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Abstract

We develop interpolation error estimates for general order standard and serendipity edge and
face virtual elements in two and three dimensions. Contextually, we investigate the stability
properties of the associated L? discrete bilinear forms. These results are fundamental tools in
the analysis of general order virtual elements, e.g., for electromagnetic problems.
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1 Introduction

The virtual element method (VEM) [6] can be interpreted as an extension of the finite element
method (FEM) to polytopal meshes. Trial and test spaces typically contain a polynomial subspace
plus other nonpolynomial functions that are never computed explicitly. Rather, these functions
are evaluated via cleverly chosen degrees of freedom (DoFs) and allow for the design of (nodal,
edge, face ...) conforming global spaces. Such DoF's can be used to compute certain polynomial
projections and stabilizations: the former are needed for the polynomial consistency of the scheme;
the latter for its well-posedness.

A preliminary version of H(div) virtual elements was first introduced for 2D problems in
Ref. as the extension of Raviart-Thomas or Brezzi-Douglas-Marini elements to polygonal
meshes. In order to cope with a sufficiently wide range of problems in mixed form and elec-
tromagnetic problems, see for instance Refs. , in Ref. the authors developed several
variants of H(div) and H(curl) VE spaces in two and three dimensions. Furthermore, serendipity
edge and face virtual element spaces were first considered in Ref. ﬂgﬂ; serendipity spaces allow for a
reduction of the number of internal DoF's without affecting the convergence and stability properties
of the VEM. This fact has a paramount impact on the performance of the method in the three
dimensional case, notably in the reduction of the face DoFs, as bulk DoF's in 3D can be removed
by static condensation. Although the spaces introduced in Ref. ﬂgﬂ are more efficient than those
in Ref. , they have the important drawback of missing the full discrete De-Rham diagram, only
recovering part of it. This shortcoming was finally handled in a series of paper, which represent
the current “state of the art” of VEM De Rham complexes, dealing with the general order 2D
case , the lowest order 3D case [5], and the 3D general order case . All these papers also treat
the magnetostatic equations as a simple model problem; more involved problems can be found,
e.g., in Refs. . The lowest order case was published independently of the general order
case [4] not only with the aim of reaching different communities, but also because the former case
allows for a simpler definition of the VE spaces.
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Compared to its nodal counterpart [10,{15}/17.{19,20,[2228], the interpolation and stability theory
for edge and face virtual elements is still rather limited. In Ref. [12], interpolation estimates for
H(div) virtual element spaces in 2D were proved, while H(curl®) virtual element spaces in 2D
were tackled in Ref. [34]. The extension to two-dimensional face virtual elements with curved
edges, including interpolation properties, was considered in Ref. [24]. Most importantly, both
interpolation error estimates and stability properties for the lowest order edge and face virtual
element spaces of Ref. [5] were derived in Ref. [11] in two and three dimensions.

The aim of this paper is to prove interpolation estimates and stability properties for general
order standard and serendipity edge and face virtual element spaces in 2D and 3D |[3}/4}(7}(9].
Amongst the several variants of H(div) and H(curl) spaces, we focus on those in Ref. [4]. The
ideas outlined in the paper can be extended to other settings as well.

Compared with the proofs for the lowest order spaces [11], the general order case hides many
additional difficulties of technical nature. For instance, many more DoFs types (moments of
various kinds on edges, faces, volumes) appear and serendipity spaces are employed. Indeed, while
in the lowest order spaces the serendipity construction can be avoided by a simpler, yet equivalent,
definition, it is in the general order case that the peculiar definition of serendipity VE spaces
appears in its full complexity. To the authors knowledge, this is the first contribution where the
interpolation and stability analysis of serendipity VE spaces (of any kind) is tackled. Although
many relevant ideas are contained in the proofs of the “lesser” lemmas, we give here a short
guideline of our main results:

e Theorems [3.3] and [3-§] contain interpolation estimates for 2D standard and serendipity edge
elements, respectively;

e Theorems and quickly extend the above results to 2D standard and serendipity face
elements, respectively;

e Theorems |4.5| and contain interpolation estimates for 3D standard and serendipity edge
elements, respectively;

e Theorem contains interpolation estimates for 3D standard face elements;

e Theorems [5.1] and contain the stability estimates for 2D standard and serendipity edge
spaces, respectively;

e Remark [] extends the stability estimates to 2D standard and serendipity face spaces;

e Theorem and Remark [7] contain the stability estimates for 3D standard and serendipity
edge spaces, respectively;

e Theorem contains the stability estimates for 3D standard face spaces.

The remainder of the paper is organized as follows: in Section [2] we introduce the necessary
functional spaces and mesh assumptions, and recall some technical results needed for the error
estimates; in Sections [3|and [4] we prove the interpolation error estimates for edge and face virtual
element spaces in 2D and 3D, respectively; in Section [5] we define several stabilizations for edge
and face virtual element spaces, and prove their stability properties.

2 Preliminaries

The outline of this section is as follows: in Section we introduce the functional space setting;
in Section 2:2] we detail the assumptions on the regularity of the mesh decompositions; in Sec-
tions and we state some technical results, namely polynomial inverse inequalities and
decompositions, Sobolev trace inequalities, and Poincaré and Friedrichs inequalities, respectively.



2.1 Sobolev spaces

Throughout the paper, given m,p € Ny and a bounded Lipschitz domain D C R? (d = 1,2,3)
with boundary 0D, we shall use standard notations [16] for the scalar Sobolev space W™P(D)
equipped with the norm || - [y m.»(p)y and the seminorm |- [ym.»(py. If p = 2, we denote W™ (D)
by H™(D) equipped with the norm || - ||, p, the seminorm | - |, p, and the inner product (-,-)p.
We set HY(D) = L%*(D); in the corresponding norm, we omit the subscript 0. Let H~™(D) be
the dual space of H™(D) equipped with the negative norm || - |, p. For k € Ny, P,(D) denotes
the space of polynomials of degree at most k on D and 7y, 4 its dimension. We set P_,(D) = {0}
for all £ € N. Moreover, P (D) denotes the subspace of Py (D) of functions with zero average on
either 9D or D. We shall use the boldface to denote vector variables and spaces; for example, v,
H™ (D), and L?(D) denote the vector version of a function v, a Sobolev space, and a Lebesgue
space.

With an abuse of notation, we denote local sets of coordinates in two and three dimensions
by [z1, 7] and [z1, 72, 23], respectively. Given a function ¢ : F C R? — R and a field v = [vy,v5]T
F C R? — R?, we define the operators
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In three dimensions, given a function ¢ : R® — R and a field v = [vy,v9,v3]T : R® — R3, we define
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Next, given a polygon F' and a polyhedron E, we denote the usual div, rot, and curl spaces
by H(divg, F), H(rotp, F), H(div, E), and H(curl, E).

2.2 Mesh regularity assumptions

Let 73, be a sequence of decompositions of a given polyhedral domain Q C R? or R3 into nonover-
lapping polygonal/polyhedral elements E. For each E, we denote its two-dimensional boundary
by OF and the one-dimensional boundary of each face F' in F by 0F. For any geometric object D
of dimension d (d = 1,2, 3), i.e., an edge e, a face F, or an element F, we denote its barycenter, its
measure (length, area, or volume, respectively), and its diameter by bp, |D|, and hp, respectively.
We denote the unit outer normal to the boundary OF by ngg and the restriction to the face F' of
nyp by np. For each face F', we also denote the unit outer normal to OF' in the plane containing F’
by ngr and the restriction to the edge e of ngp in the plane containing F' by n.. Further, the unit
tangential vector t. along the edge e is defined as the vector pointed in counter-clockwise sense of
n. (for example, to = (—ng,ny) if n, = (n1,n2) in two dimensions), and tyr is locally defined by
t3F|e = te.
Henceforth, we demand the following mesh regularity assumption:

(M) For d = 2, there exists a uniform constant p > 0 such that, for every polygon F,

(i) F is star-shaped with respect to a disk of radius > php;
(ii) every edge e of OF satisfies h, > php.

For d = 3, there exists a uniform constant p > 0 such that, for every element E,

(i) E is star-shaped with respect to a ball of radius > phg;
(ii) every face F of OF is star-shaped with respect to a disk with radius > php;
(iii) for every face F' of OF, every edge e of OF satisfies h, > phr > p?hg.



In certain cases that will be indicated explicitly, we shall also require the following uniform con-
vexity condition:

(MC) in two dimensions, every polygonal element F is convex and there exists a constant & > 0
such that each internal angle 6 of element F' satisfies ¢ < 8 < 7w —¢; in the three dimensional
case, each face F of the mesh satisfies such condition.

Remark 1. An immediate consequence of the above mesh regularity assumptions is that each
three-dimensional element E or each two-dimensional face F' are uniformly Lipschitz domains that
admit a shape-regular tessellation 7, into simplices, i.e., a partition of F into tetrahedra or F
into triangles. Such a decomposition is obtained by connecting each edge/face (in two and three
dimensions, respectively) with the center of the ball in assumption (M).

In what follows, given two positive quantities a and b, we use the short-hand notation “a < b” if
there exists a positive constant ¢ independent of the discretization parameters such that “a < cb”.
Moreover, we write “a ~ b” if and only if “a < b” and “b < a”. When keeping track of the constant
is necessary, we shall use explicit generic constants C', C’, Cy, - - - that are independent of the mesh
and may vary at different occurrences. Furthermore, D will denote a generic polytopal domain
(polygon in R? or polyhedron in R?) representing either an element or a face of the mesh, thus
satisfying the above assumptions (M).

Throughout, the explanation of the identities and upper and lower bounds will appear either
in the preceding text or as an equation reference above the equality symbol “=” or the inequality
symbols “<” “>" etc, whichever we believe it is easier for the reader.

2.3 Polynomial properties

The following polynomial inverse estimates in a polytopal domain D C R¢ (d = 2, 3) are valid: for
all Pk € ]P)k(D)a

1.0 Shp'Ipello,  llpello < A lpkll-1.0- (1)
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Furthermore, for each piecewise polynomial p; of degree at most k over D, we have

_1
Ipkllop < hp? HpkH—%,aDv (2)
where || - [|_1 5p denotes the scaled H~2(8D) dual norm
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The proof of the above inverse estimates hinges upon the existence of a shape-regular simplicial
tessellation, see Remark I} and standard polynomial inverse estimates on simplices as in Section 3.6
of Ref. [33].

Let bp be the cubic (d = 2) or quartic (d = 3) piecewise bubble function associated with the
shape-regular tessellation of the element D, see Remark [1} with unitary L° norm. The following
result which establishes standard estimate for bubble functions will be useful:

el < /D bop? < Ipel3 Vor € Po(D). (3)

A proof of this result is obtained by using Theorem 3.3 in Ref. [1] and standard manipulations.
Moreover, the following decompositions of polynomial vector spaces are valid; see, e.g., Refs. [3|
7]. Given a polygon F, we have

(Py(F))? = curlp Py (F) & xPy_1 (F), (4)
which implies that divg is an isomorphism between {xPy(F)} and Py (F'). Moreover,

(Pe(F))? = V pPry1 (F) & x Pr_1(F), (5)



which implies that rotp is an isomorphism between {x'Py(F)} and Py (F).
Given a polyhedron E, we have

(Bu(E))® = curl (Bys1(E))° © xPy_1(E), (©)
which implies that div is an isomorphism between {xPy(F)} and Py (FE). Furthermore,
(P(E))* = VPiri1(E) & x A (Pre-1(E))?, (7)

which implies that for each py € (P (E))? with divpy = 0, there exists q; € (Pi(E))? such that
curl(x A qi) = pk.-

2.4 Trace inequalities

The following trace inequalities are valid; see, e.g., in |29, Theorem A.20]: given a polytopal
domain D, representing either an element or a face of the mesh, there hold

_1 _1 1 3
lollap < hp*lellp + 15 *olsp  Yoe H(D),5 <d< 5 (8)

_ 1 1
vleop S hp P lp + oy p Vo€ HTHE(D),0<e<1. (9)
If additionally 1/2 < 6 < 1 and v has zero average on either 9D or D, then we have

s§—1
lvllop < hp *[vls,p- (10)
For functions v with zero average on either 9D or D, we also recall the multiplicative trace
inequality
11
lvllop S lIvllpvIf p- (11)

Let F be a polygon and E be a polyhedron, respectively, representing either a face F' or an element
E of the mesh, thus satisfying the above assumptions (M). For w € H(divg, F'), v € H(rotp, F),
¢ € H(div, E), ¥ € H(curl, E), and x € H(div, E) N H(curl, E), the following trace inequalities
are valid; the following trace inequalities are valid; see, e.g., Theorems 3.29 and 3.24 in [23[127],
and page 367 in [23]:

Iv-torll_y or S IVlF + hrlrote wi, (12)
¢ nopll_1 06 S 1@le + helldive| s, (13)
[ Anopll_1 op S l¥lle + hellcurl |z, (14)
IxAnoslos Shg® IIxlle+hIdiv x| s+hElcurl x|+ |x-noz ox- (15)

All constants involved in the bounds above are uniform, i.e. independent of the particular element F
or face F in {7}, since the mesh assumptions (M) guarantee that the parameters associated to
the star-shaped and Lipschitz properties are uniform in the mesh family.

2.5 Poincaré and Friedrichs inequalities

For each v € H'(D), D C R? (d = 2,3), if v has zero average on either D or D, then we have the
following Poincaré inequality; see, e.g., Section 5.3 in Ref. |16]:

hp'llollp < [oh,p- (16)

Let E € T, be a polyhedral element and v € H(curl, E) N H(div, E) be a divergence free function
satisfying v Angg € L2(8E). Then, the following Friedrichs inequality is valid; see, e.g., Corollary
3.51 in Ref. |27] or Lemma 2.2 in Ref. [11]:

_1
hg' IVlle S hp®Iv Anoplop + [|lcurl v p. (17)

Similarly, let v € H(curl, E) NH(div, E) be a divergence free function satisfying v-nsg € L?(9F).
Then, the following Friedrichs inequality is also valid; see Corollary 3.51 in Ref. [27]:

_ 1
hg' IvVle S hg?llv-noglos + |lcurl v . (18)



3 Interpolation properties of edge and face virtual element
spaces in 2D

Here, we prove interpolation properties of general order for standard and serendipity edge and
face virtual element spaces on polygons. These polygons can be interpreted as elements of a two-
dimensional mesh or as faces of a three-dimensional mesh; we shall often refer to them as “faces”.
In what follows, we shall concentrate on interpolation and stability results on local elements, since
the corresponding global results follow by a summation on all the elements. In Section [3.1] we
begin with edge virtual element spaces on polygons; in Section we consider the serendipity
edge virtual element space in 2D, which allows us to reduce the number of internal DoF's of the
standard edge virtual element space introduced in Section in Section we extend the results
of edge virtual element spaces to face virtual element spaces in 2D.

3.1 Standard edge virtual element space on polygons

Given a face F' and an integer k > 1, the edge virtual element space is defined as [4]

Vi(F) = {vy € L*(F) : divp v}, € P(F), rotp v, € P_1(F),

v - t. € Pr(e) Ve C 8F}. (19)
The following linear operators are a set of unisolvent DoF's:
e the moments /Vh “tepr Vpi € Pr(e), Ve C OF; (20)
e the moments /th X DR Vpi € Pp(F); (21)
e the rot-moments /FrotF Ny vpl_, € PY_,(F) only for k > 1, (22)

where xp := x — bp.

The inclusion (Py(F))? C V{(F) is valid and the L? projection H2f1 S VS(F) = (Pryr(F))?
is computable by the DoFs (20)—(22)); see Refs. [3,4].
Remark 2 (Generality of the approach). To keep the theoretical analysis as clear as possible, we
chose the V7§ (F) that corresponds to that of Ref. [4]. We might have employed other definitions;
see, e.g., Refs. [3}|9]. This would simply result in a change of the polynomial orders appearing
in , and 7: the notation would be heavier but the theoretical extension would trivially
follow the same steps here shown for . This same consideration applies to all the virtual element
spaces introduced in the following.

We begin with the proof of the following auxiliary bound for functions belonging to Vi (F).

Lemma 3.1. For each vy, € Vi(F), we have

S vn - TEpY

lonll# Shrllrotr vnllr+hE | on-tor or+ sup (23)
prepp(F) TrpelF
Proof. Since rotp curlp = —Ap, the following Helmholtz decomposition of vy, is valid:
vy, =curlp p+ Vgo, (24)
where p € H'(F) \ R and 0 € H'(F) satisfy weakly
—App =rotpvy in F, curlgp-tgr = vy - tygr on OF, (25)
and
Apoc =divpvy in F, ¢ =0 on OF. (26)



By the orthogonality (curlg p, Vpo)r = 0, we also have
Vil = [leurle pl|% + [V oz (27)

We show an upper bound on the two terms on the right-hand side of : using rotp curly = —Ap
and |V rp||r = |lcurlp pl| [

el 22— [ p(A 1 <
curlg p||z=— [ p(Arp)+[p(curlp p-tor) Spllrllrote villr+pllor | vi-torllor
F

OF
(o e

N

1
he|Vepllpllrote villr + hEIV EpllFllve - torllor

S

/N

1
hr|rotr vallr + hi|ve 'taFHaF) |curlp p| F. (28)

By using , the fact that divp vy, € Pi(F), and a scaling argument, there exists a polynomial
qr € Pr(F) such that

dive (xpqr) = dive vy and |xpqellr S helldive valle. (29)
We have the following inverse estimate involving edge virtual element functions:
Idive vallr S hE'IValle  Yva € Vi (F). (30)

To prove , we split the face F' into a shape-regular sub-triangulation 7~71; see Remark (1| Let bp
be the usual positive cubic bubble function over each triangle ' € Ty, scaled such that ||bp|| 7 = 1.
By using that divg vy € Pi(F), and the polynomial inverse inequalities and , we have

HdiVF Vh”2 5 (deiVF Vh, diVF Vv )F = 7(VF(deiVFVh), Vh)F S h_F1||d1VF Vh”F”VhHFa

which proves .
Next, we cope with the second term on the right-hand side of :

IBP, (26), (29) . IBP, (26)
IV Eo|3 =63 —/ divr (xpqr)o :./(XFQk)'VFU
F F

9
/ (xFqx) - (v, — curlg p)
F

Vi - XFPk (31)
< lxraele sup AEVEEEPE el llourls ple

prePu(F)  IXFPEllF

7 Vi - XFpk
S sup Jr vn xrpe + |leurlp pll 7 | [[val F-
prebu(F)  IXFDE|F

Substituting and into , and using and again, we can obtain . O
The following bound, which generalizes Lemma 4.4 in Ref. [11] will be useful in the sequel.

Lemma 3.2. For each face F C OE and given € > 0, let v € H* (F)N H(rotp, F) such that v-t. is
integrable on each edge of F. Then, the following bound is valid: for all e in OF and py in Py(e),

/e(v' te)pr

The last term on the right-hand side can be neglected if € > 1/2.

S [Pkl o) (10l p + hElvle p + helrote o] ) . (32)

Proof. The inequality is trivial for ¢ > % by using the trace inequality . Therefore, we as-
sume 0 < € < % Recalling Remark (1} we split the face F' into a shape-regular triangulation 7y

1Henceforth, IBP stands for integration by parts



Let T € ’ﬁ be the triangle such that e C 9T. We first prove the following inequality: for all
fixed p > 2 and pi € Pr(e) Ve C OF,

/E(V “te)pr

Let T be the affine equivalent reference element to the triangle T" and € be the edge of T corre-
sponding to the edge e C 9T through the Piola transform; see Definition 3.4.1 in Ref. [16]. Let
qk : T — R be the prolongation of Py ( * denoting the usual pull-back of - ; see Remark 3.4.2 in
Ref. [16]) by the constant extension along the normal direction to é. From the trace theorem on
Lipschitz domains [16], the trace operator is surjective from W14 (T) to W/P»" (9T, where p’
denotes the dual index to p, i.e. 1/p+1/p’ =1, p > 2. Further, the space W'/P» (8T) contains
piecewise discontinuous functions over o7 since p > 2. In particular, there exists a function w such
that @ =1 on &, @ = 0 on dT'/é, and [[@]lyy1.7 7y < 0. The function gy belongs to W' (7).

Using a scaling argument, an integration by parts, the Holder inequality, and the norm equiv-
alence of polynomial functions with fixed degree on the reference triangle T', we have

Jovtom] he| [t /a (5 Ea) )
/Trf)tﬁff(w(jk)—/fff-curlp ()

S Ipellzee o) (i 7 IVllory + hellvote vilr ) - (33)

< hp = hp

:hF

S (100t ¥l 0+ 191 0 r) S (105851001

190y (Nl o I e 2y + 10 oy Nk ) )
S i (10t 29l g + 191 oy ) bl 1 e )

S Ipellzee oy (B IV llory + hrlirotevilr) |

which completes the proof of . By taking p =2/(1 —¢) > 2 in , noting that 7' C F, and
using the (scaled) embedding H¢(F) < LP(F), we get (32). O

The DoF's interpolation operator TZ on the space Vi (F) is well defined for each function v in
H*(F) NH(rotp, F') with v - t. integrable on each edge. We impose

/(v —TZV) “tepr =0 Vpi € Pi(e), Ve C OF,; (34a)

/ (v —fiv) -Xppr =0 Vpr € P (F); (34b)
F

/ rotp (v —in)pz_l =0 Vpl_, € P)_,(F) only for k > 1. (34c¢)
F

Next, we prove interpolation properties of the operator TZ

Theorem 3.3. For each ve H°(F), 0 < s < k+1, withrotpv e H(F),0<r <k, and v- t.
integrable on each edge, we have

. ,
lv = Iyv|[r S hiplv

s,F + hp|roty v||F, (35)

[rotp (v — I, v)|| & < hp|rots o). p. (36)
The second term on the right-hand side of can be neglected if s > 1.

Proof. For each pp_1 € Pr_1(F), we write

. IBP,(34a), (34
/ rotp (v — f;v)pk,l 0.
F



This and the fact that rotp (i,iv) € Py_1(F) imply that
rotp (ﬁv) = Hg’fl (rotpv). (37)

Then, follows from standard polynomial approximation properties.
Next, we focus on . By (34al) and the fact that ﬁv - t. € P(e), we have

(v -t.) = f,iv -t. Ve COF. (38)

Since IIY"'v € (P(F))? C VE(F), we have

e —
I v —T,v|[p < hpllroty (T v —T,v)| r

3 0.F_ _T° IF(H%FV - TZV) - XFPk
+hE|(IL" v = L,v) - torllor + sup
PrEPL(F) ”XFpkHF

As for the boundary term, also using (38)), we have

((my " ~T,v)- tor, pr),

1 ~e 1
W2 (v —T,v) - topllor ShE Y sup

S peePi(e) IPelle
— 52 (v—TI"v) - tor, pi)
=hE D o el

ec oF PrEPk(e) Dklle

Using with € = s and a polynomial inverse inequality, we deduce

1 ~€e
h2 ||V —T,v) - tarllor SV — 0 V| + hiplv — Iy

+ hp|rotr (v — TV F V)| 7.

s, F

Further, the definition of ﬁ in entails
/ (v —T;v) CXppR = / (M) v = v) - xppy.
F F

Thus, we write

0,F 7€ 0,F 0,F
v =Lyl Sllv = Ve + hiplv =T vl p (39)
+ hplroty (v — IRV || £ + helroty (v —T,v)| #.

If s > 1, then we apply , with » = s — 1, and standard polynomial approximation
properties, leading to

~e
T v — Lyl p S Iv=T00 V| p+helv — TPV |Lp+hplroty (v—TI0 V) | 7
~€
+hp|rotr (v=1,V)||r S hi (|V]s,F + [rotp v]s—1,r) S hE|V]sF. (40)

Instead, if 0 < s < 1, we replace the term H%Fv by Hg’FV in . Then, we apply withr =0
and standard polynomial approximation properties, yielding

~€
T "y — L,v||r SIv—TI0 " V| p+ b3 |v — T V] p+hp[rotp (v—TI0 7 v) || o

+hp|rotr (v=L,v)||r < h3p|V]s,F + hrllrote v p. (41)

Bounds and combined with a triangle inequality and standard polynomial approximation
results prove the assertion . O



3.2 Serendipity edge virtual element space on polygons

As in Refs. [4,18,|9], we set nr as the minimum number of straight lines necessary to cover the
boundary of F' and define 8 := k + 1 — np. Next, we introduce a well defined projection I :
Vi (F) = (Pr(F))? as [4]

[ ln = TI5v0) - torl[ Do tor] =0 Vpros € () (42a)

oF

/ (Vh - Hgvh) . taF = O; (42b)
oF

/ rotr (v, — IEvy)pe_y =0 Vph_, € PY_ (F) only for k > 1; (42¢)
F

/ (vip —Igvy) - xppp, =0  Vpg, € Pg.(F) only for S > 0. (42d)
F

Remark 3. To handle the serendipity VEM in the present section we assume the additional (uni-
form) convexity condition (MC) in Section For the particular case 8r < 0, such a condition
could be relaxed at the price of additional technicalities that we prefer to avoid.

Based on the space Vi (F) in and the projection operator ITg in , we define the
serendipity edge virtual element space on the face F' as

SVi(F) = {Vh € Vi(F): /F(vh —II¢vy) - xpp=0 Vp € Pﬁﬂk(F)}, (43)

where P, (F) is chosen to satisfy Py(F) = Pg, & Pg,;(F). It can be checked that (Py(F))* C
SV (F) C VE(F). A set of unisolvent DoFs {dof! }**, for the space SV (F) with Ny = Nemy 1 +
Th—1,2 + Tap,2 — 1 is given by (20), (22), and the internal moments

/ Vi - XFDPBr VDap € P (F) only for frp > 0. (44)
F

This choice reduces the internal DoFs of the standard edge virtual element space Vi,(F) by (g2 —
mgp,2). Notably, we can compute the moments of order up to Sp given in , whereas the
remaining moments of order up to k can be computed by those of the projection IIg; see .
By Proposition 5.2 in Ref. [3], we have that a set of unisolvent DoFs {DoF; }Y7 with Np =
27y, for the space (Py(F))? is given by the functionals used to define IT in (42).
For sufficiently large constants v,% € RT, which we shall fix in the proofs of Corollary and
Lemma below, we introduce a norm ||| - ||| on (Px(F))? induced by ([42):

sl = a\/ 5% - tor
oOF

1

b -1
+4 sup hi [op(sk-tor)(V ppry1-tor) + sup hy Jp Sk XFppe
Pr41€Pry1(F) ||VFpk+1 : t(’)F”BF Pap €EPsL (F) ||pﬁF||F

hp [, rotpsppl_;
T e o]
Y €P)_, (F) Pr—1llF

where 3 := yhp /|F)z.

By the mesh regularity assumptions in Section hp/|F |% is a uniformly bounded constant.
Further, the operator ||| - ||| can be applied to all sufficiently smooth functions.

We first prove a critical polynomial estimate that we shall employ in the following analysis.

Lemma 3.4. If the assumption (MC) in Section is valid, then the following bound holds true:

1 PED,
Ipelle < hhlpelor +  sup  JEPEPER

Vpi € Pr(F), (46)
Pap €EPsL (F) ||p5F||F

where C' only depends on €, k, and the shape-regularity parameter p.
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Figure 1: The sample figure on the element F' € S.

Proof. Tt suffices to prove the result when hr = 1 and then use a scaling argument. It is not
restrictive to assume that F' has a vertex in the origin of the [z, y] coordinate axes and an edge lies
on the “y = 0” axis. Given any vertex v; of F', we denote its coordinates by [v; 5, v;y]. We define
the set of admissible polygons

S = {F : F'is a convex polygon with nr edges and vertices counter-clockwise
ordered {v1,vs, -+, vy, } with v1 = (0,0),v2, = 0; furthermore hp =1,

he > p Ve COF, ¢ < § <7 — ¢ for each internal angle 6 of F}.
We also define the (injective) application Z : S — R?*7F by

F e 01,2, V1,5, V2,2, V2,55 5 Uppzs Uy

Under the geometric assumptions of Section Z(S) is a bounded and closed subset in R?77.
For each polygon F' € S, we denote the edge connecting v; to v;11 by e;, with the usual notation
Unpp+1 = V1. By the assumptions that he > p Ve C OF and each internal angle 6 of the convex
polygon F' satisfies € < 8 < m — ¢, there exists an isosceles triangle T" with basis e; and height
h > B (for a uniformly positive constant /) that is contained in all F' of S. Therefore, it exists
a disk D C T C I such that its radius is uniformly bounded by hp from below. Meanwhile, we
denote the disk of radius R = 1 that is concentric with D and containing F' by D; see Figure (1] for
a graphical example. We have

DCFCD VFeS. (47)

We are now in the position of proving by contradiction. If were false, then we could find
a sequence of elements {F,, } men in S and a sequence of polynomials {p,, }men € Pi(F),) such that

m ].
, sup M < — VmeN. (48)

IPmllF, =1, lpmllor,, <
pseps, (P Psellr — m

1
m

Since Z(S) is bounded and closed, there exists a subsequence Z(F,,,.) C R?"F that converges to

I(F) for some F € S as j — +o00. In particular, all vertexes of F,,, converge to those of F € S as
J — +o00. By and , we have

1Dy 1 < 1Py N1, = 1,

which implies that {p,, }jen € Pr(D) is a bounded sequence.
Then, there exists a subsequence {pmjl }en such that Pmy, — Pk € Py, (D) as | — +o00. By
and standard polynomial properties, it follows that

L= lpmj, |, < My, 15 S (1P, [D-
By taking | — +oo, this yields
pr#0in DCF. (49)

11



Since the ordered vertices of [, converge to those of F' due to Z(Fy,;) — Z(F'), we have the
boundary convergence 0F,,; — 0F as j — +oo. By , we know that the subsequences {pmjl ten
and {8ijl Hen satisfy
1
[P, loF,, < ™’
which entails that pi|gr = 0 by taking | — +oc0. Then, there exists pg, € Pg,. (F) such that

Pr = anﬁBzw (50)

where b, is the polynomial of degree nr that vanishes identically on OF and is equal to 1 at the
barycenter of the element F'. Since F is convex, we have b,, > 0 in F; see, e.g., Ref. [5]. Letting
{ — 400, recalling the last inequality of , and combining the resulting inequality and
together, we arrive at

/ b77F (ﬁﬂF)Q =0,
F
which implies that pg, = 0. By , it follows that
pr =0in F.
Yet, this and contradict each other, whence the assertion follows. O

Corollary 3.5. Under the same assumptions of Lemma[3.4, for 4 sufficiently large and indepen-
dent of F, and each p € P(F), we have

! he' [ VDY - zpp
IV el S ARV epl - tollor + sup | EJE VEPE TEPor
Pap €EPsL (F) ||p,BF||F

Proof. We write

1 Wt [V ep? - x
'AYh??HVFpg'taFH8F+ sup F fp FPi " XFDBr
Pap €EPsL (F) ||p5F||F
@ mp . hpt [ pOdiv(xeps,) — hpt PIXF - NYFp
Z Cl’th2Hp2H8F+Sup F fF k BF F faF k BF
pﬂpepﬁF(F) ||pﬁF||F

hi [ 3
el [ =t | [P

R 1
= (3C" = C")hg? Ipillor +sup —=

Pl €Ps L (F) HpﬁF (i3
where we have chosen 4 sufficiently large. O

Next, we prove lower and upper bounds on the operator ||| - ||| introduced in with respect
to the L2 norm || - || .

Lemma 3.6. For given ¢ > 0, the following bounds are valid:

Isellr S lliselle Vsi € (Pe(F))?, (51)
llorlle S lonllr Yon € VE(F), (52)
lv[llr < vl + h%lvle,r + helrotpo|p Vv € H(F) N H(rotp, F). (53)

Proof. First, we prove (5I). From and sj, € (Px(F))?, there exist ¢f,, € P, ,(F) and qz—1 €
Pj_1(F') such that

sk =Vrgh,, + XFQ—1- (54)

Define rgaﬂ/sk :=rotpsy — ﬁ fF rotr s, and observe that

/rotpskrotpsk:/rothkrothk. (55)
F F

12



By taking p_; = rot sy and Pk+1 = qj,, that realize in the second and third terms involving
supremum of and using the property , we write

N Yhe [ 1Ot o S)TOt 1 Sy

|bquﬂ/ St - tor
oF

||I“OtF Sk ||F

1
n Yhi fap((VF q2+1 + X#Qk—l) 'tOF)(VFqg+1 “tor)
IIVFq2+1 “tor|lor

+ sup h;l fF(VFngJrl + X#Qk_l) " XFPBr (56)
o EPs R (F) Ipsr Il 7

/ Sk - tor
oOF

- h—l Vqu CXpp
- thvnxf%ﬂ ~torllor + sup F fF k41 P
Psp €Psp (1) ||p,ﬁp||F

o 1
> + yhp|rotp sl + AhE|V rapiy - torllor

We estimate every term on the right-hand side of from below. We begin with the term
involving [[rotp sk || F:

— 1
[rotr sk||lFr < ||1rotlr:skp—|—H/ro‘cps;€
\Fl Jr

/ Sk - tor / Sk - tor
oF OF

Further, using and the fact that rotp s, = rotp (X#qk,l), we obtain

F

— 1
= ||rotpskllr + =

e~ 1
= ||rot —
7] [rotrskllr + 7

F |F|2

1
hE|xFqe—1-tor|lor SIxEq-1]lF Shrlrotr (xEqr—1)|| F=hr|rotp sl p.

Inserting this and (57) in (56)), recalling that 5y = (*yhp)/\F\%, and using rotr sy, = rotp (xqp_1),
Corollary and (b4)), we arrive at

/ Sk - tor
oF

B2 " he' [ Ve, - Xep
+ ’Yh;’”VFqng,-l 'tBFH@F - C’YhF“I'OtF Sk”F + sup F fF k+1 Br
Pop EPsR (F) ”pﬁF”F

Yhr

+ ’}/hFHI‘OtF Sk”F — IFI%

nmmpzﬂ/ 5% - tor
OF

X 1 hi' [ Vel -Xerpg
> (y—=CA)hp|rote sl p+3h 3|V rdhy 1 tor|lor + sup —— Jr ktl r
PapEPs  (F) IpgrllF

> (y=CA)hrpllrotrsellr+ClIVrapllr 2 IXFar—1llF + |V raiallr 2 lsklle,

where we have fixed the parameter v = 2C'5. The parameter 4 was fixed in the proof of Corollary
sufficiently large but independent of F. Thus, follows.

Before proceeding with the proof of the other two bounds, we observe the validity of the
following inverse estimate on the space SV (F'), which can be proven as inequality :

[rote vallr S Bz valle  ¥vi € SVE(F). (58)

Estimate is proven using , recalling that v, - typ is a piecewise polynomial, , and
B3):

1
Vi lllr S | vi-torllor + | Vall F +hel[votp vallr S[IValle+helrote vallr S[valle-

As for estimate , from , , the inequality ||V rpri1-tellne(e) S he 2|V Epra1 - telle for
all e in OF, and the fact that the number of edges on each face F' is uniformly bounded, it follows
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that

lvile<

eCOF

+ hp|rotp v||p+||v|F + sup
Pr41€EPK11(F) ||VFpk+1't8FH8F

/v-te
e

S IvIlF + h%|vleF + hrelrotr v| .

O
The following result contains a useful estimate for the projection ITg.
Theorem 3.7. For each ve€ H*(F), 0 < s < k+ 1 with rotp v € L*(F), we have
[v—TI5||p < hE[v]s,F + hp|rotr v F. (59)

The second term on the right-hand side can be neglected if s > 1.

Proof. For any pj, € (Py(F))?, from (51)), the fact that [|II - || is equal to || - |||, and finally
, we obtain

|v = Tgv||p < |v=ppll r + TS (v—pp)l| F SV =P | F +[[TIS (v —pp) [l 7
= |[v—pillr+llv—pillr (60)
SV =pillF + he|v —pgls,r + hrllrote (v — py)l -

If s > 1, then and standard polynomial approximation estimates yield
[v—TIgv|r ShE|vis,F

Instead, if 0 < s < 1, then we replace p, by the average vector constant p, of v over F' in .
The Poincaré inequality gives

|v —TIgv|r S IV = Pollr + hE|v — Pols,r + hrlrotr (v —po)llr
S hilvls e + hplrotp v F.

O

We define an interpolation operator Ij, for functions in SV, (F') by requiring that the values of

the DoF's , , and of Ij v are equal to those of v. Combining with , we obtain
the following property:

rotr (Igv) = TIY, (rot v). (61)

We prove the following interpolation estimates for I; on the serendipity edge virtual element space
SVi(F).

Theorem 3.8. For each ve H(F),0<s<k+1, withrotpve H"(F), 0 <r <k, we have

|v— Lol F S hiplvls,F + hrlrotr | F, (62)
lrotp (v— I v)||p S hplrotr v, p. (63)

The second term on the right-hand side of can be neglected if s > 1.
Proof. As for , by and standard polynomial approximation properties, we have

lrot e (v = T5v) || = [rot e v =TT, (rotp v)|| & S Bplrote vl e

The remainder of the proof is devoted to proving . Observe that and imply rot F(ﬁvf
%v) = 0, which yields the existence of a function ¢ € H'(F) such that IZV—IZV = Vo, satistying
weakly

Ap¢ =divp (v —Iv)in F, ¢ =0on OF. (64)
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The boundary conditions in follow from the fact that
ddjor = L,y —I5v) - tjop =0,
since the definitions of Ij, and T:L entail
T, v—TIv) - t. =0 Ve C OF.
Since
[Ty =Tyl = Vo] r. (65)

it suffices to estimate the right-hand side of (65)). By the fact that divp (ﬁv —I;v) € Pi(F) and
(), there exists a polynomial g € Py(F) such that

divp (xpq) = dive (T,v — Iv), (66)
with
. ~e ~e
Ixrarllr < helldive (I,v —Iv)[r ST,V = I v|F. (67)

Moreover, II¢I5v = IISv since I v and v share the same DoF's , , , and the value of
the projection IIg only depends on such DoFs. Thus, we write

~€ IBP . )

IVrd|7 = T,v—Iv,Vpo)p = —(dive (I,v —I;v),d)r (68)
(66) . (64) ~e e

—(dive (XFrqk),d)F (xpqk, VEQ)r = (xpgr, Iyv — I3 v)p
). @) e e @E2d) . .

2 (g, v - 5Tv) B (g, v — T5v) p S lxpgellz v — TV
~e e e s 3¢ e
< v - Lvllrlv —T5vle < (Blvler + hrelrotev]e) [Tov — Iov] .

where the term [[rotp v||F can be ignored if s > 1.
Substituting into , and by using the triangle inequality and , estimate follows.
O

3.3 Face virtual element spaces on polygons

Since 2D face virtual element spaces can be viewed as a 7/2 rotation of the 2D edge ones, we can
extend all above definitions and results to standard and serendipity face virtual element spaces in
2D; see Refs. [3,4,/7,[9]. The face virtual element space on the face F' is defined as

VI(F)={v, e L*(F):divp vj, €P_1 (F), rotp vy €PL(F), vj-n,cPyle) YeCIF},

and is endowed with the unisolvent DoFs [3,/4]

° /vh NPy Vi € Pi(e), Ve C OF; (69)

J / Vi XEDk Vpr € Pr(F); (70)
F

. / dive viph_, Vph_, € P)_,(F) only for k > 1. (71)
F

We define the DoF's interpolation operator ﬁ on the space Vi(F ) by requiring that the values of

the DoFs (69), (70), and of ﬁv are equal to those of v € H*(F) N H(divp, F'), s > 0. We
can easily extend the interpolation estimates of edge virtual element spaces, to the face case; see
Theorem 3.3
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Theorem 3.9. For each ve H*(F), 0< s <k+1 withdivpve H"(F), 0 <r <k, we have
lo—Toollr S hslolsr + heldive ol £, (72)
ldive (v — To0)||p < Hyldive v],.p. (73)
The second term on the right-hand side of can be neglected if s > 1.

By rotating everything by 7/2 corresponding to edge elements, we can also introduce a well
defined projection T : VI (F) — (P (F))2 by

/8F[(vh —IILvy) - noplfeurly pryr - npp] =0 Yprar € Prpa (F);

/ (v, — Hévh) ‘npr = 0;

oF

/FdiVF (v, — Hgvh)p271 =0 Vp) ,€P? [(F) only for k > 1;

/F(Vh —Iv,) - xps, =0 Vps, € Pp, (F) only for B > 0.
Eventually, we introduce the serendipity face virtual element space on the face F'

SVI(F) = {vh e VI(F): /F(vh —Tvy) -xgp=0 Vpe IP’BF|k(F)} ,
which is endowed with the set of unisolvent DoF's and , plus the moments
/th XFPsp Vppr € Pg,(F) only for Br > 0. (74)

We define the DoF's interpolation operator I£ on the serendipity face virtual element space SVi (F)

by requiring that the values of the DoF's , , and of I,fLV are equal to those of v. We
inherit interpolation estimates from serendipity edge spaces. In fact, the following result is proven
as the rotated version of Theorem [3.8] (and thus also needs the additional mesh assumption (MC)).

Theorem 3.10. For each ve H(F), 0< s <k+ 1, withdivpve H"(F), 0 <r <k, we have
lv— L ollp < hiplvlsr + helldive ol s, (75)
[dive (v— Ev)|r < hipldive o), p. (76)

The second term on the right-hand side of can be neglected if s > 1.

4 Interpolation properties of edge and face virtual element
spaces in 3D

In this section, we prove interpolation properties for general order face and edge virtual element
spaces on polyhedra. More precisely we consider standard face virtual element spaces in Section[£.1}

standard edge virtual element spaces in Section [£.2} serendipity edge virtual element space in
Section (4.3

4.1 Standard face virtual element space on polyhedrons

We consider the face virtual element space [4]

V] (B) = {viy € LY(E) : divv), € Py_1(E), curlvy, € (Py(E))>,
Vy N € H:Dkfl(F) VF C 8E},
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and endow it with the unisolvent set of DoFs [41[7]

. / Vi DpEpg-1 Vpr—1 € Pp_1(F), VF C OF;
F

° / Vi - XE N\ Py Vpk € (Pk(E))B;
E

. / divvap)_, vpl_, € PY_,(E) only for k > 1.
E

A simple computation reveals that the L? projection Hgffviq(E) — (Px41(E))? is computable
by means of such DoFs.
We first prove the following auxiliary bound for functions in Vg_l (E).

Lemma 4.1. For each vy € V'}:_l(E), we have

VT AP
|onllE S hE||d1VUhHE+h llvn - noellor + sup Jpon-2e N pi
pe®u (B3 TE A DillE

(77)
Proof. The following Helmholtz decomposition of vy, is valid; see Proposition 3.1 in Ref. [11]:
vy, = curlp + Vi), (78)
where the function ¢ € H'(E) \ R satisfies weakly
Ay =divvy in E, Vi -ngg = vy -ngg on 0F,
and the function p € H(curl, F) N H(div,E) satisfies weakly
curlcurlp =curlvy, in E, divp=0in E, pAngg =0 on OF. (79)
We have
(curlp, Vi) =0,  [vilE = [lcurlpllf + VY% (80)
By using , an integration by parts, and , it is immediate that

vz BB vy v, 5 1B /8 Vh - Dogt — / div vt S [va moglosllv]on
E E

, ) [0
Hlaivvallplils % (hpldivval sV noslos) V6] (81)

Since curlvy, € (Pr(E))? with div (curlvy) = 0, (7) implies the existence of q; € (Px(E))? such
that

curl (xg A qy) = curlvy, and ||xg A qi |l S helcurl vy 5. (82)

The following inverse estimate inequality involving face virtual element functions is the three
dimensional version of and is based on the existence of a shape-regular decomposition of FE
into tetrahedra (see Remark :

leurlvi|z S hp'lvalle Vva € Vk 1(E). (83)
Next, we estimate the first term on the right-hand side of :

|curl p||%, B P/p-curlcurlp/p-curlvh/p-curl(xE/\qk)
E E

IBP,(
B [ o= vo)-txenan+ [ (panon)- (e A
OF
() Vi XE AP (84)
2 sw Mﬂwwnja)nxmm
pre®r(E)?  IXE APLlE
.63 vV, X AP
S sup JEVRXERRL g Vi,
pre®u(E)?  IXE APLllE
Bound easily follows by combining 7 , and . O
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The DoF's interpolation operator T,i on the space V£—1(E) is well defined for functions in
H*(E)NH(div, E), s > 1/2:

/ (v —fiv) ‘nppg_1 =0 Vpr—1 € Pr_1(F), VF C OF; (85a)
F

~f
[ =T xenp =0 Vb € (Pi(E)): (s5b)
E
/ div (v —ﬁv)pk 1=0 vp)_, € PY_ (E) only for k> 1. (85¢)

From and ., we have
div ([ v) = 12, (divv). (86)
Next, we prove interpolation estimates for the three-dimensional face virtual element space V£71 (E).

Theorem 4.2. For each ve H(E), 1/2 < s <k, with dive € H"(E), 0 < r < k,we have
lo—Thvlle S hglolo.s + haldivol s (87)
ldiv (v — T, )| < hildiv o]z (88)
The second term on the right-hand side of can be neglected if s > 1.

Proof. By and standard polynomial approximation properties, we immediately get .
Hence, we focus on bound (87]).
First, we observe that (85al) implies

BEITE Y ~Tov) - noplon < BEI(TREY = v) -nos]los. (89)

Using the facts that TIV" v € (P,_1(E))® C V{_,(E) and Ihv np € Py_1(F), (77), and (85), it
follows that

~f
0.E
18 van 1V_IhV||E S hE'”le(Hk: v =Lv)le

~

0,E =~f
=f I v—-Lv) - xg Ap
H(Hk v —T,v) -nogllsr + sup fE( k=1 nv) k
P (P (E))® x5 A Pille

ED).E o
< hglldiv(v =I5 V)| e + helldiv(v — T,v)||g
+h3)(v = T2V nopllon + v — T0E v 5. (90)

We apply the triangle inequality and | . ) to obtain
v =Tavle < v = T5vle + 05y - Tivle Iv - vl (91)
+ hplldiv (v = IEv) | + hidiv (v = D) |2 + b (v~ T2Ev) - nog o

If s > 1, standard polynomlal approximation properties lead to

~f (@)

: : =f
v — IhV”E v =I5 l|e + hp|ldiv (v = T V) | + hglldiv (v = T,v) ||

(
+hplv -5 Ve S by (Vs + |divv]s_1e) S hilvlse-

Instead, if 1/2 < s < 1, we replace the term HZ 1V by Hg’Ev in and , use standard
polynomial approximation properties, and write

~f () )
[v—TI.vle g v = T35V g + hg|ldiv (v — TI P v) ||

. =f &5 .
+ hplldiv(v —=Lv)|g + hylv — Oy Pl < hylvlse + helldivy| e
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4.2 Standard edge virtual element space on polyhedrons

As in Ref. [4,9], we first introduce the boundary space
Bi(0E)={w, €EZ(0F) :v;, € Vi(F) VF COE, v} t. is continuous Ve COF}, (92)
where v/ denotes the tangential component of the vector vj, over F given by
vi, = (Vi — (Vi -np)np)|p. (93)
The standard edge virtual element space in 3D is defined as [4]

VE(E) = {vy € L2(E) : divv, € P,_1(E),curlcurlvy, € (P,(E))?,
vl € V{(F) YF C OE, v}, - t. is continuous Ve C OF}.

We endow the space Vi, (E) with the following set of DoFs:

° /vh -tk Vi € Pr(e), Ve C OF; (94)

. / Vi, - XpDk Vpi, € Pi(F); (95)
F

F.0 0 0 :

° / rotp vy, Pr_1 Vpp_1 € Pp_1(F) only for k > 1; (96)
F

. / curlvy - x5 A py Vp,, € (Py(E)): (97)
E

. / Vi - XEPk—1 Vprp—1 € Pr_1(E). (98)
E

The unisolvence of the above DoFs is proven in Section 8.6 of Ref. [9]. From Proposition 3.7 in
Ref. [4], the L? projection HZ’E from V{(E) to (Pr(E))3 can be computed by such DoFs.

Next, we recall a well-posedness result for curl-curl systems; for the sake of completeness, we
discuss its proof.

Lemma 4.3. For any given v, € Vi.(E), the problem

curlcurl p = curl v, divp=20 m E,
{ P h P (99)

curlp Angg = v, Angg, p-ngg =0 ondE,
has a unique solution p in H(curl, E)N H(div, E). Moreover, the following a priori bound is valid:

3
lplle + hilleurlpl| s < hE|curlvnlls + hg|lvn A nox|los- (100)

Proof. To see that is well-posed, we introduce the auxiliary variable o := curl p. Then,
can be equivalently decomposed into the two following problems:
o for given vj, € Vi (E), find o € H(curl, E) N H(div, F) such that

curlo = curlvy, dive=0 inFE, (101)
o Angg = Vi, ANgg on OF;
e find p € H(curl, F) N H(div, F) such that
lp=0, divp=0 inF,
curlp =0 ivp in (102)
p-ngg =0 on OFE.

Since the above div-curl systems are uniquely solvable [2}(7], has a unique solution. Next, we
prove (100). We first observe that

(@ (o1 1 (103)

(
[eurlpllp ="|lolle <  helcurlvi|z + hgllve Angsllos.
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Furthermore, we have

@
lplle hEncurlangh leurlva |z + h3llve Anosos- (104)

~

The assertion follows combining (103) and . O

We could have proved Lemma by writing in mixed form [2630]. In the following result,
we prove an auxiliary bound for functions in Vi (E).

Lemma 4.4. For each v, € Vi, (E), we have

1

h2 ’UF -'BFpk
||'Uh||E§Z hf'p||cur1vh np||p+he||vl - taF”aFJrsup%
FCop peebi(P) |l TpprllF

h curlv, - xg A Vy, + TEPL—
+ sup EfE h * TE pk+ sup fE h * TEPE 1. (105)

P, €(P(E))3 lze A pllE Pk71€Pk,1(E)HmEpk71||E

Proof. We first prove that there exist ¢y € H'(E) \ R and p € H(curl, E) N H(div, E) such that
the following Helmholtz decomposition of vy, is valid:

v, = curlp + V. (106)
To prove , we define a function ¢ € H'(E) satisfying weakly
Ay =divvy in E, ¢ =0 on 9F, (107)
and a function p € H(curl, £) N H(div, E) satisfying weakly

(108)

curlcurl p = curlvy, divp=20 in F,
curlp Angg =vp Angg, p-ngg=0 onJdFE.

Lemma [4.3]implies the well posedness of (108). Identity (L06] easily follows from (107)), (108), and
the fact that F is simply connected. We also have

(curlp, Vi) =0,  |vilE = [lcurlpllf + VY% (109)
Since ||p”||r = [|p Anp||F for all F in E, cf. (93), we obtain

|curl p||% 2P /Ep-curlcurlp - /8E(curlp/\naE) - p

-./p curlv;, — Z / vy, Anp)

FCOFE
< llpllellcurlvy e + [vi Anorllaslp Anoellor (110)

.\-
S lelsleurtvalis + (hg* lells + hileurlplx ) [va Anorlar
(

hulleurlvilp +hg|vEllor) leurlpllp.

In view of @ and divvy, € Py_1(F), there exists gx—1 € Pr_1(F) such that

diV(XEqkfl) :diVVh and ||XEQk 1HE hE‘HleVhHE (111)
We obtain
| Va||% IBP /divvhw —/ div (xpqr—1)v (112)
E

IBP - ) -
/ EQk—1 (Vh—CUPIP)SHXEQk71||E||Cur1pHE+/ Vi XEQk—1
E

<hE

~

L9 Vi - XEPk—1
hllcurlvalls + R IvElos + sup LBV ZEPELY pi
Pr—1EPL_ 1(E)HXEpk—1||E
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Recall that the 2D and 3D spaces here analyzed constitute an exact complex [4], whence curlvy, €
Vg_l(E). Since v, € Vi (F) for each F in OF, we have

. o

Vi e S hrelrote vy |lr + REIVE - torllor + sup ‘[FﬁéiF

prele(F) |1 XEDEllF 1)

@ 3 curlv, -xg Ap

|curlvy|g S hillcurlvy -nggllae + sup Ji B\ Pg
pre®u(E)? |[XE APLlE

By the fact that divvy, € Pp_;(FE) and employing arguments similar to those used in proving ,
we have the following inverse estimate involving edge virtual element functions in 3D:

Idivve|e S hg'lville Yvi € Vi(E).

We plug this and (113)) in (112}, and deduce

Vh * XEPk—1
IVelE < l sup Jpvixepi (114)

pr1€Pr1(B) |XEPK-1llE

F F

; z Vi - XpDk
+hi Y | hrelrote v ||+ hEIVE - torllor +  sup MiF
Feor peeP(F)  IxEpellF

3 curlvy -xg Ap
+hg | hEllcurlvy -npglop +  sup Ji N valle.
pre®uE)®  [XEAPlE

Inserting (110) and (114) into (L09), using hp ~ hg, and noting that roty vi = (curlvy)|r - np
for all F'in OF, yield

3 Vi XEPk-1
a3 < |hsllcurlvalls + ALV log + sup 48 Y% XEPE-1
o161 (Bl XEPK-1E

F F
: 3 Vi - XpDk
+hp Z he|rote vi |7 + BEIVE - torlor +  sup MiF
Feok peebs(F)  |IXEPEl P

3 curlvy, -xg A p
+hg | hEllcurlvy -nsgelop +  sup Jr EN L valle
pee®()?  IXEAPL|E

<

~

1
3 hi VF . XF
> | hillewrlvi np|lp + he|[vi - torllor +supM
FCOE PrEPK(F) x5l 7

g [ curlvi - xp A py Jovn Xepe-

+ sup + sup Vil e
pLE(Py(E))3 Ixe A pille pr_1€Ps_1(E) IxEpe—1llE
O
For each sufficiently regular v, we define the DoF's interpolation operator AIZ on Vi(E) by
/(v —IZV) tepr =0 Vo € Pi(e), Ve C OF; (115a)
[ =T xkm =0 Vo € Pu(F); (1150)
F
/ rotp (v fiiv)Fpg_l =0 vp)_, € PY_(F) only for k > 1; (115¢)
F
/ curl (v fﬁv) -xp Ap, =0 Vp,, € (P(E))?; (115d)
E
/ (v —ﬁv) -Xppr—1 =10 Vpr—1 € Pr_1(E). (115e)
E
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Next, we prove interpolation estimates for the operator AIE The following result includes different
requirements on the regularity of the objective function; see also Remark [l Below, given any
non-negative real number s, the symbol [s] will denote the highest integer strictly smaller than s
([-] differs from the floor(-) function; for instance, [1] = 0 while floor(1) = 1).

Theorem 4.5. For each v € H'(E), 1/2 < s < k+ 1, with curlv € H'(E), 1/2 < r < k, for
7 =min {r, [s]}, we have

|v— }Z’U”E < h|vls e + B eurlvls g + hg|lcurl o] g, (116)
eurl (v — I, v)|| g < hylcurl v, o (117)
The third term on the right-hand side of can be neglected if s > 1.
Proof. Following Proposition 4.2 in Ref. |4], we have

curl (ﬁv) = iﬁ(curl v). (118)

Recalling (87), bound immediately follows.

Next, we prove bound (I16]). We define the natural number k = [s] < k and consider IIZ the
(vector valued version of the) projection operator from H*(E) in P (E) defined in Ref. [32]. Such
an operator guarantees the following approximation properties

5B, |curlv—curlIlIfv|g < hylcurl vz g (119)

v -TEv]e < hi

To show the second bound in , it suffices to recall the properties of va. In particular,
see [32, egs. (2.1) and (2.2)], all its partial derivatives (up to order k) have the same average as
those of v. This implies that also the derivatives (up to one order less) of the curl of the two
functions have the same average. The estimate follows from iterative applications of the Poincaré
inequality.

Since TIY'v € (Px(E))® € Vi(E), we obtain

~e (105) 3 ~e
IIEv —T,v| e ? Z hz|curl (TIEv —T,v) - nplr (120)
FCOE

i ~e
7¢ RE [L(TEv —T,v)F - xEpp
. Z he([|(AFv = T,v)" - torllor +sup r Jr (0 h FPky

FCOFE PrEPL(F) ||X1F7pk||F
h curl (TIZv—T, v)-x A H v— I v)-x
+ sup EfE ( & h ) ENDPg + sup fE( h EPk—-1 _ZT
PLE(PL(E))3 ”XE/\pk”E Pr—1€PL_1(E) HXEpk 1||E

We estimate the five terms on the right-hand side of (120]) separately. First, we observe
curl @v)|r - np E2FD 107 (curlv)|p-np) VF C OE. (121)

As for the term 77, the triangle inequality and the trivial continuity of the projector Hg’i in the
L2 norm implies

T < Z h2 (||curl v— HE ) nF||F+||cur1v-nF—Hg’fl(curlv-np)HF)
FCOE

([21) 5
Z hz|curl (v—IIFv) - np|p. (122)
FCOE

~

We estimate the terms T3, Ty, and T5 as follows:

5 1
T, (115b),(115d)),({115€) Z sup h127 fF(v B HI_CEV)F i XI;pk? (123)
g i =
i=3 FgaEpkE]Pk(F) ||X§pk‘||F

+ sup Je(v —TPV)  Xppp—1 hg [peurl(v —TIFV) - xg A py,
perepii(B)  [1XEPR-1llE peen(m)s (32048 A f

S DRI =T + ||v = IV £ + hi|lcurl (v — TIFV)||&.
FCOE
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Inserting (122)) and (| into (|120) yields

~e 3 1
ey -Tvlle< Y (h;ncurl (v = TIEV) gl b (v = THE) P )
FCOE

+ |v = IIEv| g + hg|curl (v — IIEV) || g + To. (124)

We are left to estimate the term T5. If s > 1, then by (115al), with 1/2 < § < min{l,s—1/2},
and @D with € = §, we have

o+ 1L
To=hel|(Ev=T,v)" torlor S Y Bl (v =TIE) |l + Bt (v —TIE) 5 1)

FCOFE
<SS hilhp v - TEV||g + b 2 |v - TTEv]5 )
FCOE (125)
+ 12 (" v — TPV g + v~ TTEVls, )

6+2|v o

= v —Ev|g +hgv —IEv]s g+ 7541 e

Substituting (125)) into (124)), and using , (119), and standard polynomial approximation prop-
erties, we obtain

~e 3
IV —Tvle S ) (hilcurl(v —TIFv)- nrlr+ bV - 12" r)

FCOE

S5+ 1
—l—hEchrl(V—H,—CEV)HE+||V—H,—€Ev||E+h%|v—H,§v|5,E+hE+2|V—H,—€Ev\5+%7E (126)
< hpllcurl (v — IIEV)| g + b curl (v — TIEV) o g + ||v — TIEV || g

+ hlv = TPV, g S Wy eurl vl g + vl b,

Instead, if 1/2 < s < 1, we replace the term H%E by Hg’E in (120) and (124]). For the term
T, by the fact that (HO’EV - Ihv)F te € Pole) Ye C OF, , and the property that
1Pl ey < Chi * [Ipglle, we arrive at

((Hg’Ev _ﬁv)F . teaPO)e

Y ne Y s
FCOE egaFPOEIP()(e) ||p0H€

v -2 Fy F o te,p0)e
=Y e Y sw (( 0" V) Po)

FCOE  eCoF PocPo(e) [polle
1
> (I =TI | b (V=TI V)|t B ot e (v =TI V)P | ).
FCOE

Combining this and (124), we choose ¢ = s — 2 and apply (§) with 6§ = r, with § = s, (9), and
standard polynomial approximation propertles yielding

I3 v = T, vl (127)
3
< Y (hillewrl (v—TI)7v) npl s + hEll(v = T Z3)F | 5
FCOE

0 = TPl ) + v = TV + hglleurd (v = T PV) |
S hplleurl (v = T P) g + 5 eurl (v = T PV)ly g + v = TGPV

+ hglv — Hg’Ev\S,E S he|vls,e + hrE+1\curlv|T7E + hg|curlv| g.

The assertion follows from a triangle inequality and standard polynomial approximation properties.
O
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Remark 4. Theorem represents an optimal approximation result in the H.y norm. For low
values of s it requires some additional regularity on curlv due to the definition of the interpolation
operator. This requirement could be slightly relaxed employing arguments similar to those used in
the proof of Lemma requiring that curlv - ng is integrable on the element faces. This comes
at the price of more cumbersome technicalities, which we prefer to avoid. Besides, for s > 3/2,
we can choose r = s — 1 in and eliminate also the second term on the right-hand side. This
same remark applies also to Theorem below.

4.3 Serendipity edge virtual element space on polyhedrons

We first change the boundary space By (9F) in into its serendipity version:
BZ(OE) = {v), e L>(OE) : v}, € SV{(F) VF C OE, v}, - t. is continuous Ve C OF} .
The serendipity edge virtual element space in 3D is defined as [4}9]

SVi(F {vh € L*(E) : divvy, € P,_1(E),curlcurlvy, € (Px(E))?,
vh € SV{(F) VE C 9E,vy, - t. is continuous Ve C 9F }.

We endow SV (F) with the unisolvent DoF's , , , , and

* / Vi - XpppeVppy € Py, (F) only for fp > 0.
F

For each sufficiently regular v, the DoFs interpolation operator Ij, on the space SV} (E) can be
defined through the above DoF's enforcing the same conditions (115al), (115c)), (115d]), and (115€)),
and substituting (115b)) by

/ (v— IZV)F ’ XII;pBF =0 Vpsr € Ppp (F) only for Sr > 0.
F
From Proposition 4.2 in Ref. [4], we have

curl (ISv) = T (curlv). (128)

Next, we prove interpolation estimates for the operator I, on the serendipity edge virtual element
space SV (E).

Theorem 4.6. For each ve H*(E), 1/2 < s < k+1, with curlve H' (E), 1/2 <r < k, we have

lv— Tl e < hiplvls g + b eurlvls, g + higlleurl v g, (129)
lcurl (v — I v)||g S hplcurlv], g. (130)

where ¥ = min {r, [s]}. The third term on the right-hand side of (116]) can be neglected if s > 1.

Proof. The proof of bound ([130)) is essentially identical to that of (L17]); see (128).
Next, we prove bound (129)). By the inclusion that SV (E) C Vi (E), bound (105)) holds true
for functions in SV (E). Thus, for all vj, in SV} (F), also making use of (42d)) and (43), we can

write

1
E HeVF_XF %
|VhHE g (h leurlvy, np|p+he||vE tor|or+ sup hi [ TGVy - Xpp )

FCOE prEPL(F) ||X§Pk||F
h curlvy, - xg A Vi X _

+ sup £ IE h E APk + sup M
P, €(Px(E))3 IxE A Pille perePe 1 (B) IIXEDK-1]lE
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Let Hg be the operator introduced in the proof of Theorem By replacing vy, with H]lfv -Ifv,
we can write

M2y —Tvlp S Y hifcurl (v — Tv) - ng| (131)
FCOE

II (11 V—I v)F . xEp,,
+ > hF(||(H;;EV—IZV)F'taFHaFJrsup FfF - )

FCOE P EPx (F) HXFpk“F
4 sup hp [peurl(TIFv —T;v)-xp A py Jp(MEv —Tv)-Xppp 1
P, €(Px(E))3 Ixe A Pille pe1€Pe 1(E) |IXEDPR-1|lE

The difference between and resides only in the third term on the right-hand side,
whence we only discuss its upper bound. The other four terms are dealt with exactly as in the
proof of Theorem

Due to the definition of the interpolation operator If,, the functions (Ifv)¥ and v share the
same DoF's on each face F' of E. Since the value of the projection II§ only depends on such DoFs,
we have I1¢(Iyv)Y = II§vY. This allows us to write

e E e F e E _\F e E_N\F
ITIS (I v — Iv) " |l = TG (v — I V)" lp S (IS (v — T v) " [ r

(42) &3
(v 11Ev) ] (v TE) | 4 B (v TIE) . ot (v —TIEY) | .

This yields

II¢ HEV Iiv)"x
sup FfF s FpkNZh T (T2 v — 15 v) || (132)
FgaEkaPk(F) ||prk:||F FCOE
S Y hp(Iv =TE) e + b5l (v = TIEV) 7| g + he|rote (v = TEEV) 7| ).
FCOE

Inserting (122 , -, and ( into , we derive

3 1
ITEv —Tivilp Z (h;ncurl(vfn,ifv)'nF||F+h;H<vfn,€v>F||F
FCOE

+ h6+2 (v — HgV)FE,F) + v — H]—CEvHE + hg|curl (v — H%v)HE + T5.

Bound (129) now follows from the same arguments as in (126))-(127]). O

Remark 5. Differently from the 2D case, we proved interpolation estimates in 3D for face and edge
elements for functions in H*® with s > 1/2. One might possibly try to design quasi-interpolation
estimates for functions with minimal regularity, i.e., in H®, s > 0, and some extra regularity
condition on the divergence/curl, for instance by taking the steps from the recent work [25] on
finite elements. Such additional developments are beyond the scope of this work.

5 Stability theory of the discrete bilinear forms

In this section, we focus on the stability properties of L? discrete VEM bilinear forms proposed
for the discretization of electromagnetic problems in 2D and 3D [3[4]. In Section we define
computable stabilizations for the VEM discretization of L? bilinear forms associated with face and
edge virtual element spaces in 2D, and prove their stability properties; in Section we consider
the corresponding results in 3D. Note that here we focus the attention on stability forms that
have a “functional” expression with explicit integrals and projections (i.e. do not depend on the
particular basis chosen for the VE space). With some additional work, the present results could be
also easily extended to dofi-dofi type stabilizations, which are instead related to the basis adopted
for the test polynomial spaces in the DoF's definition.
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5.1 The stability in 2D edge and face virtual element spaces
For each face F, we introduce the discrete L? bilinear form (-,-)r : Vi(F) x Vi(F) — R as [34]

Vi Whler = (0 vy, TP wi) g+ SE (1= TI0F )vy, (T — 10 Ywy). (133)

In ([133), S¥(-,-) denotes any symmetric positive definite bilinear form computable via the DoFs
of Vi (F) such that there exist two positive constant Cy and Cy independent of the mesh size for
which

Cullvalli < S (va,vi) < Collvallh Yvi € VE(F). (134)
There are many stabilization choices in the literature. We here analyze the following (computable)
stabilization SI" : V{(F) x V§(F) — R given by
JF

Sf(v;“ Wh) = hFZ (Vh te, wWp, -te)e—l—h%(rotp Vh,Totp Wh)F+(H2+1Vh7 HZflwh)F'
eCOF

Theorem 5.1. The stabilization SE(-,-) satisfies the stability bounds in (134)).
Proof. The lower bound in (134]) is proven as follows:

3 Vi - XFDk
velle S hrelrote villr +hElva - torllor +sup Jevnxrpy
preb(F)[XFDE|| F

1
< hplrote villp + hE|Vh - torllor + [T villF,

Next, we observe that the inverse inequality is valid for functions in V7§, (F) as well. We deduce
the upper bound in (134):
3 0,F 2
hipllv - torllor + hellrotr vilr + I L valle S (Ve - torll—1 op
+ hpllrote villr + [T vellr S Ivelle + hellrote ville S llvalle.

~

O

In the serendipity case, we can still define a discrete bilinear form on SV (F) x SV (F) as
in (133)), substituting the stabilization S¥(-,-) by the (computable) serendipity stabilization

S:’F(Vh, Wh) =hp Z (Vh-t67 Wh'te)e—FhQF(l"OtF Vh,rotp wh)p—i—(l_[gvh, ngh)p
eCOF

Theorem 5.2. The stabilization S5 (-,-) satisfies the bounds
CillonllF < 827 (vh, vn) < Collvnlf Von € SVL(F).

Proof. The proof follows along the same lines of that of Theorem [5.1] The only difference resides
in the lower bound, while treating the term involving the supremum. It suffices to observe that,

due to (42d) and (43), we have

Vi - XEDk II¢vy, - x
sup fF h FDk _ sup fF SVYh Fpk’
meePo(F)  IXFpellF  perr)  [IXEDRIF
and then apply the Cauchy-Schwarz inequality. O

Remark 6. The stability theory of standard and serendipity face virtual element spaces in 2D
follows from the above stability bounds for edge virtual element spaces, changing “t.” into “n.”
and “rotp” into “divg”.
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5.2 The stability in 3D edge and face virtual element spaces

We first prove stability properties for 3D face virtual element space. We introduce the symmetric,
positive definite, and computable bilinear form SJISJ(~, -) on V£71(E) X V£71(E) defined by

S?(Vh,wh) = hE Z (Vh ‘Np,Wp - IIF)F + h%(diVVh,diVWh)E
FCOFE

+ (I v, I w) g (135)
We define the local discrete bilinear form on Vi_ (E) x VI_, (E):
Vi, Wil g E = (T2 v T 5 wi) g + SE(T = T0)5 v, (T— TL)F )wy), (136)

which is computable and approximates the L? bilinear form (-,-)p. Recalling Lemma and
employing the same arguments as those used in the proof of Theorem we have the following
stability property.

Theorem 5.3. The following stability bounds are valid:
Cillvally < SF(vn, o) < Collwnll Vou € VI (). (137)

Next, we consider the stability analysis for the VEM discrete form associated with the 3D edge
virtual element space [4]. The VEM discrete form of the L? bilinear form (-,-)z on V(E) x VL(E)
is defined by

Vi Whles = (0 vy, IV P wy,) g 4+ SE((1 - TP vy, (T - TY " )wy,), (138)

where SZ(-,-) is a symmetric, positive definite, and computable bilinear form defined by

SEnwn) = > (i~ tor, wa - tor)or + he(I 5 vE TP wl) )
FCOE

+ hQESf(curlvh, curlwy,).

Before proving stability properties for the discrete bilinear form [-,-]¢ g, we extend the inverse
inequalities involving edge and face virtual element functions in Lemma 5.3 of Ref. [11] to the
general order case. Such estimates are critical in the following.

Lemma 5.4. The following inverse inequalities hold true:

lonllz < bt lonll -1 Yo € VI (E), (139)

_1
lonlle < hp? 1R 1l 3 p Vo, € Vi(E), VF C 9E. (140)

Proof. We first prove (139). Recalling (82)), for each v, € Vi_l(E), there exists q;, € (Px(E))3
with divq;, = 0 such that

curl (v, —xgAqy) =0, |xpAdq|lg Shellcurl(xpAqy)|| g Shelcurl vy | 5. (141)
Moreover, the following polynomial inequality holds true:

(xeAag, V)E

)
|xg Aqyll-1, = sup S hellxe Aqglle- (142)

ofveHl(E)  |IVILE

Part 1: proving the auxiliary bound (147) below. From ([141), there exists a function
¢ € HY(E) \ R such that

vy —xXp Aq, = V. (143)
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Such a function is defined by
Ay =div(vy, —xgAqy) in B, VY -ngp = (vy —xg Aqy) ngg on OF.

Observing that Vi|sg - ngg is a piecewise polynomial, we have

Ivy||2 = / Vi nppih— /E PAY S|V - noploevlor + 1AV &Y 6

@,
’ F(IVYle + el Al e) [¥llos + 1Al 5[] 2

1
S hg® (IVY[E + [|[AY]-1,8) ||¢||aE+h Ay elvle

_1 _ _1 1 1 _
S (i 10loz-+15 1016 19015 (g ISl + 5 1) 19795
Also using , this implies
1931 S5 16 IV I+ 9 o | V6 =1 146 V7 - (144)

Further, by using the continuous inf-sup condition of the Stokes problem, see, e.g., Section 8.2.1
in Ref. |14], we have the following upper bound on ||¢| g:

@dve)e o (V0.Ee

[4]le < sup = VY|-1,6- (145)
ceniey |€lLE £EH) (B) NEE
Combining (144)) and (145)), we arrive at
IVYlle < hE IVYll-1e. (146)
Using (143 , . 146)) yields
Vi = x5 Aalle S hp've — x5 Ayl -6 (147)

Part 2: proving - We introduce the auxiliary function z € Hj(E) that realizes the supre-
mum in the definition of ||v, — xg A qi|| 1.z, i-e., let z be the function in H{(E) such that

Vi —xg Adill-1.6 S (Vi —XE AQy,2)g with |z|; g = 1. (148)

~

As in Remark |1} we split £ into shape-regular tetrahedra Tp,. Define 1Y g as the square of the
piecewise quartic bubble function over Ty, scaled such that |Yg|p~z) = 1. We take wg =
Ypcurl (xg A q;) and defined its scaled version wg = Wg/|curlwg|, z. We have wp € H(F)
and |curlwg|; g = 1. Furthermore, by , we get

(vi, —xp Aqy,curlwg)g = (Vy,curlwg)g = 0. (149)
We write
(xg ANqy,curlwg)g 2P (curl(xgp Aqy), WE)E
(curl(xp A qp), YEcurl (xg A qk))E(curl (xg Adqy), Yecurl (xg Aqy))E
lcurl (Ypeurl (xg Aqy))li,e  —  hi'lleurl (Ypcurl (xg A qy))|e
. @ C||cur1 (xe Aay)|l%

~ hg’lleurl (xp /\qk)”E

= Chi|lcurl (xg A qy)||e

[
> Chgplxe Aaylle > ClHXE/\qu—l,E- (150)
From the definition of negative norm || - ||_; g, the fact that curlwg € Hy(E), and (149), we can
write
v, €)E vy —Xg N E+(xeA E
||Vh||—1,E sup ( 75) — sup ( qka&) ( qk7£)
¢eni(p) 1&lLE  cemi(m) 1€l1,E

S (Vvih —Xp A Qy, 2+ acurlwg)g + (xg A qy,z + acurlwg) g (151)

|z 4+ acurlwg|i g

(Vi —xp AN, 2)g+ (XEAQ,2)E + (XE A Q,acurlwg) g

>
- 14+«

)
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where « is a positive constant, which we shall fix in what follows. Next, we obtain

C”Vh —xp AQll-1.6 — [[XE Aqpll-1.8 + Crallxe Aqyll-1.e

v
‘h| 1—|—a

C H A ” Cra
= \Y% X q + — -
1 h — &E k 1,E 1

@@.@
>

||XE ANgll-1,E

he([vih —xe Aqille + X A qglle) > Chellval e

where we have fixed « = 2/C4. This completes the proof of .

Part 3: proving (140). We first recall that v/ belongs to V§.(F) for each v, € V§.(E). Next,
we observe that the inverse estimate for functions in V£71(E>7 implies an 2D analogous
counterpart on the space Vg (F):

IVille S hp'Ivall-1r Vvi € VI(F).

The counterpart for the 2D edge virtual element space Vi,(F) is obtained via a “rotation” argument
as in Section 3.3}

Valle S ket vall-1,r  Yvi € VE(F).
Hence, we arrive at
IVille S ket lIvill-ie Vv € Vi(E), YF C OE.
The assertion follows from classical results in space interpolation theory [31]. O

With these tools at hand, we can prove the following stability property.
Theorem 5.5. The following stability bounds are valid:

Cillonlf < SE(vn, o) < Collonlf Von € Vi(E). (152)
Proof. The lower bound in (152)) is proved as follows:

g 1
2 : h2 VF 'XFpk
”VhHE hf;||curlvh nFHF‘i’hFHVh t3F||8F+SupM

FCOE prEPL(F) ||X1prlc||F

h curlvy, -xg A Vi - XpDr_

+  sup e Jp WXERPE L ap Jpvn - XEpeot
pLE(PL(E))3 Ixe APl pr_1cPr1(B) IXEPR-1llE

’hESf (curlvy, curlvy,) 2+Z (hp||vh tor|lor+hp ||I"[2_f1 F||p)
FCOE

As for the upper bound in (152)), we write

W=

Z (hF||vh taFHaF—&-hFHHkth I )—&-hESf(curlvh,curlvh)
FCOE

.0 , ,
S 3 (REIVE - torl_yor + REITR LT e ) +hpllcurl va =+ val s

FCOE

12 0,F _F

S > (BRI IR0t vE e+ b IV )b leurd vi s+ va s
FCOE

(E8). (10D (T4, (139
S v Anss|_i gpthellcurlvilg+|ville S lleurlvy| -1 g +[vil e

2

curlvy, IBP
= s SR BE o T
veui(m)  |[YhEe
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Remark 7. Following the definition of S5 (-,-), we can also define the following alternative stabi-
lization for the case of the serendipity edge virtual element space in 3D:

s, E
o (viwn) = > (We(vi - tor, wh - tor)or + hr(TIGvE  TIGwS ) p)
FCOE (153)

+ h%Sf(curlvh, curlwy).

S,

The advantage of the variant above is that, if we substitute (I — Hg’ﬂ) by (I — II§) in the
stabilization term of the scalar product ([138)), then the second addendum in definition (153]) will

vanish, thus leading to a lighter form. Employing analogous arguments, we can prove the same
stability bounds as in Theorem also for choice (153)).
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