective. Now we turn to the injectivity of h. Since h is differentiable and its differential has
determinant 1 in N × I◦, its determinant is 1 everywhere and h is a local diffeomorphism. By a similar
density argument, it is also a local Riemannian isometry. By the product structure on N × I, we know
that the parallel transport along a piecewise smooth curve σ of the vector X ≡ dh(∂s) is independent
of σ. In particular if σ is a loop, the parallel transport of X along σ is τσ(X) = X.

Now consider two points y, z ∈ N without any restriction on their mutual distance such that
h(y, d/2) = h(z, d/2) = x. Let σ be the curve obtained by gluing the geodesic h(y, d/2 − t) with
any curve joining x and y in M and with the geodesic h(z, t). σ is a loop around x with

dh|(y,d/2)∂s = X = τσ(X) = dh|(z,d/2)∂s .

Since by definition of h, y = exp(x, X,−d/2) and z = exp(x, τσX,−d/2), the equality X = τσ(X)
implies y = z, and this proves the injectivity of h.

Now it is easily seen that h is a metric isometry between N × I and M, which means that the
diameter of M is d =

√
d2 + diam(N)2. Note that diam(N) = 0 implies that M is one dimensional

(as in the case when N has more than one connected component), and it is well-known that the only
1-dimensional connected compact manifolds are circles and segments.

As seen in Section 2, both these kind of manifolds realize equality in the sharp estimate for any
diameter d, and so we have obtained our characterization. �
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