We study nice nilpotent Lie algebras admitting a diagonal nilsoliton metric. We classify nice Riemannian nilsolitons up to dimension 9. For general signature, we show that determining whether a nilpotent nice Lie algebra admits a nilsoliton metric reduces to a linear problem together with a system of as many polynomial equations as the corank of the root matrix. We classify nice nilsolitons of any signature: in dimension ≤7; in dimension 8 for corank ≤1; in dimension 9 for corank zero.

Conti, D., Rossi, F. (2022). Nice pseudo-Riemannian nilsolitons. JOURNAL OF GEOMETRY AND PHYSICS, 173(March 2022) [10.1016/j.geomphys.2021.104433].

Nice pseudo-Riemannian nilsolitons

Conti D.;Rossi F. A.
2022

Abstract

We study nice nilpotent Lie algebras admitting a diagonal nilsoliton metric. We classify nice Riemannian nilsolitons up to dimension 9. For general signature, we show that determining whether a nilpotent nice Lie algebra admits a nilsoliton metric reduces to a linear problem together with a system of as many polynomial equations as the corank of the root matrix. We classify nice nilsolitons of any signature: in dimension ≤7; in dimension 8 for corank ≤1; in dimension 9 for corank zero.
Articolo in rivista - Articolo scientifico
Einstein metrics; Nice Lie algebras; Nilsoliton; Pseudo-Riemannian homogeneous metrics;
English
16-dic-2021
2022
173
March 2022
104433
open
Conti, D., Rossi, F. (2022). Nice pseudo-Riemannian nilsolitons. JOURNAL OF GEOMETRY AND PHYSICS, 173(March 2022) [10.1016/j.geomphys.2021.104433].
File in questo prodotto:
File Dimensione Formato  
NiceNilsoliton.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 483.5 kB
Formato Adobe PDF
483.5 kB Adobe PDF Visualizza/Apri
ancillary.pdf

accesso aperto

Descrizione: Ancillary file
Tipologia di allegato: Other attachments
Dimensione 624.08 kB
Formato Adobe PDF
624.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/362819
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
Social impact