Aims: Mutation type, location, dominant-negative IKs reduction, and possibly loss of cyclic adenosine monophosphate (cAMP)-dependent IKs stimulation via protein kinase A (PKA) influence the clinical severity of long QT syndrome type 1 (LQT1). Given the malignancy of KCNQ1-p.A341V, we assessed whether mutations neighbouring p.A341V in the S6 channel segment could also increase arrhythmic risk. Methods and results: Clinical and genetic data were obtained from 1316 LQT1 patients [450 families, 166 unique KCNQ1 mutations, including 277 p.A341V-positive subjects, 139 patients with p.A341-neighbouring mutations (91 missense, 48 non-missense), and 900 other LQT1 subjects]. A first cardiac event represented the primary endpoint. S6 segment missense variant characteristics, particularly cAMP stimulation responses, were analysed by cellular electrophysiology. p.A341-neighbouring mutation carriers had a QTc shorter than p.A341V carriers (477 ± 33 vs. 490 ± 44 ms) but longer than the remaining LQT1 patient population (467 ± 41 ms) (P < 0.05 for both). Similarly, the frequency of symptomatic subjects in the p.A341-neighbouring subgroup was intermediate between the other two groups (43% vs. 73% vs. 20%; P < 0.001). These differences in clinical severity can be explained, for p.A341V vs. p.A341-neighbouring mutations, by the p.A341V-specific impairment of IKs regulation. The differences between the p.A341-neighbouring subgroup and the rest of LQT1 mutations may be explained by the functional importance of the S6 segment for channel activation. Conclusion: KCNQ1 S6 segment mutations surrounding p.A341 increase arrhythmic risk. p.A341V-specific loss of PKA-dependent IKs enhancement correlates with its phenotypic severity. Cellular studies providing further insights into IKs-channel regulation and knowledge of structure-function relationships could improve risk stratification. These findings impact on clinical management.

Schwartz, P., Moreno, C., Kotta, M., Pedrazzini, M., Crotti, L., Dagradi, F., et al. (2021). Mutation location and IKsregulation in the arrhythmic risk of long QT syndrome type 1: The importance of the KCNQ1 S6 region. EUROPEAN HEART JOURNAL, 42(46), 4743-4755 [10.1093/eurheartj/ehab582].

Mutation location and IKsregulation in the arrhythmic risk of long QT syndrome type 1: The importance of the KCNQ1 S6 region

Crotti L.
Membro del Collaboration Group
;
2021

Abstract

Aims: Mutation type, location, dominant-negative IKs reduction, and possibly loss of cyclic adenosine monophosphate (cAMP)-dependent IKs stimulation via protein kinase A (PKA) influence the clinical severity of long QT syndrome type 1 (LQT1). Given the malignancy of KCNQ1-p.A341V, we assessed whether mutations neighbouring p.A341V in the S6 channel segment could also increase arrhythmic risk. Methods and results: Clinical and genetic data were obtained from 1316 LQT1 patients [450 families, 166 unique KCNQ1 mutations, including 277 p.A341V-positive subjects, 139 patients with p.A341-neighbouring mutations (91 missense, 48 non-missense), and 900 other LQT1 subjects]. A first cardiac event represented the primary endpoint. S6 segment missense variant characteristics, particularly cAMP stimulation responses, were analysed by cellular electrophysiology. p.A341-neighbouring mutation carriers had a QTc shorter than p.A341V carriers (477 ± 33 vs. 490 ± 44 ms) but longer than the remaining LQT1 patient population (467 ± 41 ms) (P < 0.05 for both). Similarly, the frequency of symptomatic subjects in the p.A341-neighbouring subgroup was intermediate between the other two groups (43% vs. 73% vs. 20%; P < 0.001). These differences in clinical severity can be explained, for p.A341V vs. p.A341-neighbouring mutations, by the p.A341V-specific impairment of IKs regulation. The differences between the p.A341-neighbouring subgroup and the rest of LQT1 mutations may be explained by the functional importance of the S6 segment for channel activation. Conclusion: KCNQ1 S6 segment mutations surrounding p.A341 increase arrhythmic risk. p.A341V-specific loss of PKA-dependent IKs enhancement correlates with its phenotypic severity. Cellular studies providing further insights into IKs-channel regulation and knowledge of structure-function relationships could improve risk stratification. These findings impact on clinical management.
Articolo in rivista - Articolo scientifico
Genetics; Long QT syndrome; Sudden cardiac death;
English
4743
4755
13
Schwartz, P., Moreno, C., Kotta, M., Pedrazzini, M., Crotti, L., Dagradi, F., et al. (2021). Mutation location and IKsregulation in the arrhythmic risk of long QT syndrome type 1: The importance of the KCNQ1 S6 region. EUROPEAN HEART JOURNAL, 42(46), 4743-4755 [10.1093/eurheartj/ehab582].
Schwartz, P; Moreno, C; Kotta, M; Pedrazzini, M; Crotti, L; Dagradi, F; Castelletti, S; Haugaa, K; Denjoy, I; Shkolnikova, M; Brink, P; Heradien, M; Seyen, S; Spatjens, R; Spazzolini, C; Volders, P
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/354063
Citazioni
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
Social impact