The paper deals with the following double phase problem -m[∫Ω(|∇u|pp+a(x)|∇u|qq)dx]div(|∇u|p-2∇u+a(x)|∇u|q-2∇u)=λu-γ+up∗-1inΩ,u>0inΩ,u=0on∂Ω,where Ω ⊂ RN is a bounded domain with Lipschitz boundary ∂Ω , N≥ 2 , m represents a Kirchhoff coefficient, 1 < p< q< p∗ with p∗= Np/ (N- p) being the critical Sobolev exponent to p, a bounded weight a(·) ≥ 0 , λ> 0 and γ∈ (0 , 1). By the Nehari manifold approach, we establish the existence of at least one weak solution.
Arora, R., Fiscella, A., Mukherjee, T., Winkert, P. (2022). On critical double phase Kirchhoff problems with singular nonlinearity. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 71(3), 1079-1106 [10.1007/s12215-022-00762-7].
On critical double phase Kirchhoff problems with singular nonlinearity
Fiscella, Alessio;
2022
Abstract
The paper deals with the following double phase problem -m[∫Ω(|∇u|pp+a(x)|∇u|qq)dx]div(|∇u|p-2∇u+a(x)|∇u|q-2∇u)=λu-γ+up∗-1inΩ,u>0inΩ,u=0on∂Ω,where Ω ⊂ RN is a bounded domain with Lipschitz boundary ∂Ω , N≥ 2 , m represents a Kirchhoff coefficient, 1 < p< q< p∗ with p∗= Np/ (N- p) being the critical Sobolev exponent to p, a bounded weight a(·) ≥ 0 , λ> 0 and γ∈ (0 , 1). By the Nehari manifold approach, we establish the existence of at least one weak solution.File | Dimensione | Formato | |
---|---|---|---|
10281-380520_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Altro
Dimensione
2.37 MB
Formato
Adobe PDF
|
2.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.