We study nice nilpotent Lie algebras admitting a diagonal nilsoliton metric. We classify nice Riemannian nilsolitons up to dimension 9. For general signature, we show that determining whether a nilpotent nice Lie algebra admits a nilsoliton metric reduces to a linear problem together with a system of as many polynomial equations as the corank of the root matrix. We classify nice nilsolitons of any signature: in dimension ≤7; in dimension 8 for corank ≤1; in dimension 9 for corank zero.
Conti, D., Rossi, F. (2022). Nice pseudo-Riemannian nilsolitons. JOURNAL OF GEOMETRY AND PHYSICS, 173(March 2022) [10.1016/j.geomphys.2021.104433].
Nice pseudo-Riemannian nilsolitons
Conti D.;Rossi F. A.
2022
Abstract
We study nice nilpotent Lie algebras admitting a diagonal nilsoliton metric. We classify nice Riemannian nilsolitons up to dimension 9. For general signature, we show that determining whether a nilpotent nice Lie algebra admits a nilsoliton metric reduces to a linear problem together with a system of as many polynomial equations as the corank of the root matrix. We classify nice nilsolitons of any signature: in dimension ≤7; in dimension 8 for corank ≤1; in dimension 9 for corank zero.File | Dimensione | Formato | |
---|---|---|---|
NiceNilsoliton.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia di allegato:
Submitted Version (Pre-print)
Dimensione
483.5 kB
Formato
Adobe PDF
|
483.5 kB | Adobe PDF | Visualizza/Apri |
ancillary.pdf
accesso aperto
Descrizione: Ancillary file
Tipologia di allegato:
Other attachments
Dimensione
624.08 kB
Formato
Adobe PDF
|
624.08 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.