Purpose: Bladder cancer is the most common malignancy of the urinary tract and one of the most prevalent cancers worldwide. It represents a spectrum of diseases, from recurrent non-invasive tumors (NMIBCs) managed chronically, to muscle infiltrating and advanced-stage disease (MIBC) that requires multimodal and invasive treatment. Multiple studies have underlined the complexity of bladder tumors genome, highlighting many specific genetic lesions and genome-wide occurrences of copy-number alterations (CNAs). In this study, we analyzed CNAs of selected genes in our cohorts of cancer stem cells (CSCs) and in The Cancer Genome Atlas (TCGA-BLCA) cohort with the aim to correlate their frequency with patients’ prognosis. Methods: CNAs have been verified on our array-CGH data previously reported on 19 bladder cancer biopsies (10 NMIBCs and 9 MIBCs) and 16 matched isolated CSC cultures. In addition, CNAs data have been consulted on the TCGA database, to search correlations with patients’ follow-up. Finally, mRNA expression levels of LRP1B in TGCA cohort were obtained from The Human Protein Atlas. Results: We firstly identified CNAs differentially represented between TGCA data and CSCs derived from NMIBCs and MIBCs, and we correlated the presence of these CNAs with patients’ follow-up. LRP1B loss was significantly increased in CSCs and linked to short-term poor prognosis, both at genomic and transcriptomic level, confirming its pivotal role in bladder cancer tumorigenesis. Conclusion: Our study allowed us to identify potential "predictive" prognostic CNAs for bladder cancer, implementing knowledge for the ultimate goal of personalized medicine.
Conconi, D., Jemma, A., Giambra, M., Redaelli, S., Croci, G., Dalprà, L., et al. (2022). Analysis of copy number alterations in bladder cancer stem cells revealed a prognostic role of LRP1B. WORLD JOURNAL OF UROLOGY, 40(9), 2267-2273 [10.1007/s00345-022-04093-1].
Analysis of copy number alterations in bladder cancer stem cells revealed a prognostic role of LRP1B
Conconi, Donatella
Primo
;Jemma, Andrea;Giambra, Martina;Redaelli, Serena;Lavitrano, Marialuisa;Bentivegna, Angela
Ultimo
2022
Abstract
Purpose: Bladder cancer is the most common malignancy of the urinary tract and one of the most prevalent cancers worldwide. It represents a spectrum of diseases, from recurrent non-invasive tumors (NMIBCs) managed chronically, to muscle infiltrating and advanced-stage disease (MIBC) that requires multimodal and invasive treatment. Multiple studies have underlined the complexity of bladder tumors genome, highlighting many specific genetic lesions and genome-wide occurrences of copy-number alterations (CNAs). In this study, we analyzed CNAs of selected genes in our cohorts of cancer stem cells (CSCs) and in The Cancer Genome Atlas (TCGA-BLCA) cohort with the aim to correlate their frequency with patients’ prognosis. Methods: CNAs have been verified on our array-CGH data previously reported on 19 bladder cancer biopsies (10 NMIBCs and 9 MIBCs) and 16 matched isolated CSC cultures. In addition, CNAs data have been consulted on the TCGA database, to search correlations with patients’ follow-up. Finally, mRNA expression levels of LRP1B in TGCA cohort were obtained from The Human Protein Atlas. Results: We firstly identified CNAs differentially represented between TGCA data and CSCs derived from NMIBCs and MIBCs, and we correlated the presence of these CNAs with patients’ follow-up. LRP1B loss was significantly increased in CSCs and linked to short-term poor prognosis, both at genomic and transcriptomic level, confirming its pivotal role in bladder cancer tumorigenesis. Conclusion: Our study allowed us to identify potential "predictive" prognostic CNAs for bladder cancer, implementing knowledge for the ultimate goal of personalized medicine.File | Dimensione | Formato | |
---|---|---|---|
Conconi-2022-WordJUrol-VoR.pdf
accesso aperto
Descrizione: Original Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.