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Abstract

We study nice nilpotent Lie algebras admitting a diagonal nilsoliton metric. We classify
nice Riemannian nilsolitons up to dimension 9. For general signature, we show that deter-
mining whether a nilpotent nice Lie algebra admits a nilsoliton metric reduces to a linear
problem together with a system of as many polynomial equations as the corank of the root
matrix. We classify nice nilsolitons of any signature: in dimension ≤ 7; in dimension 8 for
corank ≤ 1; in dimension 9 for corank zero.

Introduction

A left-invariant metric on a nilpotent Lie group, or equivalently a metric on its Lie algebra, is
called a nilsoliton if

Ric = λ Id+D, D ∈ Der g. (1)

The terminology is motivated by the fact that solutions of (1) are solitons for the Ricci flow
(see [12]). In the Riemannian setting, nilsolitons are studied because of their relation to Einstein
solvmanifolds ([8, 14]). In the pseudo-Riemannian case, a similar relation exists, but it is more
complicated, depending on whether the scalar curvature is zero and the solvable Lie algebra is
unimodular (see [3]). We are interested in the case that the Einstein solvable Lie algebra is
nonunimodular and the scalar curvature is nonzero; this is the case that most resembles the
Riemannian situation, although one has to put restrictions on the geometry in order to obtain a
precise correspondence.

Given a Lie algebra g̃ with a fixed metric, a pseudo-Iwasawa decomposition is an orthogonal
splitting g̃ = g ⊕⊥ a, with g a nilpotent ideal and a an abelian subalgebra acting on g by self-
adjoint derivations. If g̃ is further assumed to be nonunimodular and with an Einstein metric of
nonzero scalar curvature, then g is the nilradical and the induced metric satisfies (1) with λ and
D nonzero; in the language of [3], such a nilsoliton will be said to be of type Nil4. Conversely,
every nilsoliton of type Nil4 can be extended to an Einstein, nonunimodular solvable Lie algebra
of nonzero scalar curvature with a pseudo-Iwasawa decomposition (see [3]). In particular, one
can choose an extension of the form g⋊D R (see also [22]).

The goal of this paper is producing a large number of nilsolitons of any signature (including
Riemannian). We consider nilpotent Lie algebras admitting a nice basis {ei}: if {ei} is the dual
basis, this means that each [ei, ej ] and each ei⌟ dej is a multiple of an element of the basis.
Nice Lie algebras were introduced in [15], with the main motivation that the Ricci tensor of a
metric which is diagonal relative to a nice basis is also diagonal. Riemannian nice nilsolitons are
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classified up to dimension 7 (see [13, 21, 7]); some special classes of nilsolitons of dimension 8
are classified in [11, 1].

We point out that for diagonal metrics on a nice Lie algebra, the Ricci tensor is always
diagonalizable; accordingly, all nilsoliton metrics in this paper have D diagonalizable, though
this is not always the case for indefinite nilsolitons (see [3]).

Nilpotent nice Lie algebras are classified up to dimension 9 (see [7, 16, 4]). Much information
on the structure of a nice Lie algebra is encoded in its root matrix M∆. In particular, for a
fixed nice Lie algebra, one can consider deformations of the Lie bracket obtained by varying the
nonzero structure constants relative to the nice basis, and the corank ofM∆ (i.e. the dimension of
its cokernel) governs the dimension of this space of deformations taken up to diagonal rescalings
and without taking into account the Jacobi equality (see [4, Proposition 2.2]).

It was shown in [18] that the problem of determining whether a nice Lie algebra admits a
(diagonal) Riemannian nilsoliton metric can be reduced to solving a set of linear equalities and
inequalities. This follows from the convexity of the scalar curvature functional, which does not
hold for general pseudo-Riemannian metrics. However, we show that nice Lie algebra admitting
diagonal nilsoliton metrics can be identified by solving a set of linear equalities and inequalities,
together with as many polynomial equations as the corank of M∆ (Corollary 1.6). Applying this
result to the list of nice nilpotent Lie algebras constructed in [4], we classify:

• Riemannian diagonal nice nilsolitons of dimension ≤ 9;

• pseudo-Riemannian diagonal nice nilsolitons of dimension ≤ 7;

• pseudo-Riemannian diagonal nice nilsolitons of dimension 8 such that dim cokerM∆ ≤ 1;

• pseudo-Riemannian diagonal nice nilsolitons of dimension 9 such that dim cokerM∆ = 0.

We note that Riemannian nilsoliton metrics can be turned into indefinite nilsolitons by reversing
the sign of the metric on a subspace spanned by appropriately chosen nice basis elements (see
Proposition 1.14); a version of this observation was already considered in [22]. For each nice
nilpotent Lie algebra of dimension ≤ 9 not included in our low-corank classifications mentioned
above, we list the signatures of the nilsoliton metrics obtained in this way.

We point out that the nilsoliton metrics obtained in this paper determine Einstein nice
solvable Lie algebras in one dimension higher (see Proposition 1.20).

Acknowledgments: The authors acknowledge GNSAGA of INdAM. F.A. Rossi also acknowl-
edges the Young Talents Award of Università degli Studi di Milano-Bicocca joint with Accademia
Nazionale dei Lincei.

1 Nice pseudo-Riemannian nilsolitons

In this section we study the nilsoliton equation for diagonal pseudo-Riemannian metrics on nice
nilpotent Lie algebras. We give a characterization of nice nilpotent Lie algebras admitting a
diagonal, non-Einstein nilsoliton metric, preparing for the classifications in later sections.

Recall from [3] that a metric ⟨, ⟩ on a nilpotent Lie algebra is called a nilsoliton of type Nil4
if

Ric = λ Id+D, D ∈ Der g, λ ̸= 0, D ̸= 0;

since we are considering diagonal metrics on nice Lie algebras, for which Ric is diagonalizable,
all non-Einstein nilsolitons are of this type (see [3, Theorem 2.1]).

We begin by stating some results on nice nilpotent Lie algebras. A nice Lie algebra is a
pair (g,B) where g is a Lie algebra and B = {e1, . . . , en} is a basis of g such that each bracket
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[ei, ej ] is a multiple of some ek and each interior product ei⌟ dej is a multiple of some ek, having
denoted by e1, . . . , en the dual basis. To a nice Lie algebra, we can associate a directed graph
∆ with arrows labeled by nodes, called its nice diagram: the nodes of ∆ are the elements of the

nice basis, and ei
ej−→ ek is an arrow if [ei, ej ] is a nonzero multiple of ek. To a nice diagram we

associate the root matrix M∆, which has a row for every ({i, j}, k) such that [ei, ej ] is a nonzero
multiple of ek; the row associated to ({i, j}, k) has +1 in position k, −1 in positions i and j, and
zeroes in the other entries. The structure of the Lie algebra g is then completely determined by
M∆ and the collection of structure constants {ckij}, where

[ei, ej ] = ckijek, i < j.

We will represent the structure constants by a vector c = (ckij) by fixing the same ordering used
to list the rows of M∆. We will denote by M∆,2 the mod 2 reduction of M∆.

Given a vector v = (a1, . . . , an) ∈ Rn, we denote by vD the diagonal matrix with elements
a1, . . . , an on the diagonal. By [19, Lemma 2], the space of diagonal derivations of a nice Lie
algebra (g,B) is given by

{vD | v ∈ kerM∆}.
We denote by [1]k, or simply [1] when k is implied by the context, the vector in Rk with all
entries equal to 1.

Recall that a derivation N on a Lie algebra g is called a Nikolayevsky (or pre-Einstein)
derivation if it is semisimple and

tr(NX) = trX, X ∈ Der g. (2)

By [18], every Lie algebra admits a unique Nikolaevsky derivation up to automorphisms. On a
nice Lie algebra, we can fix a canonical Nikolayevsky derivation:

Proposition 1.1 ([20, Theorem 3.1]). Let b be a solution to

M∆
tM∆b = [1].

and let v = tM∆b+ [1]. Then N = vD is a Nikolayevsky derivation.

We will refer to the derivation vD of Proposition 1.1 as the diagonal Nikolayevsky derivation.

Remark 1.2. If the eigenvalues of the Nikolayevsky derivation are distinct, the Lie algebra is nice
([17]).

A diagonal metric on a nice Lie algebra of dimension n takes the form

g1e
1 ⊗ e1 + · · ·+ gne

n ⊗ en;

accordingly, we will identify the metric with the vector (g1, . . . , gn) ∈ Rn. We will say that the
signature of the metric is the vector δ = (δ1, . . . , δn) in (Z2)

n, where δi is zero or one accordingly
to whether gi is positive or negative; notice that δ determines the signature in the usual sense.
We also write logsign gi = δi, the notation motivated by the relation (−1)δi = sign gi.

The linear map M∆ : Rn → Rm can be viewed as a homomorphism of abelian Lie algebras,
which exponentiates to a Lie group homomorphism

eM∆ : (Rn)∗ → (Rm)∗,

where (Rn)∗ is identified with the group of invertible diagonal matrices of order n. Explicitly, if

the h-th row of M∆ is
t
(− ei − ej + ek), the h-th component of eM∆(g) is

gk
gigj

.

We then have:
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Proposition 1.3 ([6]). Let g be a diagonal metric on a nice Lie algebra with diagram ∆ and
structure constants c. Define X by

XD = eM∆(g)(cD)2.

Then the Ricci operator is given by

Ric =
1

2
tM∆X.

Remark 1.4. A diagonal metric on a direct sum of two nice Lie algebras is a nilsoliton if and
only if it is the orthogonal sum of two nilsoliton metrics with the same constant λ. This is a
simple consequence of the fact that the diagonal Nikolayevsky derivation restricts to the diagonal
Nikolayevsky derivations on each component. For this reason, our classification results will be
concerned only with irreducible nice Lie algebras in the sense of [4], meaning that it is not possible
to write the nice basis as a disjoint union B′ ∪ B′′, with each of B′, B′′ spanning an ideal.

Theorem 1.5. Let g be a nice nilpotent Lie algebra and let b be a solution to M∆
tM∆b = [1].

Given a diagonal pseudo-Riemannian metric g, the following are equivalent:

1. g is a diagonal nilsoliton with Ric = λ Id+D;

2. Ric = λ(Id−vD), where vD is the diagonal Nikolayevsky derivation;

3. X ∈ −2λb+ ker tM∆, where XD = eM∆(g)(cD)2.

Proof. We first prove 1 =⇒ 3. By Proposition 1.3, the nilsoliton condition amounts to

1

2
(tM∆X)D = Ric = λ Id+D;

this implies that D is a diagonal matrix, so it is equivalent to

1

2
(tM∆X)− λ[1] ∈ kerM∆,

i.e.

0 =
1

2
M∆

tM∆X + λ[1] =
1

2
M∆

tM∆(X + 2λb).

This is equivalent to Y = X + 2λb being in the kernel of tM∆, as

⟨tM∆Y,
tM∆Y ⟩ = ⟨M∆

tM∆Y, Y ⟩ = 0.

3 =⇒ 2 follows from Proposition 1.3 and Proposition 1.1, as

Ric =
1

2
(tM∆(−2λb))D = −λ(v − [1])D = λ(Id−vD).

2 =⇒ 1 is obvious.

Given a multi-index α = (a1, . . . , am) ∈ Zm and a vector X = (x1, . . . , xm) ∈ Rm, define

|X|α = (|x1|a1 , . . . , |xm|am), Xα = (xa1
1 , . . . , xam

m ).

Corollary 1.6. Let g be a nice nilpotent Lie algebra and let b be a solution to M∆
tM∆b = [1].

There exists a diagonal nilsoliton metric of signature δ if and only if there is a vector X ∈ Rm

such that

4



(K) X ∈ −2λb+ ker tM∆, where λ is the constant appearing in the equation Ric = λ Id+D;

(H) X does not belong to any coordinate hyperplane;

(L) logsignX = M∆,2δ;

(P) for some (hence every) choice of α1, . . . , αk ∈ Zm forming a basis of ker tM∆, we have

Xαi = c2αi , i = 1, . . . , k,

where c is the vector of structure constants of g.

Proof. By Theorem 1.5, we must show that X = (x1, . . . , xm) satisfies (H), (K), (L), (P) if and
only if

X ∈ −2λb+ ker tM∆, XD = eM∆(g)(cD)2, (3)

where g has signature δ. We argue as in [5, Theorem 2.2]. Assume (3) holds with g = (−1)δ exp v.
Then

logsignX = M∆,2δ, |X|D = exp(M∆(v)
D)(cD)2,

and (K), (H), (L) hold trivially. In addition, the vector

log |X| − 2 log |c| =

 log |x1| − 2 log |c1|
...

log |xm| − 2 log |cm|


lies in the image of M∆; this is equivalent to αi(log |X| − log c2) = 0 for i = 1, . . . , k, i.e.

|X|αi = c2αi .

Now write αi,2 for the mod 2 reduction of αi, and observe that

logsignXαi = ⟨logsignX,αi,2⟩ = ⟨M∆,2v, αi,2⟩ = ⟨v, tM∆,2αi,2⟩ = 0,

which implies (P).
The converse is proved in a similar way.

Remark 1.7. Corollary 1.6 is a generalization of [5, Theorem 2.2], where either λ = 0 or N = 0
was assumed. Even in those cases, the result of Corollary 1.6 is stronger because X appears
instead of |X| in (P).

In this paper, we are interested in diagonal nilsoliton metrics of type Nil4 on nice Lie algebras,
which only exist if the Nikolaevsky derivation N is nonzero (see Theorem 1.5).

Remark 1.8. Eliminating denominators, (P) determines a system of homogeneous polynomial
equations in the entries of X. Indeed, every α = (a1, . . . , am) in ker tM∆ is orthogonal to ImM∆,
and in particular to M∆[1] = −[1]; therefore, we have a1 + . . .+ am = 0.

Remark 1.9. Given a nice Lie algebra and a diagonal nilsoliton metric g, Corollary 1.6 implies
that (−1)δg is also a nilsoliton for any δ ∈ kerM∆,2. This can also be viewed as a consequence of
Proposition 1.3: g and (−1)δg induce the same vector X, so they have the same Ricci operator.

Example 1.10. Consider the nice Lie algebra

7421:9 (0, 0, 0,−e12, e13, e14 + e23, e16 + e34).
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This notation, which will be used throughout the paper, means that relative to a nice basis
{e1, . . . , e7} and its dual {e1, . . . , e7}, the Chevalley-Eilenberg differential satisfies

de1 = 0, de2 = 0, de3 = 0, de4 = −e1∧e2, de5 = e1∧e3, de6 = e1∧e4+e2∧e3, de7 = e1∧e6+e3∧e4;

the label 7421:9 refers to the classification of [4].
Accordingly, the root matrix is given by

−1 −1 0 1 0 0 0
−1 0 −1 0 1 0 0
−1 0 0 −1 0 1 0
0 −1 −1 0 0 1 0
−1 0 0 0 0 −1 1
0 0 −1 −1 0 0 1

 ;

the Nikolayevsky derivation is

N =
2

19
(3, 5, 6, 8, 9, 11, 14)D.

Fixing λ = − 1
2 , the vectors X satisfying (K) are given by

X =
( 1

19
+ x6,−

1

19
,
4

19
,
8

19
− x6,

9

19
− x6, x6

)
, (4)

where x6 is a parameter. Notice that (H) holds for x6 different from − 1
19 ,

8
19 ,

9
19 . Since X is

uniquely determined up to ker tM∆, it is evident from (4) that ker tM∆ is spanned by

α = (1, 0, 0, 0,−1,−1, 1).

Therefore, X satisfies (P) when

( 1
19 + x6)x6

( 8
19 − x6)(

9
19 − x6)

= 1,

i.e. for x6 = 4
19 , giving X = 1

19 (5,−1, 4, 4, 5, 4) and logsignX = (0, 1, 0, 0, 0, 0). We see that
M∆,2δ = logsignX has the four solutions

(0, 0, 0, 0, 1, 0, 0), (1, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 1), (0, 1, 0, 1, 1, 1, 1),

corresponding to four different signatures δ ∈ (Z2)
7 of diagonal nilsoliton metrics. In particu-

lar, this Lie algebra admits a Lorentzian nilsoliton metric with g5 < 0, but not a Riemannian
nilsoliton metric, consistently with [7].

In order to compute the metrics explicitly, we can argue as in the proof of Corollary 1.6 and
write X = eM∆(g) with g = (−1)δ exp v. The linear system log |X| = M∆(v) has the solution

v =

(
0, 0, log

5

19
, log

5

19
, log

5

361
, log

20

361
, log

100

6859

)
. (5)

Therefore, a Lorentzian nilsoliton metric with Ric = − 1
2 (Id−N) is given by

e1 ⊗ e1 + e2 ⊗ e2 +
5

19
(e3 ⊗ e3 + e4 ⊗ e4)− 5

361
e5 ⊗ e5 +

20

361
e6 ⊗ e6 +

100

6859
e7 ⊗ e7,

and the other signatures are obtained by changing the signs appropriately.
Note that the solution (5) is not unique, but adding an element of ker tM∆ to v yields the

same metric up to an isomorphism of nice Lie algebras (see [5, Remark 2.3]).
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Example 1.11. An example where there is a vector X satisfying (K) and (H), but not satisfying
(L), is the following. Take

85421:4a (0, 0, 0, e12, e14, e13 + e24, e15, e17 + e23).

Then the only solution to (K) is

X =
( 3

22
,
5

22
,− 1

11
,
5

22
,
7

22
,
2

11
,
2

11

)
;

this vector is not in any coordinate hyperplane, but there is no δ such that logsignM∆,2(δ) =
logsignX. The same holds for 85421:4b, which only differs by a sign in front of e14.

Examples where (H) or (P) fail appear in Theorem 2.9.

The metrics g and (−1)δg of Remark 1.9 can be related geometrically by the following con-
struction. Fix a Lie algebra g with a nice basis B = {e1, . . . , en}, and let D = (d1, . . . , dn) ∈ Zn.
Inside the complexification of g, consider the subspace

gD = SpanR BD, BD = {id1e1, . . . , i
dnen}. (6)

If gD is a real subalgebra of gC, then g and gD share the same complexification.

Proposition 1.12. Let g be a Lie algebra with a nice basis {e1, . . . , en}; choose D ∈ Zn, and
let δ be its mod2 reduction. Then:

• if M∆,2(δ) = 0, then gD is a subalgebra of gC with a nice basis given by (6); in particular,
g and gD have the same root matrix;

• if δ is the mod2 reduction of some D′ with M∆(D
′) = 0, then gD is isomorphic to g as a

nice Lie algebra;

• conversely, if gD is a subalgebra of gC then M∆,2(δ) = 0.

Proof. Write E1 = id1e1, . . . , En = idnen. Suppose [eh, ek] is a nonzero multiple of el, say
[eh, ek] = clhkel. Then [Eh, Ek] = clhki

dh+dk−dlEl; this is a real multiple of El if and only if
dh+dk−dl is even. Imposing this condition for all nonzero brackets is equivalent to M∆,2(δ) = 0.

In the case that M∆(D) = 0, we have dh + dk − dl = 0, so g and gD have the same structure
constants.

On the other hand if D and D′ have the same mod 2 reduction δ, gD and gD′ coincide as a
subset of gC and the nice bases BD and BD′ only differ by changing signs; therefore, the two nice
Lie algebras are isomorphic.

Remark 1.13. Not every δ ∈ kerM∆,2 can be lifted to an element of kerM∆ in general. This
happens precisely when the nice diagram ∆ gives rise to more than one (family of) nice Lie
algebras, with different signs of the structure constants (see [4]).

Now let g be a nice Lie algebra with a diagonal metric g, relative to the nice basis B, and
take D ∈ Zn. On the nice Lie algebra (gD,BD) we have an induced diagonal metric gD, obtained
by C-bilinear extension to gC and then restriction. In the language of [9], (gD, gD) is a Wick
rotation of (g, g). On the other hand, one can also take the metric on gD defined by pulling back
the metric on g under the linear isomorphism mapping elements of BD to B in the natural order;
we will call this the transferred metric on gD.

It follows easily from Corollary 1.6 that Wick rotation and transfer preserve the nilsoliton
condition. This gives a more geometric interpretation of the observation of Remark 1.9:

7



Proposition 1.14. Let g be a diagonal metric on a nice Lie algebra g. Then taking a Wick
rotation (gD, gD) and transferring gD to g results in a diagonal metric g′ = (−1)δg, δ ∈ kerM∆,2;
in particular, g is a nilsoliton if and only if g′ is a nilsoliton.

Conversely, any two metrics g, (−1)δg with δ ∈ kerM∆,2 are related in this way.

Proof. If D = (d1, . . . , dn), evaluating gD on the basis BD gives

gD(idkek, i
dkek) = (−1)dkg(ek, ek) = (−1)δkg(ek, ek),

where δ = (δ1, . . . , δk) is the mod 2 reduction of D. In other words, if g = (g1, . . . , gn), then gD =
((−1)δ1g1, . . . , (−1)δngn). Transferring gD to g therefore gives g′ = (−1)δg. By Proposition 1.12,
δ is in kerM∆,2.

Conversely, suppose g′ = (−1)δg, with M∆,2(δ) = 0, and let D be a vector in Zn whose mod 2
reduction is δ. By the above calculation, transferring g′ to gD gives the Wick-rotated metric
gD.

Note that Example 1.10 shows that not all the pseudo-Riemannian nilsolitons are obtained
from a Riemannian nilsoliton by transferring the metric.

Example 1.15. The 6-dimensional Lie algebras

631:5a (0, 0, 0, e12, e13, e24 + e35)

631:5b (0, 0, 0,−e12, e13, e24 + e35)

are not isomorphic over R, but they share the same nice diagram ∆ and the same complexification.
We can proceed as in Example 1.10, obtaining the following:

X =

(
1

4
,
1

4
,
1

4
,
1

4

)
, δ ∈ SpanZ2

{(1, 0, 0, 1, 1, 1), (0, 1, 0, 1, 0, 0), (0, 0, 1, 0, 1, 0)}. (7)

The generic vector v such that log |X| = M∆(v) is given by:

v = (v1, v2, v2, v1 + v2 − log 4, v1 + v2 − log 4, v1 + 2v2 − 2 log 4) .

In the end, on both 631:5a and 631:5b, for any signature δ as in (7) we have a 2-parameter family
of nilsoliton metrics given by g = (−1)δ exp v. For example, on g = 631:5a, for δ = (0, 1, 0, 1, 0, 0)
we have the nilsoliton metric

g = e1 ⊗ e1 − e2 ⊗ e2 + e3 ⊗ e3 − 1

4
e4 ⊗ e4 +

1

4
e5 ⊗ e5 +

1

16
e6 ⊗ e6.

If we set D = (1, 1, 0, 0, 1, 1) ∈ Z6, then gD is isomorphic to 631:5b, and the Wick-rotated metric
gD is

−e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 − 1

4
e4 ⊗ e4 − 1

4
e5 ⊗ e5 − 1

16
e6 ⊗ e6.

On the other hand, if we set D = (0, 1, 0, 1, 0, 0), then gD is isomorphic to g itself and the
Wick-rotated metric gD is Riemannian.

Remark 1.16. It is known that given two nilpotent Lie algebras with the same complexification,
if one is a Riemannian nilsoliton then so is the other ([18, 10]. In our context, this is reflected in
the fact that a diagonal nilsoliton metric on a nice Lie algebra g can be transferred to a nilsoliton
metric on gD with the same signature.
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For positive signatures δ, a result of [18] implies that condition (P) is redundant; in fact, this
also holds slightly more generally:

Corollary 1.17. Let g be a nice nilpotent Lie algebra and let vD be the diagonal Nikolayevsky
derivation. If δ is a signature with M∆,2δ = 0, then g has a diagonal nilsoliton metric of signature
δ if and only if there is a vector X ∈ Rm with all entries positive satisfying (K).

Proof. Given X as in the statement, [18, Lemma 2] implies that there exists a Riemannian
nilsoliton metric. By the observation of Remark 1.9, a nilsoliton metric exists for any δ in
kerM∆,2.

Remark 1.18. Example 1.10 shows that not all nilsoliton metrics are obtained by transferring a
Riemannian nilsoliton metric.

Recall from [3] that, given a metric ⟨̃, ⟩ on a Lie algebra g̃, a pseudo-Iwasawa decomposition
is an orthogonal splitting g̃ = g ⊕ a, where g is an ideal, a is an abelian subalgebra, and adX
is self-adjoint for all X ∈ a. There is a correspondence between nilsolitons and pseudo-Iwasawa
Einstein solvmanifolds (see [3]), which can be specialized to the nice setting as follows:

Proposition 1.19. Let g̃ be a nonunimodular nice solvable Lie algebra with a diagonal metric
of pseudo-Iwasawa type satisfying the Einstein equation R̃ic = λ Id, λ ̸= 0. Then [g̃, g̃] with the
induced metric is a nice Lie algebra with a diagonal nilsoliton metric of type Nil4 satisfying

Ric = λ Id−λN,

where N is the diagonal Nikolayevsky derivation.

Proof. If {ei} is the nice basis, the derived Lie algebra is spanned by the ek such that some
Lie bracket [ei, ej ] is a nonzero multiple of ek; this shows that the derived algebra is nice and
the induced metric is diagonal. By [3, Corollary 3.13], the derived algebra is a nilsoliton with
Ric = λ Id+D, D = adH and trD ̸= 0. By Theorem 1.5, we have D = −λN .

Proposition 1.20. Let g be a nice nilpotent Lie algebra with a diagonal metric ⟨, ⟩ of type
Nil4. Then Ric = λ Id−λN , where N is the (nonzero) diagonal Nikolayevsky derivation, and the
semidirect product g̃ = g ⋊N Span {e0} is a nice solvable Lie algebra with an Einstein diagonal
pseudo-Iwasawa metric

⟨, ⟩ − trN

λ
e0 ⊗ e0.

Proof. Write Ric = λ Id+D; by Theorem 1.5 we have D = −λN . By [3, Corollary 4.7] (see also
[22, Theorem 4.7]), we have that g⋊D Span {E0} has an Einstein pseudo-Iwasawa metric of the

form ⟨̃, ⟩ = ⟨, ⟩+ (trD)E0 ⊗ E0; setting e0 = − 1
λE0, the metric takes the form

⟨̃, ⟩ = ⟨, ⟩+ trD

λ2
e0 ⊗ e0 = ⟨, ⟩ − trN

λ
e0 ⊗ e0.

Since g is nice and N is diagonal, it is now obvious that g̃ is nice and pseudo-Iwasawa.

Example 1.21. Taking g as in Example 1.10 and applying Proposition 1.20, we obtain an
Einstein metric on the solvable Lie algebra g̃ = g⋊N Span {e0} of the form

e1 ⊗ e1 + e2 ⊗ e2 +
5

19
(e3 ⊗ e3 + e4 ⊗ e4)− 5

361
e5 ⊗ e5 +

20

361
e6 ⊗ e6 +

100

6859
e7 ⊗ e7 +

224

19
e0 ⊗ e0.

By construction, we have Ric = − 1
2 Id.
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2 Nilsolitons of dimension ≤ 7

It is well known that every nilpotent Lie algebra of dimension ≤ 6 is a Riemannian nilsoliton
([21, 16]). For dimension 7, a classification is done in [7]. In this section we consider more
generally nilsolitons of indefinite signature, though restricting to nice Lie algebras. A priori, this
class of metrics includes both Einstein metrics and nilsolitons of type Nil4; since the Einstein
case has been studied in [5, 6], we will focus on Nil4 metrics.

We will consider diagonal metrics relative to the nice basis, and normalize λ to− 1
2 , so that (K)

reads
M∆

tM∆X = [1], (8)

and the nilsoliton equation of type Nil4

Ric = −1

2
Id+

1

2
N, N ̸= 0. (9)

Thus, we only consider Lie algebras with nonzero Nikolayevsky derivation; in particular, they
are all graded.

To each nice Lie algebra g we associate the set

S = {δ | δ is the signature of a diagonal metric on g satisfying (9)}.

For fixed g, the signature of a diagonal metric g1e
1 ⊗ e1 + . . .+ gne

n ⊗ en can be represented by
the set of indices i such that gi < 0. For instance, the signature of −e1 ⊗ e1 + e2 ⊗ e2 − e3 ⊗ e3

will be represented by the string 13, and the signature of a positive definite metric by ∅. In
addition, we will indicate by S0 the intersection of S with kerM∆,2, corresponding to signatures
of nilsoliton metrics obtained by applying Corollary 1.17.

Theorem 2.1. For each nice nilpotent Lie algebra of dimension ≤ 6, the signatures of the
diagonal nilsoliton metrics satisfying (9) are given in Table 1.

Proof. The proof is a case-by-case calculation using Corollary 1.6, as in Example 1.10. We used
an updated version of the computer program [2], initially developed to obtain the classifications
of [4, 5]. For all cases considered here, Condition (P) is either trivial or it boils down to an
equation of degree ≤ 2 in one variable, which the program solves automatically.

Table 1: Irreducible nice nilpotent Lie algebras of dimension ≤ 6 that admit a diagonal nilsoliton
metric of type Nil4

Name g N S

31:1 0, 0, e12 2/3(1, 1, 2) {∅, 12, 13, 23}
421:1 0, 0, e12, e13 1/3(1, 2, 3, 4) {∅, 124, 13, 234}
5321:1 0, 0, e12, e13, e14 1/12(2, 9, 11, 13, 15) {∅, 124, 135, 2345}
5321:2 0, 0, e12, e13, e14 + e23 3/11(1, 2, 3, 4, 5) {∅, 135}
532:1 0, 0, e12, e13, e23 5/12(1, 1, 2, 3, 3) {∅, 1245, 135, 234}
521:2 0, 0, 0, e12, e24 + e13 1/7(4, 3, 6, 7, 10) {∅, 125, 145, 24}
52:1 0, 0, 0, e12, e13 1/4(2, 3, 3, 5, 5) {∅, 123, 125, 134, 145, 2345, 24, 35}
51:2 0, 0, 0, 0, e12 + e34 3/4(1, 1, 1, 1, 2) {∅, 12, 1234, 135, 145, 235, 245, 34}

64321:1 0, 0, e12, e13, e14, e15 1/11(1, 9, 10, 11, 12, 13) {∅, 1246, 135, 23456}
64321:2 0, 0, e12, e13, e14, e15 + e23 13/68(1, 3, 4, 5, 6, 7) {∅, 1246}
64321:3 0, 0,−e12, e13, e14, e34 + e25 1/6(1, 3, 4, 5, 6, 9) {∅, 1246, 1356, 2345}
64321:4 0, 0, e12, e13, e23 + e14, e24 + e15 3/13(1, 2, 3, 4, 5, 6) {∅, 135}

Table 1 – Continued to next page
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Table 1 – Continued from previous page

Name g N S

64321:5 0, 0,−e12, e13, e23 + e14, e34 + e25 11/52(1, 2, 3, 4, 5, 7) {∅, 1356}
6431:1 0, 0, e12, e13, e23, e14 1/4(1, 2, 3, 4, 5, 5) {∅, 1245, 1356, 2346}
6431:2a 0, 0, e12, e13, e23, e14 + e25 7/20(1, 1, 2, 3, 3, 4) {∅, 1245, 1356, 2346}
6431:2b 0, 0, e12,−e13, e23, e14 + e25 7/20(1, 1, 2, 3, 3, 4) {∅, 1245, 1356, 2346}
6431:3 0, 0, e12, e13, e23, e24 + e15 7/20(1, 1, 2, 3, 3, 4) {∅, 1245, 135, 234}
6321:2 0, 0, 0, e12, e14, e15 + e23 1/15(4, 9, 12, 13, 17, 21) {∅, 1235, 1346, 2456}
6321:4 0, 0, 0,−e12, e14 + e23, e15 + e34 1/20(6, 11, 12, 17, 23, 29) {∅, 125, 146, 2456}
632:2 0, 0, 0, e12, e14, e24 + e13 1/13(5, 6, 12, 11, 16, 17) {∅, 1256, 146, 245}
632:3a 0, 0, 0, e12, e23 + e14, e13 + e24 3/7(1, 1, 2, 2, 3, 3) {∅, 1256, 146, 245}
632:3b 0, 0, 0, e12, e23 − e14, e24 + e13 3/7(1, 1, 2, 2, 3, 3) {∅, 1256, 146, 245}
631:1 0, 0, 0, e12, e13, e14 1/7(2, 5, 6, 7, 8, 9) {∅, 1236, 1256, 134, 145, 23456, 246, 35}
631:2 0, 0, 0, e12, e13, e24 1/12(6, 5, 9, 11, 15, 16) {∅, 1236, 1256, 1346, 1456, 2345, 24, 35}
631:3 0, 0, 0, e12, e13, e23 + e14 1/8(3, 5, 6, 8, 9, 11) {∅, 1256, 145, 246}
631:4 0, 0, 0, e12, e13, e24 + e15 2/11(2, 3, 4, 5, 6, 8) {∅, 1236, 1346, 24}
631:5a 0, 0, 0, e12, e13, e35 + e24 1/2(1, 1, 1, 2, 2, 3) {∅, 1236, 1256, 1346, 1456, 2345, 24, 35}
631:5b 0, 0, 0,−e12, e13, e24 + e35 1/2(1, 1, 1, 2, 2, 3) {∅, 1236, 1256, 1346, 1456, 2345, 24, 35}
631:6 0, 0, 0, e12, e13, e34 + e25 1/2(1, 1, 1, 2, 2, 3) {∅, 1236, 125, 134, 1456, 2345, 246, 356}
63:1 0, 0, 0, e12, e13, e23 3/5(1, 1, 1, 2, 2, 2) {∅, 123, 1256, 1346, 145, 2345, 246, 356}
621:3 0, 0, 0, 0, e12, e15 + e34 1/12(5, 8, 9, 9, 13, 18) {∅, 1236, 1246, 1345, 15, 2356, 2456, 34}
62:3 0, 0, 0, 0, e12, e13 + e24 1/5(3, 3, 4, 4, 6, 7) {∅, 1234, 126, 135, 1456, 2356, 245, 346}
62:4a 0, 0, 0, 0, e13 + e24, e34 + e12 2/3(1, 1, 1, 1, 2, 2) {∅, 1234, 125, 136, 1456, 2356, 246, 345}
62:4b 0, 0, 0, 0, e24 − e13, e34 + e12 2/3(1, 1, 1, 1, 2, 2) {∅, 1234, 125, 136, 1456, 2356, 246, 345}

Remark 2.2. The only nonnice nilpotent Lie algebra of dimension 6 also admits nilsoliton metrics:
a Riemannian nilsoliton metric was constructed in [21, 16], and a nilsoliton metric of signature
(2, 4) can be obtained by a Wick rotation of the form described in [22], namely by fixing the
Z2-grading defined by the eigenspaces of the Nikolaevsky derivation and changing the sign of the
1-eigenspace. However, in the absence of a canonical basis it does not make sense to restrict to
diagonal metrics, so it is not possible to extend Theorem 2.1 to include this case.

Remark 2.3. The Ricci operator of the diagonal nilsoliton metrics constructed in Theorem 2.1
is determined by (9) in terms of the diagonal Nikolayevsky derivation N ; for this reason, we
included N in Table 1 and the analogous tables for higher dimensions. For instance, for 31:1,
we obtain

Ric = −1

2

(
Id−2

3
(1, 1, 2)D

)
=

(
−1

6
,−1

6
,
1

6

)D
.

The situation for dimension 7 is different. To begin with, some nice Lie algebras do not admit
a nilsoliton metric of type Nil4 because N is zero. In addition, the polynomial equations (P)
need to be handled with more care in a few cases, in particular for the 5 one-parameter families.

Lemma 2.4. For the one-parameter family of Lie algebras

754321:9 (0, 0, (1− a)e12, e13, ae14 + e23, e15 + e24, e16 + e25 + e34) a ̸= 0, 1

the signatures of the diagonal metrics satisfying (9) are listed in Table 4.

Proof. Equation (8) gives

X = (x1, . . . , x9) = (x9,
2

5
− x4, x8, x4, x4,

3

5
− x4 − x8 − x9,

2

5
− x8 − x9, x8, x9),

and condition (P) can be written in the form

x2
4

( 25 − x4)x6

= 1,
x2
8

x6x7
= a2,

x2
9

x6x7
= (1− a)2, (10)

11



with

x4 + x6 − x7 =
1

5
, x7 + x8 + x9 =

2

5
. (11)

The equations are invariant under the transformation

a 7→ 1− a, x8 ↔ x9.

Accordingly, we will assume a ≥ 1
2 ; the signatures occurring for a < 1

2 will be deduced exploiting
the symmetry.

Notice that the value x4 = 2
5 is not allowed by (H). The first equation in (10) gives

x6 =
5x2

4

2− 5x4
;

dividing the second by the third gives

x9 = ϵ
1− a

a
x8, ϵ = ±1.

The first linear relation in (11) gives

x7 = −1

5
+ x4 + x6 =

15x4 − 2

5(2− 5x4)
.

We have

x8 + x9 =
k

a
x8, k = a+ ϵ(1− a).

The possibility k = 0 only occurs for ϵ = −1, a = 1
2 , giving

X =

(
± 3

5
√
10

,
4

25
,∓ 3

5
√
10

,
6

25
,
6

25
,
9

25
,
2

5
,∓ 3

5
√
10

,± 3

5
√
10

)
.

Otherwise, we have k ̸= 0. Then the second linear relation in (11) implies

x8 =
a

k

(
2

5
− x7

)
=

a(6− 25x4)

5k(2− 5x4)
.

In particular, the value x4 = 6
25 is not allowed. The middle equation in (10) then gives

p(x4) = 25(2− 15x4)x
2
4 +

(6− 25x4)
2

k2
= 0. (12)

For ϵ = 1, we have k = 1 and (12) is a constant-coefficient equation in x4 with three solutions;
the solution x4 = 2

5 must be discarded by (H), so we are left with x4 = 1
5 ,

6
5 , giving

X =

(
1− a

5
,
1

5
,
a

5
,
1

5
,
1

5
,
1

5
,
1

5
,
a

5
,
1− a

5

)
,

(
6(1− a)

5
,−4

5
,
6a

5
,
6

5
,
6

5
,−9

5
,−4

5
,
6a

5
,
6(1− a)

5

)
.

For ϵ = −1, we have

X =

(
(a− 1)(25x4 − 6)

5(2a− 1)(5x4 − 2)
,
2− 5x4

5
,

a(25x4 − 6)

5(2a− 1)(5x4 − 2)
, x4, x4,

5x2
4

2− 5x4
,
2− 15x4

5(5x4 − 2)
,

a(25x4 − 6)

5(2a− 1)(5x4 − 2)
,
(a− 1)(25x4 − 6)

5(2a− 1)(5x4 − 2)

)
.
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In this case, x4 = 2
5 , x4 = 6

25 are not roots of p, any root of p satisfies x4 > 2
15 , and a ̸= 0, 1

by assumption; therefore, any root of p determines a vector X sastisfying the conditions of
Corollary 1.6. The discriminant of p is positive for

0 < k2 < α =
1

16
(123

√
41− 767) ∼ 1.29,

0 for k2 = α and negative otherwise. The entries of X depend continuosly on k, so it suffices to
determine their sign on one value in each interval 0 < k2 < 1, 1 < k2 < α, α < k2, or equivalently
(given our assumption a > 1

2 ),
1
2 < a < 1, 1 < a < 1

2 + β, 1
2 + β < a, where we have set

β =
1

8

√
123

√
41− 767 ∼ 0.57.

Observe that the signs of x2, x8 and x9 determine the signs of the other entries. Using the
symmetry, we obtain the list of sign configurations and signatures in Table 2.

Table 2: Nilsoliton signatures for 754321:9

ϵ a signx2 signx8 signx9 S

1 a < 0
− − + {1345, 47}
+ − + {12457, 234}

1 0 < a < 1
− + + {125, 237}
+ + + {∅, 1357}

1 a > 1
− + − {123467, 2456}
+ + − {146, 34567}

−1 a < 1
2 − β ∨ 1

2 + β < a + + + {∅, 1357}

−1 1
2 − β < a < 0 ∨ 1 < a ≤ 1

2 + β
+ + + {∅, 1357}
− + + {125, 237}

−1 0 < a < 1
2

+ + − {146, 34567}
+ − + {12457, 234}
− − + {1345, 47}

−1 a = 1
2

+ − + {12457, 234}
+ + − {146, 34567}

−1 1
2 < a < 1

+ + − {146, 34567}
+ − + {12457, 234}
− + − {123467, 2456}

Lemma 2.5. For the one-parameter families of Lie algebras

7421:14 (0, 0, 0, (a− 1)e12, ae13, e14 + e23, e16 + e25 + e34), a ̸= 0, 1

7431:13a (0, 0, 0, (A− 1)e12, e14 + e23, Ae13 + e24, e15 + e26 + e34), A ̸= 0, 1

7431:13b (0, 0, 0, (A− 1)e12, e14 − e23, Ae13 + e24, e15 + e26 + e34), A ̸= 0, 1

the signatures of the diagonal metrics satisfying (9) are listed in Table 4.
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Proof. For 7421:14, we have

X =

(
1

19
+ x7, x2,

4

19
,
7

19
− x7 − x2,

8

19
− x7 − x2,

1

19
+ x2, x7

)
;

this gives the equations

x2

(
1

19
+ x2

)
= x4

(
x4 +

1

19

)
a2, x7

(
1

19
+ x7

)
= x4

(
x4 +

1

19

)
(a− 1)2, (13)

where

x2 + x4 + x7 =
7

19
. (14)

By (13), if one of x2, x4, x7 is in the interval (− 1
19 , 0), then so are the others, but this con-

tradicts (14). Therefore, logsignX is determined by the signs of x2, x4, x7. Notice also that
replacing a with η(a) = 1

1−a has the effect of cycling through the variables x2, x7, x4. Since
η is an order three transformation cycling through the intervals (−∞, 0), (0, 1) and (1,+∞),
it suffices to determine the sign configurations for one interval, and deduce the other cases by
cylicity.

Assume a > 1. Using (14), we eliminate x2 from (13) obtaining{
x7(19x7 + 1) = (a− 1)2x4(19x4 + 1),

(19x4 + 19x7 − 8)(19x4 + 19x7 − 7) = 19a2x4(19x4 + 1)
.

Solving for x2
4 in the first equation and substituting in the second, we obtain

x2
4 =

−a2x4+2ax4−x4+19x2
7+x7

19(a−1)2 ,

x4 =
a(152x7 − 28) + 361x2

7 − 133x7 + 28

19(a− 1)(19x7 − 8)

;

notice that x7 = 8/19 does not give a solution of (13) because of our assumption on a. Taking the
first equation minus the second squared and substituting, we obtain the following third-degree
polynomial in x7:

p(x7) = 1008− 2016a+ 1008a2 + x7(−10260 + 19304a− 10260a2)

+ x2
7(25992− 68951a+ 25992a2) + 116603ax3

7 = 0.

For a = 2, we see by an explicit computation that p has three real roots; the corresponding
sign configurations are

x2 > 0, x4 > 0, x7 > 0; x2 > 0, x4 > 0, x7 < 0; x2 > 0, x4 < 0, x7 > 0. (15)

More generally, for any a > 1 the discriminant of p is positive, so there are three distinct real
roots of p, depending continuously on a; the corresponding values of x2 and x4 also depend
continuously on a. Since zero and − 1

19 are not roots of p, and x2, x4 are nonzero by (13), we see
that the three possibilities (15) occur for all a > 1.

Cycling with η, we obtain for a < 0 three analogous configurations with x7 positive, and
three configurations with x4 > 0 for 0 < a < 1.

Similarly, for 7431:13a and 7431:13b we compute

X =

(
1

11
+ x8,

2

11
,
3

11
− x4 − x8, x4,

2

11
,
4

11
− x4 − x8,

1

11
+ x4, x8

)
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resulting in the system 
11x8(1 + 11x8) = 11x3(1 + 11x3)(A− 1)2

11x4(1 + 11x4) = 11x3(1 + 11x3)A
2

11x3 + 11x4 + 11x8 = 3

Again, replacing A with η(A) = 1
1−A has the effect of cycling through the variables x3, x4, x8.

Assume A > 1. Proceeding as in the first case, we obtain{
x3 =

44Ax8−6A+121x2
8−33x8+6

11(A−1)(11x8−4)

11979Ax3
8 + 121(20− 47A+ 20A2)x2

8 − 22(35− 62A+ 35A2)x8 + 60(−1 +A)2 = 0

By the assumption A > 1, p has three real roots; the corresponding sign configurations are

x3 > 0, x4 > 0, x8 > 0; x3 > 0, x4 > 0, x8 < 0; x3 < 0, x4 > 0, x8 > 0.

Cycling with η, we obtain for A < 0 three analogous configurations with x8 positive, and three
with x3 > 0 for 0 < A < 1. Notice that logsignX is only in the image of M∆,2 when all entries
are positive or when x8 < 0.

Lemma 2.6. For the one-parameter family of Lie algebras

741:6 (0, 0, 0, (a− 1)e12, ae13, e23, e16 + e25 + e34) a ̸= 0, 1

the signatures of the diagonal metrics satisfying (9) are listed in Table 4.

Proof. We compute

X =

(
x6, x5,

1

2
− x6 − x5,

1

2
− x6 − x5, x5, x6

)
.

As in Lemma 2.5, we can add a variable to obtain the more symmetric system of equations
x2
6 = (a− 1)2x2

3

x2
5 = a2x2

3

x3 + x5 + x6 = 1
2

.

An easy computation shows that the solutions are
x3 = 1

4

x5 = a
4

x6 = 1−a
4

∨


x3 = 1

4(1−a)

x5 = a
4(a−1)

x6 = 1
4

∨


x3 = 1

4a

x5 = 1
4

x6 = a−1
4a

.

For any values of a ̸= 0, 1, it turns out that the possible signs of x3, x5, x6 are those listed in
Table 3; the associated signatures are also collected in Table 4

Beside the one-parameter families, there are three nice Lie algebras with corank M∆ greater
than one which must be studied separately:
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Table 3: Nilsoliton signatures for 741:6

a signx3 signx5 signx6 S

a < 0
+ − + {12357, 126, 13456, 147, 234, 24567, 367, 5}
+ + + {∅, 1237, 1256, 1346, 1457, 2345, 2467, 3567}
− + + {12367, 125, 134, 14567, 23456, 247, 357, 6}

0 < a < 1
+ + + {∅, 1237, 1256, 1346, 1457, 2345, 2467, 3567}
+ − + {12357, 126, 13456, 147, 234, 24567, 367, 5}
+ + − {12347, 12456, 136, 157, 235, 267, 34567, 4}

1 < a
+ + − {12347, 12456, 136, 157, 235, 267, 34567, 4}
− + + {12367, 125, 134, 14567, 23456, 247, 357, 6}
+ + + {∅, 1237, 1256, 1346, 1457, 2345, 2467, 3567}

Lemma 2.7. For the Lie algebras

75421:4 (0, 0, e12, e13, e23, e15 + e24, e16 + e34)

74321:12 (0, 0, 0,−e12, e14 + e23, e15 + e34, e16 + e35)

75432:3 (0, 0, e12, e13, e14 + e23, e15 + e24, e25 − e34)

the signatures of the diagonal metrics satisfying (9) are listed in Table 6.

Proof. For 75421:4, we compute

X =

(
x7,

2

5
− x3, x3, x3,

3

5
− x3 − x7,

2

5
− x7, x7

)
, (16)

which determines the system of equations
x2
3 = ( 25 − x3)x5

x2
7 = ( 25 − x7)x5

x3 + x5 + x7 = 3
5

. (17)

This implies
x2
3

2
5 − x3

=
x2
7

2
5 − x7

,

giving either x7 = x3 or x7 = 2x3

−2+5x3
. The latter however implies

x3 + x5 + x7 = x3 +
x2
3

2
5 − x3

−
2
5x3

2
5 − x3

= 0,

which contradicts (17). We can therefore assume x7 = x3, reducing (17) to

x2
3

2
5 − x3

+ 2x3 =
3

5
,

which has solutions x3 = 1
5 , x3 = 6

5 . The case x3 = 1
5 gives the signatures {∅, 12457, 1357, 234};

the case x3 = 6
5 gives {125, 1345, 237, 47}.
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For 74321:12, we have

X =

(
2

5
− x3, x7, x3, x3,

3

5
− x3 − x7,

2

5
− x7, x7

)
which is (16) with x1 and x2 interchanged. Thus we get the solutions x3 = x7 = 1

5 (signatures
{∅, 1257, 146, 24567}) and x3 = x7 = 6

5 (signatures {123467, 135, 237, 3456}).
For 75432:3, we compute

X =

(
x8,

1

5
+ x6,

2

5
− x8,

1

5
− x6,

1

5
− x6, x6,

2

5
− x8, x8

)
,

yielding two independent equations(
1

5
+ x6

)
x6 = ±

(
1

5
− x6

)2

, x2
8 =

(
2

5
− x8

)2

,

which are only satisfied for x6 = 1
15 , x8 = 1

5 ; this gives X with all-positive entries and signatures
{∅, 1357}.

Remark 2.8. The nice Lie algebras in our tables are based on the classification of [4] with the
following minor differences.

For three families of Lie algebras, namely 7431:13b, 97654321:43 and 9641:92b, we had to
correct the sign of an entry.

In addition, due to a limitation in the software used to produce the tables, we have not always
used the same exact set of parameters as in [4] for Lie algebras of dimension 8 and 9. However,
the parameters taken here only differ by an affine transformation.

Theorem 2.9. The 7-dimensional irreducible nice nilpotent Lie algebras that do not admit a
diagonal nilsoliton metric of type Nil4 are exactly those contained in Table 5. For each of the
others, the signatures of diagonal metrics satisfying (9) are listed in Table 4 and Table 6.

Proof. Similar as Theorem 2.1, with two differences. In some cases, listed in Table 5, there is no
vector X satisfying the conditions of Corollary 1.6; the last column of the table indicates which
of the four conditions fails in each case.

In addition, there are five one-parameter familes of nice nilpotent Lie algebras in dimension
7. For each of them, (P) entails two or three polynomial equations depending on a parameter; a
case-by-case analysis is required to compute the possible signatures (see Lemmas 2.4, 2.5 and 2.6).
Among the isolated nice nilpotent Lie algebras (i.e. outside the above-mentioned families), there
are three nice nilpotent Lie algebras of dimension 7 with dim cokerM∆ = 2; (P) gives then a
system of two polynomial equations of degree two which is solved explicitly in Lemma 2.7.

The other cases can be handled automatically using [2] as in Theorem 2.1.

Remark 2.10. It is known (see [18]) that a nice nilpotent Lie algebra admits a Riemannian
nilsoliton metric if and only if it admits a diagonal Riemannian nilsoliton metric.

As a consequence of the classification, we see that this does not hold for arbitrary signature
(p, q). Indeed, the nice Lie algebras 731:21 and 731:24b are isomorphic as Lie algebras, but the
signatures of the diagonal nilsoliton metrics that they carry are different. In this example, there
is no Riemannian nilsoliton metric.

Another example is the Lie algebra with two nice bases corresponding to 731:19 and 731:22a;
in this case there is a Riemannian nilsoliton metric, but only 731:19 admits indefinite diagonal
nilsoliton metrics.
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Remark 2.11. It is evident from Table 6 that a nice nilpotent Lie algebra may admit an indefinite
nilsoliton metric even if it is not a Riemannian nilsoliton. In particular, we see that 74321:7

and 7421:9 admit a Lorentzian nilsoliton metric but not a Riemannian nilsoliton metric.

Table 4: Signatures of diagonal nilsoliton metrics of type Nil4 on families of nice nilpotent Lie
algebras of dimension 7

Name g S

754321:9

0, 0, (1− a)e12,
e13, ae14 + e23,

e15 + e24, e16 + e25 + e34

a < 1
2
− β {∅, 12457, 1345, 1357, 234, 47}

1
2
− β ≤ a < 0 {∅, 12457, 125, 1345, 1357, 234, 237, 47}
0 < a < 1

2
{∅, 12457, 125, 146, 1345,
1357, 234, 237, 34567, 47}

a = 1
2

{∅, 12457, 125, 1357, 146, 234, 237, 34567}
1
2
< a < 1 {∅, 123467, 12457, 125, 1357,

146, 234, 237, 2456, 34567}
1 < a ≤ 1

2
+ β {∅, 123467, 125, 1357, 146, 237, 2456, 34567}

1
2
+ β < a {∅, 123467, 1357, 146, 2456, 34567}
α = 1

16
(123

√
41− 767), β = 1

8

√
123

√
41− 767

7431:13a
0, 0, 0, (A− 1)e12, e14 + e23,
Ae13 + e24, e15 + e26 + e34

A < 0 {∅, 1256, 1467, 2457}
A > 0, A ̸= 1 {∅, 12347, 1256, 135, 1467, 2457, 236, 34567}

7431:13b
0, 0, 0, (A− 1)e12, e14 − e23,
Ae13 + e24, e15 + e26 + e34

A < 0 {∅, 1256, 1467, 2457}
A > 0, A ̸= 1 {∅, 12347, 1256, 135, 1467, 236, 2457, 34567}

7421:14
0, 0, 0, (a− 1)e12, ae13,

e14 + e23, e16 + e25 + e34

a < 0 {∅, 12367, 1256, 126, 134, 1457,
147, 23456, 24567, 2467, 357, 5}

0 < a < 1 {∅, 12367, 1256, 126, 134, 1457,
147, 23456, 24567, 2467, 357, 5}

1 < a {∅, 12347, 12367, 1256, 134, 136,
1457, 23456, 235, 2467, 34567, 357}

741:6
0, 0, 0, (a− 1)e12, ae13,
e23, e16 + e25 + e34

a < 0 {∅, 12357, 12367, 1237, 126, 125, 1256, 134,
13456, 1346, 14567, 1457, 147, 234, 2345, 23456,
24567, 2467, 247, 3567, 357, 367, 5, 6}

0 < a < 1 {∅, 12347, 1235, 12357, 12456, 1256, 126, 13456,
1346, 136, 1457, 147, 157, 234, 2345, 235,
24567, 2467, 267, 34567, 3567, 367, 4, 5}

1 < a {∅, 12347, 12367, 1237, 12456, 125, 1256, 134,
1346, 136, 14567, 1457, 157, 2345, 23456, 235,
2467, 247, 267, 34567, 3567, 357, 4, 6}

Table 5: Nice nilpotent Lie algebras of dimension 7 that do not admit a diagonal nilsoliton metric
of type Nil4

Name g N Obstruction

754321:5 0, 0,−e12, e13, e14, e15, e34 + e16 + e25 1/5(1, 2, 3, 4, 5, 6, 7) (H)
754321:6 0, 0, e12, e13, e14 + e23, e15 + e24, e16 + e34 1/5(1, 2, 3, 4, 5, 6, 7) (H)
754321:7 0, 0, e12, e13, e14 + e23, e15 + e24, e25 + e16 1/5(1, 2, 3, 4, 5, 6, 7) (H)
75421:6 0, 0,−e12, e13, e23, e24 + e15, e35 + e26 + e14 1/5(2, 1, 3, 5, 4, 6, 7) (H)
74321:11 0, 0, 0,−e12, e14, e24 + e15, e45 + e26 + e13 1/5(1, 2, 6, 3, 4, 5, 7) (H)
74321:15 0, 0, 0,−e12, e14 + e23, e15 + e34, e16 + e35 + e24 1/5(1, 3, 2, 4, 5, 6, 7) (H)
7431:2 0, 0, 0, e12, e14, e13 + e24, e15 1/4(1, 2, 4, 3, 4, 5, 5) (H)

Table 5 – Continued to next page
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Name g N Obstruction

7431:6a 0, 0, 0,−e12, e14 + e23, e13 + e24, e34 + e15 4/11(1, 1, 2, 2, 3, 3, 4) (P)
7431:6b 0, 0, 0,−e12, e23 − e14, e24 + e13, e34 + e15 4/11(1, 1, 2, 2, 3, 3, 4) (P)
741:3a 0, 0, 0, e12, e13, e23, e24 + e35 1/2(1, 1, 1, 2, 2, 2, 3) (H)
741:3b 0, 0, 0,−e12, e13, e23, e24 + e35 1/2(1, 1, 1, 2, 2, 2, 3) (H)
741:4 0, 0, 0, e12, e13, e23, e34 + e25 1/2(1, 1, 1, 2, 2, 2, 3) (H)
731:8 0, 0, 0, 0, e12, e34, e13 + e25 1/3(2, 1, 2, 2, 3, 4, 4) (H)
731:16a 0, 0, 0, 0, e12, e13, e25 + e36 + e14 1/2(1, 1, 1, 2, 2, 2, 3) (H)
731:16b 0, 0, 0, 0,−e12, e13, e36 + e14 + e25 1/2(1, 1, 1, 2, 2, 2, 3) (H)
731:18 0, 0, 0, 0, e12, e13, e35 + e26 + e14 1/2(1, 1, 1, 2, 2, 2, 3) (H)
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Table 6: Irreducible nice nilpotent Lie algebras of dimension 7 that admit a diagonal nilsoliton metric of type Nil4

Name g N S

754321:1 0, 0, e12, e13, e14, e15, e16 2/37(1, 16, 17, 18, 19, 20, 21) {∅, 1246, 1357, 234567}
754321:2 0, 0, e12, e13, e14, e15, e23 + e16 5/34(1, 4, 5, 6, 7, 8, 9) {∅, 1357}
754321:3 0, 0, e12, e13, e14, e23 + e15, e24 + e16 17/100(1, 3, 4, 5, 6, 7, 8) {∅, 1246}
754321:9 0, 0,−e12(−1 + λ), e13, e23 + e14λ, e15 + e24, e25 + e16 + e34 1/5(1, 2, 3, 4, 5, 6, 7) see Table 4
75432:1 0, 0,−e12, e13, e14, e15, e34 + e25 7/52(1, 4, 5, 6, 7, 8, 11) {∅, 12467, 1357, 23456}
75432:2 0, 0,−e12, e13, e14, e15 + e23, e34 + e25 5/31(1, 3, 4, 5, 6, 7, 9) {∅, 12467}
75432:3 0, 0,−e12, e13, e14 + e23, e24 + e15, e34 + e25 1/5(1, 2, 3, 4, 5, 6, 7) {∅, 1357}
75421:1 0, 0, e12, e13, e23, e14, e16 1/18(3, 10, 13, 16, 23, 19, 22) {∅, 12457, 1356, 23467}
75421:2 0, 0, e12, e13, e23, e14, e16 + e25 45/353(2, 3, 5, 7, 8, 9, 11) {∅, 23467}
75421:3 0, 0,−e12, e13, e23, e14, e26 + e34 1/52(10, 23, 33, 43, 56, 53, 76) {∅, 12457, 13567, 2346}
75421:4 0, 0, e12, e13, e23, e15 + e24, e16 + e34 1/5(1, 2, 3, 4, 5, 6, 7) {∅, 12457, 125, 1345, 1357, 234, 237, 47}
75421:5a 0, 0,−e12, e13, e23, e25 + e14, e26 + e34 19/65(1, 1, 2, 3, 3, 4, 5) {∅, 12457, 13567, 2346}
75421:5b 0, 0,−e12,−e13, e23, e14 + e25, e26 + e34 19/65(1, 1, 2, 3, 3, 4, 5) {∅, 12457, 13567, 2346}
7542:1 0, 0, e12, e13, e23, e14, e25 9/28(1, 1, 2, 3, 3, 4, 4) {∅, 1245, 13567, 23467}
7542:2 0, 0, e12, e13, e23, e14, e15 + e24 1/12(3, 5, 8, 11, 13, 14, 16) {∅, 1245, 1356, 2346}
7542:3a 0, 0, e12, e13, e23, e24 + e15, e14 + e25 9/28(1, 1, 2, 3, 3, 4, 4) {∅, 1245, 1357, 2347}
7542:3b 0, 0, e12,−e13, e23,−e15 + e24, e14 + e25 9/28(1, 1, 2, 3, 3, 4, 4) {∅, 1245, 1357, 2347}
74321:2 0, 0, 0, e12, e14, e15, e16 + e23 1/27(5, 17, 20, 22, 27, 32, 37) {∅, 1257, 146, 24567}
74321:5 0, 0, 0,−e12, e14, e15 + e23, e16 + e34 1/5(1, 3, 3, 4, 5, 6, 7) {∅, 12357, 1346, 24567}
74321:6 0, 0, 0,−e12, e14, e15 + e23, e45 + e26 1/60(16, 21, 48, 37, 53, 69, 90) {∅, 12357, 13467, 2456}
74321:7 0, 0, 0,−e12, e14, e15, e26 + e13 + e45 1/5(1, 2, 6, 3, 4, 5, 7) {12357, 13467, 23456, 3}
74321:10 0, 0, 0,−e12, e14, e23 + e15, e13 + e45 + e26 8/47(2, 1, 6, 3, 5, 7, 8) {12357, 13467}
74321:12 0, 0, 0,−e12, e23 + e14, e15 + e34, e16 + e35 1/5(1, 3, 2, 4, 5, 6, 7) {∅, 123467, 1257, 135, 146, 237, 24567, 3456}
7431:3 0, 0, 0, e12, e14, e24, e23 + e15 1/68(20, 31, 60, 51, 71, 82, 91) {∅, 12356, 13467, 2457}
7431:4 0, 0, 0, e12, e14, e24 + e13, e15 + e23 10/67(2, 3, 6, 5, 7, 8, 9) {12356, 13467}
7431:5 0, 0, 0, e12, e13 + e24, e14, e34 + e25 1/12(5, 4, 8, 9, 13, 14, 17) {∅, 1256, 1457, 2467}
7431:9 0, 0, 0, e12, e14, e24 + e13, e16 + e25 1/7(2, 3, 6, 5, 7, 8, 10) {∅, 1256, 146, 245}

7431:10a 0, 0, 0, e12, e14 + e23, e24 + e13, e15 + e26 4/11(1, 1, 2, 2, 3, 3, 4) {∅, 1256, 1467, 2457}
7431:10b 0, 0, 0, e12,−e14 + e23, e13 + e24, e26 + e15 4/11(1, 1, 2, 2, 3, 3, 4) {∅, 1256, 1467, 2457}

Table 6 – Continued to next page
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Name g N S

7431:11a 0, 0, 0, e12, e13 + e24, e14 + e23, e15 + e26 4/11(1, 1, 2, 2, 3, 3, 4) {∅, 1256, 145, 246}
7431:11b 0, 0, 0, e12, e24 − e13, e23 + e14, e15 + e26 4/11(1, 1, 2, 2, 3, 3, 4) {∅, 1256, 145, 246}
7431:12a 0, 0, 0, e12, e14, e13 + e24, e26 + e34 + e15 4/11(1, 1, 2, 2, 3, 3, 4) {∅, 1256, 1467, 2457}
7431:12b 0, 0, 0, e12,−e14, e13 + e24, e26 + e34 + e15 4/11(1, 1, 2, 2, 3, 3, 4) {∅, 1256, 1467, 2457}
7431:13a 0, 0, 0, (−1 +A)e12, e23 + e14, Ae13 + e24, e34 + e26 + e15 4/11(1, 1, 2, 2, 3, 3, 4) see Table 4
7431:13b 0, 0, 0, (−1 +A)e12, e23 − e14, Ae13 + e24, e34 + e15 + e26 4/11(1, 1, 2, 2, 3, 3, 4) see Table 4
7421:1 0, 0, 0, e12, e13, e14, e16 2/13(1, 5, 6, 6, 7, 7, 8) {∅, 1236, 1256, 1347, 1457, 234567, 2467, 35}
7421:2 0, 0, 0, e12, e13, e24, e26 1/21(12, 5, 15, 17, 27, 22, 27) {∅, 1236, 1256, 13467, 14567, 23457, 247, 35}
7421:3 0, 0, 0, e12, e13, e14, e16 + e23 1/31(8, 19, 24, 27, 32, 35, 43) {∅, 1236, 1347, 2467}
7421:4 0, 0, 0, e12, e13, e14, e16 + e24 2/37(5, 10, 16, 15, 21, 20, 25) {∅, 1347, 1457, 35}
7421:5 0, 0, 0, e12, e13, e24, e26 + e14 1/19(10, 5, 14, 15, 24, 20, 25) {∅, 23457, 247, 35}
7421:6 0, 0, 0, e12, e13, e14, e35 + e16 2/27(3, 10, 8, 13, 11, 16, 19) {∅, 1347, 1457, 35}
7421:7 0, 0, 0, e12, e13, e24, e35 + e26 1/33(18, 10, 15, 28, 33, 38, 48) {∅, 13467, 14567, 35}
7421:8 0, 0, 0, e12, e13, e24, e15 + e26 1/39(15, 14, 27, 29, 42, 43, 57) {∅, 1256, 13467, 23457}
7421:9 0, 0, 0,−e12, e13, e14 + e23, e16 + e34 2/19(3, 5, 6, 8, 9, 11, 14) {126, 147, 24567, 5}
7421:10 0, 0, 0, e12, e13, e14 + e23, e25 + e16 2/19(3, 5, 6, 8, 9, 11, 14) {∅, 1256, 1457, 2467}
7421:11a 0, 0, 0, e12, e13, e14, e16 + e24 + e35 5/17(1, 2, 2, 3, 3, 4, 5) {∅, 1347, 1457, 35}
7421:11b 0, 0, 0,−e12, e13, e14, e35 + e16 + e24 5/17(1, 2, 2, 3, 3, 4, 5) {∅, 1347, 1457, 35}
7421:12 0, 0, 0, e12, e13, e14, e34 + e25 + e16 2/19(3, 5, 6, 8, 9, 11, 14) {∅, 1256, 1457, 2467}
7421:13 0, 0, 0, e12, e13, e24, e14 + e35 + e26 20/139(4, 2, 3, 6, 7, 8, 10) {13467, 14567}
7421:14 0, 0, 0, e12(−1 + λ), e13λ, e23 + e14, e25 + e34 + e16 2/19(3, 5, 6, 8, 9, 11, 14) see Table 4
742:1 0, 0, 0, e12, e13, e14, e24 1/11(4, 5, 9, 9, 13, 13, 14) {∅, 12367, 12567, 1347, 1457, 23456, 246, 35}
742:2 0, 0, 0, e12, e13, e24, e14 + e23 1/23(9, 10, 18, 19, 27, 29, 28) {∅, 12567, 1456, 247}
742:3 0, 0, 0, e12, e13, e14, e15 1/5(1, 4, 4, 5, 5, 6, 6) {∅, 12367, 1256, 1347, 145, 234567, 246, 357}
742:4 0, 0, 0, e12, e13, e24, e15 1/21(6, 11, 15, 17, 21, 28, 27) {∅, 12367, 1256, 13467, 1456, 23457, 24, 357}
742:5 0, 0, 0, e12, e13, e24, e35 1/12(6, 5, 5, 11, 11, 16, 16) {∅, 12367, 12567, 13467, 14567, 2345, 24, 35}
742:6 0, 0, 0, e12, e13, e14, e15 + e23 1/16(5, 10, 11, 15, 16, 20, 21) {∅, 1347, 145, 357}
742:7 0, 0, 0, e12, e13, e24, e23 + e15 1/41(11, 22, 30, 33, 41, 55, 52) {12367, 1256, 23457, 24}
742:8 0, 0, 0, e12, e13, e14, e24 + e15 1/37(11, 20, 29, 31, 40, 42, 51) {∅, 12367, 1347, 246}
742:9a 0, 0, 0, e12, e13, e14, e24 + e35 1/9(3, 5, 5, 8, 8, 11, 13) {∅, 12367, 12567, 1347, 1457, 23456, 246, 35}
742:9b 0, 0, 0,−e12, e13, e14, e35 + e24 1/9(3, 5, 5, 8, 8, 11, 13) {∅, 12367, 12567, 1347, 1457, 23456, 246, 35}
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Name g N S

742:10 0, 0, 0, e12, e13, e14, e25 + e34 1/20(7, 10, 12, 17, 19, 24, 29) {∅, 12367, 1256, 134, 1457, 23456, 2467, 357}
742:11 0, 0, 0, e12, e13, e24, e14 + e35 1/47(22, 20, 21, 42, 43, 62, 64) {∅, 12367, 12567, 35}
742:12 0, 0, 0, e12, e13, e24, e34 + e25 1/20(10, 7, 11, 17, 21, 24, 28) {∅, 12367, 1256, 1346, 14567, 2345, 247, 357}
742:13 0, 0, 0, e12, e13, e23 + e14, e24 + e15 5/29(2, 3, 4, 5, 6, 7, 8) {∅, 246}
742:14a 0, 0, 0, e12, e13, e14 + e23, e24 + e35 5/17(1, 2, 2, 3, 3, 4, 5) {12367, 1347, 23456, 35}
742:14b 0, 0, 0,−e12, e13, e14 + e23, e24 + e35 5/17(1, 2, 2, 3, 3, 4, 5) {12367, 1347, 23456, 35}
742:15 0, 0, 0, e12, e13, e23 + e14, e34 + e25 2/19(3, 5, 6, 8, 9, 11, 14) {12367, 134, 23456, 357}
742:16 0, 0, 0, e12, e13, e15 + e24, e14 + e35 13/29(1, 1, 1, 2, 2, 3, 3) {∅, 12367}
742:17 0, 0, 0, e12, e13, e15 + e24, e25 + e34 1/13(5, 6, 7, 11, 12, 17, 18) {∅, 12367, 1346, 247}
742:18a 0, 0, 0, e12, e13, e25 + e34, e24 + e35 1/12(6, 5, 5, 11, 11, 16, 16) {∅, 12367, 1257, 1347, 14567, 2345, 246, 356}
742:18b 0, 0, 0,−e12, e13,−e25 + e34, e24 + e35 1/12(6, 5, 5, 11, 11, 16, 16) {∅, 12367, 1257, 1347, 14567, 2345, 246, 356}
741:1 0, 0, 0, e12, e13, e23, e14 1/13(5, 7, 9, 12, 14, 16, 17) {∅, 1237, 12567, 1346, 145, 23457, 2467, 356}
741:2 0, 0, 0, e12, e13, e23, e24 + e15 1/37(15, 19, 23, 34, 38, 42, 53) {∅, 1237, 13467, 246}
741:5 0, 0, 0, e12, e13, e23, e15 + e36 + e24 1/2(1, 1, 1, 2, 2, 2, 3) {∅, 1237}
741:6 0, 0, 0, e12(−1 + λ), e13λ, e23, e25 + e16 + e34 1/2(1, 1, 1, 2, 2, 2, 3) see Table 4
7321:2 0, 0, 0, 0, e12, e15, e34 + e16 5/21(1, 3, 3, 3, 4, 5, 6) {∅, 12346, 126, 1357, 1457, 23567, 24567, 34}
7321:5 0, 0, 0, 0, e12, e15, e34 + e25 + e16 4/27(2, 4, 5, 5, 6, 8, 10) {∅, 1357, 1457, 34}
7321:7 0, 0, 0, 0, e12, e13 + e25, e14 + e35 + e26 2/19(5, 3, 6, 9, 8, 11, 14) {∅, 1246, 1567, 2457}
732:3 0, 0, 0, 0, e12, e15, e25 + e34 1/21(8, 11, 15, 15, 19, 27, 30) {∅, 12367, 12467, 1357, 1457, 23456, 256, 34}
732:5 0, 0, 0, 0, e12, e13 + e25, e15 + e34 1/41(22, 15, 30, 29, 37, 52, 59) {12367, 13456, 2357, 34}
732:6 0, 0, 0, 0, e12, e15 + e23, e14 + e25 7/16(1, 1, 2, 2, 2, 3, 3) {∅, 1267, 157, 256}
731:5 0, 0, 0, 0, e12, e13, e15 + e34 1/13(5, 9, 9, 10, 14, 14, 19) {∅, 1237, 12467, 1345, 156, 23567, 2457, 346}
731:6 0, 0, 0, 0, e12, e13, e25 + e34 1/11(6, 5, 7, 9, 11, 13, 16) {∅, 1237, 12467, 1357, 14567, 23456, 25, 346}
731:7 0, 0, 0, 0, e12, e24 + e13, e15 1/13(5, 7, 12, 10, 12, 17, 17) {∅, 12347, 1267, 135, 1456, 23567, 2457, 346}
731:9 0, 0, 0, 0, e12, e13, e14 + e25 2/13(3, 3, 5, 6, 6, 8, 9) {∅, 1237, 1267, 1357, 1567, 2356, 25, 36}
731:10 0, 0, 0, 0, e12, e13, e24 + e15 1/5(2, 3, 4, 4, 5, 6, 7) {∅, 1237, 1267, 135, 156, 23567, 257, 36}
731:11 0, 0, 0, 0, e12, e24 + e13, e34 + e15 1/23(10, 13, 18, 15, 23, 28, 33) {∅, 23567, 2457, 346}
731:12 0, 0, 0, 0, e12, e14 + e23, e25 + e13 1/14(7, 6, 12, 11, 13, 18, 19) {∅, 1267, 1457, 2456}
731:17 0, 0, 0, 0, e12, e13, e36 + e24 + e15 4/37(4, 6, 5, 8, 10, 9, 14) {∅, 1237, 1267, 36}
731:19 0, 0, 0, 0, e12, e34, e36 + e15 1/12(5, 8, 5, 8, 13, 13, 18) {∅, 12347, 12467, 1356, 15, 23457, 24567, 36}
731:20 0, 0, 0, 0,−e12, e23 + e14, e35 + e16 1/20(7, 12, 11, 16, 19, 23, 30) {∅, 12347, 126, 1356, 1457, 235, 24567, 3467}
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731:21 0, 0, 0, 0, e12, e34, e46 + e13 + e25 4/11(2, 1, 2, 1, 3, 3, 4) {12347, 12367, 13457, 13567}
731:22a 0, 0, 0, 0, e14 + e23, e24 + e13, e15 + e26 1/12(5, 5, 8, 8, 13, 13, 18) {∅, 12347, 1256, 135, 1467, 236, 2457, 34567}
731:22b 0, 0, 0, 0,−e14 + e23, e13 + e24, e26 + e15 1/12(5, 5, 8, 8, 13, 13, 18) {∅, 12347, 1256, 135, 1467, 236, 2457, 34567}
731:23 0, 0, 0, 0, e12, e24 + e13, e26 + e35 + e14 2/19(6, 3, 5, 8, 9, 11, 14) {12347, 126, 135, 14567}
731:24a 0, 0, 0, 0, e24 + e13,−e12 + e34, e15 + e23 + e46 4/11(1, 2, 2, 1, 3, 3, 4) {12347, 125, 23567, 246}
731:24b 0, 0, 0, 0,−e13 + e24, e34 − e12, e46 + e15 + e23 4/11(1, 2, 2, 1, 3, 3, 4) {12347, 125, 23567, 246}

73:2 0, 0, 0, 0, e12, e13, e14 2/5(1, 2, 2, 2, 3, 3, 3)
{∅, 1234, 1237, 1246, 1267, 1345, 1357, 1456,
1567, 234567, 2356, 2457, 25, 3467, 36, 47}

73:3 0, 0, 0, 0, e12, e13, e24 1/7(4, 4, 5, 5, 8, 9, 9)
{∅, 1234, 1237, 1246, 1267, 13457, 135, 14567,
156, 23456, 23567, 245, 257, 3467, 36, 47}

73:4 0, 0, 0, 0, e12, e13, e23 + e14 1/6(3, 4, 4, 5, 7, 7, 8) {∅, 1234, 1267, 1357, 1456, 2356, 2457, 3467}
73:5 0, 0, 0, 0, e12, e34, e24 + e13 5/8(1, 1, 1, 1, 2, 2, 2) {∅, 1234, 127, 1356, 14567, 23567, 2456, 347}
73:6a 0, 0, 0, 0, e12, e14 + e23, e13 + e24 1/7(4, 4, 5, 5, 8, 9, 9) {∅, 1234, 1267, 1356, 1457, 2357, 2456, 3467}
73:6b 0, 0, 0, 0, e12,−e14 + e23, e13 + e24 1/7(4, 4, 5, 5, 8, 9, 9) {∅, 1234, 1267, 1356, 1457, 2357, 2456, 3467}
73:7a 0, 0, 0, 0, e23 + e14, e24 + e13, e34 + e12 5/8(1, 1, 1, 1, 2, 2, 2) {∅, 1234, 1256, 1357, 1467, 2367, 2457, 3456}
73:7b 0, 0, 0, 0, e23 + e14,−e13 + e24, e34 + e12 5/8(1, 1, 1, 1, 2, 2, 2) {∅, 1234, 1256, 1357, 1467, 2367, 2457, 3456}
721:4 0, 0, 0, 0, 0, e12, e13 + e45 + e26 2/13(4, 3, 6, 5, 5, 7, 10) {∅, 1247, 1257, 1467, 1567, 2456, 26, 45}

72:5 0, 0, 0, 0, 0, e12, e13 + e45 1/7(4, 5, 6, 5, 5, 9, 10)
{∅, 123, 12345, 1247, 1257, 13456, 136, 1467,
1567, 23467, 23567, 2456, 26, 347, 357, 45}

72:6 0, 0, 0, 0, 0, e24 + e13, e12 + e35 1/8(6, 5, 5, 6, 6, 11, 11) {∅, 12345, 126, 137, 14567, 2367, 2457, 3456}

71:3 0, 0, 0, 0, 0, 0, e56 + e34 + e12 4/5(1, 1, 1, 1, 1, 1, 2)
{∅, 12, 1234, 123456, 1256, 1357, 1367, 1457,
1467, 2357, 2367, 2457, 2467, 34, 3456, 56}
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3 Nilsolitons of dimension 8 and 9

In higher dimensions, the methods of this paper do not seem sufficient to obtain a complete clas-
sification, since the number of polynomial systems that need to be solved increases dramatically.
For instance, in dimension 8 there are 119 nice Lie algebras and 37 families of nice Lie algebras
such that the corank is greater than one, meaning that (P) consists of two or more equations.
However, the method works if we put restrictions on the corank. Again, we use the classification
of [4] with minor differences (see Remark 2.8).

Proposition 3.1. The irreducible nice nilpotent Lie algebras of dimension 8 with dim cokerM∆ ≤
1 that admit a diagonal nilsoliton metric of type Nil4 are listed in Table 7 and Table A.1 (see an-
cillary files); for each Lie algebra, the last column gives the set of signatures of diagonal metrics
satisfying (9).

Proof. Because of the Nil4 condition, we restrict to nice Lie algebras with nonzero Nikolaevsky
derivation.

We apply Corollary 1.6 case by case. Lie algebras that do not depend on a parameter can be
handled by the program [2], since Condition (P) is a single polynomial equation.

In addition, there are eight one-parameter families to consider. For 852:26 there is no metric
by (H). For 852:23 and 842:41 we have the metrics guaranteed by Corollary 1.17, and no others
because of (L).

Then we have five one-parameter families for which Condition (P) is a polynomial condition
depending on one parameter. For 8531:46, we compute

X =

(
3

19
,− 1

19
+ x7,

7

19
− x7,−

1

19
+ x7,

6

19
− x7,

6

19
− x7, x7

)
.

Then

x7

(
x7 −

1

19

)2

= a2
(

6

19
− x7

)2 (
7

19
− x7

)
.

We set A = a2 and rewrite the equation as

p = −252A

6859
+

(
1

361
+

120A

361

)
x−

(
2

19
+A

)
x2 + (1 +A)x3 = 0.

This equation is invariant under

A 7→ 1

A
, x7 7→ 7

19
− x7.

Therefore, we may assume A ≥ 1. The discriminant of p is negative for

1 ≤ A ≤ α =
1

48
(34343 + 323

√
11305) ∼ 1431.0.

Solving for two fixed values of A, say A = 1 and A = 1431, and using continuity, we see that a
solution with all entries of X positive exists for every A ≥ 1, and in addition one or two solutions
with 6

19 − x7 < 0 and the other entries positive when A ≥ α.
For A < 1, we see that for A ≤ 1

α we have a solution with − 1
19 +x7 < 0 and the other entries

positive.
Therefore, we obtain the signatures

{∅, 134578, 13478, 1458, 148, 357, 37, 5} a2 ≤ 1
α

{∅, 13478, 1458, 357} 1
α < a2 < α

{∅, 123678, 12568, 13478, 1458, 234567, 246, 357} a2 ≥ α

.
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For the two one-parameter families 8531:58a and 8531:58b, we compute

X =

(
3

14
, x7,

5

14
− x7,−

1

14
+ x7,

3

14
− x7,

3

14
− x7, x7,

3

14

)
,

giving

−196
x2
7(−1 + 14x7)

(−3 + 14x7)
2
(−5 + 14x7)

= a2.

This equation has solutions with x5, x6 < 0 and other entries positive for a2 ≥ 1/8(191+23
√
69)

({123678, 12568, 234567, 246}); in addition, it has a solution with all entries positive for every
value of a ({∅, 13478, 1458, 357}).

For 842:74 we compute

X =

(
1

19
+ x7,

6

19
− x7, x7,

5

19
− x7,

5

19
− x7,

3

19
, x7

)
,

and consequently

−361
(1 + 19x7)x

2
7

(−6 + 19x7)(−5 + 19x7)
2 = a2.

For any value of a we have solutions with all-positive entries (S0 = {∅, 12378, 1358, 257}). In
addition, for a2 ≤ (34343 − 323

√
11305)/48 we have x3, x7 < 0 and x4, x5 > 0, hence S = S0 ∪

{12348, 134578, 245, 47}); for a2 ≥ (34343 + 323
√
11305)/48 we have x3, x7 > 0 and x4, x5 < 0,

so S = S0 ∪ {124678, 14568, 234567, 346}.
For 842:88 we have

X =

(
x6 +

2

11
,
3

11
− x6,

1

11
− x6,

3

11
, x6, x6,

1

11
− x6,

3

11

)
giving

x2
6

(
x6 +

2

11

)
= a2

(
3

11
− x6

)(
1

11
− x6

)2

We have a solution with all positive xi for all values of a (S0 = {∅, 12378}). For a2 ≤
(1523 − 77

√
385)/192 we also have a solution with x5, x6 < 0 and x3, x7 > 0, giving S =

S0 ∪ {134578, 245}; for a2 ≥ (1523 + 77
√
385)/192 we also have x5, x6 > 0 and x3, x7 < 0, so

that S = S0 ∪ {124678, 346}.

Table 7: Families of nice nilpotent Lie algebras of dimension 8 with dim cokerM∆ ≤ 1 that admit
a diagonal nilsoliton metric of type Nil4

Name g S

8531:46
0, 0, 0, e12, ae13,

e14, e15 + e23, e24 + e16

a2 ≤ 1
α

{∅, 134578, 13478, 1458, 148, 357, 37, 5}
1
α

< a2 < α {∅, 13478, 1458, 357}
a2 ≥ α {∅, 123678, 12568, 13478, 1458, 234567, 246, 357}

α = 1
48

(34343 + 323
√
11305)

8531:58a
0, 0, 0, e12, ae13,

e14, e15 + e23, e35 + e24 + e16
a2 ≤ 1

8
(191 + 23

√
69) {∅, 13478, 1458, 357}

a2 ≥ 1
8
(191 + 23

√
69) {∅, 123678, 12568, 13478, 1458, 234567, 246, 357}

Table 7 – Continued to next page
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Table 7 – Continued from previous page

Name g S

8531:58b
0, 0, 0,−e12, ae13,

e14, e15 + e23, e35 + e24 + e16
a2 ≤ 1

8
(191 + 23

√
69) {∅, 13478, 1458, 357}

a2 ≥ 1
8
(191 + 23

√
69) {∅, 13478, 1458, 357, 246, 234567, 12568, 123678}

852:23
0, 0, 0, e12, ae13,

e23, e35 + e14, e24 + e36
{∅, 12378, 125678, 356}

842:41
0, 0, 0, 0, ae12,

e13, e24 + e15, e34 + e16
{∅, 12378, 1267, 1358, 156, 235678, 257, 368}

842:74
0, 0, 0, 0, ae12,

e13, e24 + e15, e34 + e25 + e16

a2 ≤ α1 {∅, 12348, 12378, 134578, 1358, 257, 245, 47}
α1 < a2 < α2 {∅, 12378, 1358, 257}

α2 ≤ a2 {∅, 12378, 124678, 1358, 14568, 234567, 257, 346}
α1 = 1

48
(34343− 323

√
11305), α2 = 1

48
(34343 + 323

√
11305)

842:88
0, 0, 0, 0, ae12,

e13, e34 + e25 + e16, e24 + e36 + e15

a2 ≤ β1 {∅, 12378, 134578, 245}
β1 < a2 < β2 {∅, 12378}

β2 ≤ a2 {∅, 12378, 124678, 346}
β1 = 1

192
(1523− 77

√
385), β2 = 1

192
(1523 + 77

√
385)

For dimension 9, even the corank one case appears to be intractable, since there are 72 families
of nice Lie algebras with corank one, for which (P) is a parametric equation. For corank zero,
however, we easily obtain:

Proposition 3.2. The irreducible nice nilpotent Lie algebras of dimension 9 with dim cokerM∆ =
0 that admit a diagonal nilsoliton metric of type Nil4 are listed in Table A.2; for each Lie algebra,
the last column gives the set of signatures of diagonal metrics satisfying (9).

Things become easier if we restrict to Riemannian signature: indeed, a straightforward ap-
plication of Corollary 1.17 gives:

Theorem 3.3. The irreducible nice nilpotent Lie algebras of dimension 8 with dim cokerM∆ > 1
(respectively, dimension 9 and dim cokerM∆ > 0) that admit a Riemannian nilsoliton metric
are listed in Table A.3 (resp. Table A.4); for each Lie algebra, the column S0 gives the set of
signatures of nilsoliton metrics obtained by applying an element of kerM∆,2.

Proof. By [18, Theorem 3], a nice nilpotent Lie algebra has a Riemannian nilsoliton metric if and
only if it has a diagonal Riemannian nilsoliton metric. In addition, [18] shows that determining
whether a Riemannian diagonal nilsoliton metric exists amounts to solving a system of linear
equalities and inequalities (see also Corollary 1.17). Case-by-case calculations with [2] yield the
tables Table A.3 and Table A.4.

The non-Riemannian signatures are computed applying Corollary 1.17.

Notice that together with Proposition 3.1 and Proposition 3.2, this gives a full classification
of Riemannian nice nilsolitons up to dimension 9.

Remark 3.4. For each nice Lie algebra, regardless of the corank of M∆, one can determine the
set of signatures{

δ | ∃X satisfying (K) with λ = −1

2
, (H) and M∆,2δ = logsignX

}
. (18)

Such a signature δ is in S if and only if X can be chosen to satisfy (P). Thus, if every element
of (18) is in S0, we deduce that S0 = S without having to solve any polynomial equation.

We implemented this strategy in [2], using the Fourier-Motzkin algorithm to determine the
set (18). This allows us to conclude that for some nice Lie algebras S0 exhausts the set of
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signatures of diagonal nilsoliton metrics satisfying (9). These Lie algebras are flagged with a
check mark in the last column of Table A.3 and Table A.4. We emphasize that the lack of a
check mark does not imply that S0 is strictly contained in S.

Remark 3.5. If one only considers Riemannian signature, our tables can be compared to the
existing classifications as follows. In dimension 7, our results are compatible with those of [7],
though we only consider nice Lie algebras here. In dimension 8, we recover the classification
of [11], but our result is more general since we do not require that the root matrix be surjective
and the eigenvalues of the Nikolayevsky derivation distinct. For filiform Lie algebras, we recover
the results of [1] concerning the existence of a Riemannian nilsoliton metric on filiform Lie
algebras of dimension 8. We remark that all the Lie algebras appearing in [1] are nice: indeed,
they already appear in a nice basis except m1(8), which is isomorphic to 8654321:5 under a
simple change of basis. Table 8 makes explicit the correspondence between our nice Lie algebras
and the Lie algebras of [1].

Table 8: Correspondence with [1] for filiform 8-dimensional Lie algebras

Name [1] g Riem. Nil.

8654321:1 m0(8) 0, 0, e12, e13, e14, e15, e16, e17 ✓
8654321:2 g1(8) 0, 0, e12, e13, e14, e15, e16, e17 + e23 ✓
8654321:3 d1(8) 0, 0, e12, e13, e14, e15, e16 + e23, e24 + e17 ✓
8654321:4 a−1(8) 0, 0,−e12, e13, e14, e15, e16, e25 + e34 + e17

8654321:5 m1(8) 0, 0,−e12,−e13, e14, e15, e16, e45 + e36 + e27 ✓
8654321:6 c1,0(8) 0, 0, e12, e13, e14, e15 + e23, e24 + e16, e25 + e17

8654321:7 a0(8) 0, 0, e12, e13, e14, e15 + e23, e24 + e16, e34 + e17 ✓
8654321:11 s1(8) 0, 0,−e12,−e13, e14, e15, e16 + e23, e36 + e27 + e45 ✓
8654321:12 m2(8) 0, 0, e12, e13, e23 + e14, e24 + e15, e25 + e16, e26 + e17

8654321:14
at(8)

t ̸= 0,−1
0, 0,−e12(−1 + a3), e

13, e14a3,
e15 + e23, e24 + e16, e25 + e34 + e17

✓

8654321:15 g−2(8) 0, 0,−e12, e13, e14, 2e15, e25 + e34 + e16, e35 + e26 + e17

8654321:17 k1(8) 0, 0,−e12, e13, e14,−e15 + e23, e24 + e16, e36 + e27 + e45 ✓

8654321:19 g0(8)
0, 0, e12, e13, e23 + e14, e24 + e15,

e25 + e34 + 2e16, e35 + e17
✓

8654321:20 g−1(8)
0, 0, e12,−e13, e23 + e14, e24 − e15,

e34 + e16, e35 + e26 + e17
✓

8654321:24
gα(8)

α ̸= 0,−1,−2
0, 0, e12(1− a4), e

13a4, e
23 + e14,

e24 + e15a4, e
16(2− a4) + e25 + e34, e35 + e26 + e17

✓

8654321:25 b(8)
0, 0,−e12,−e13,− 1

2e
23 + 3

2e
14,

1
2e

24 + e15, e25 + e34 + e16, e36 + e27 + e45
✓
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