We develop interpolation error estimates for general order standard and serendipity edge and face virtual elements in two and three dimensions. Contextually, we investigate the stability properties of the associated L2 discrete bilinear forms. These results are fundamental tools in the analysis of general order virtual elements, e.g. for electromagnetic problems.

Beirao da Veiga, L., Mascotto, L., Meng, J. (2022). Interpolation and stability estimates for edge and face virtual elements of general order. MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, 32(8), 1589-1631 [10.1142/S0218202522500373].

Interpolation and stability estimates for edge and face virtual elements of general order

Beirao da Veiga, L;Mascotto, L;
2022

Abstract

We develop interpolation error estimates for general order standard and serendipity edge and face virtual elements in two and three dimensions. Contextually, we investigate the stability properties of the associated L2 discrete bilinear forms. These results are fundamental tools in the analysis of general order virtual elements, e.g. for electromagnetic problems.
Articolo in rivista - Articolo scientifico
Edge and face virtual element spaces; interpolation properties; polytopal meshes; serendipity spaces; stability analysis;
English
22-set-2022
2022
32
8
1589
1631
partially_open
Beirao da Veiga, L., Mascotto, L., Meng, J. (2022). Interpolation and stability estimates for edge and face virtual elements of general order. MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, 32(8), 1589-1631 [10.1142/S0218202522500373].
File in questo prodotto:
File Dimensione Formato  
Beirao da Veiga-2022-Math Mod Methods Appl Sci-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 641.19 kB
Formato Adobe PDF
641.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Beirao da Veiga-2022-Math Mod Methods Appl Sci-preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 778 kB
Formato Adobe PDF
778 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/393249
Citazioni
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
Social impact