Inflammatory responses have an important role in the onset of many lung diseases associated with urban airborne particulate matter (PM). Here we investigate effects and mechanisms linked to PM-induced expression and release of two main interleukins, IL-6 and IL-8, in human bronchial epithelial BEAS-2B cells. The cells were exposed to well characterized Milan city PM, winter PM2.5 (wPM2.5) and summer PM10 (sPM10), representing combustion and non-combustion sources, respectively. Both wPM2.5 and sPM10 increased mRNA-synthesis and intracellular protein levels of IL-6 and IL-8. Exposure to sPM10 also resulted in continuous and time-dependent increases in release of IL-6 and IL-8 for up to 48 h. By comparison, in wPM2.5-exposed cells IL-8 release was not significantly augmented, while extracellular IL-6 levels were increased but remained constant beyond 24 h exposure. Moreover, wPM2.5 also reduced the lipopolysaccharide (LPS)-increased release of IL-8. No cytotoxicity or significant adsorption of cytokines to wPM2.5 were observed. Immunofluorescence microscopy revealed an accumulation of IL-8 in intracellular vesicles and alterations in actin filament organization in wPM2.5 exposed cells, suggesting that the trafficking of vesicles carrying interleukins to the plasma membrane might be inhibited. Thus, wPM2.5 appeared to impair cytokine release in BEAS-2B cells, in particular of IL-8, possibly by damaging cytoskeletal function involved in protein secretion.

Longhin, E., Holme, J., Gualtieri, M., Camatini, M., Ovrevik, J. (2018). Milan winter fine particulate matter (wPM2.5) induces IL-6 and IL-8 synthesis in human bronchial BEAS-2B cells, but specifically impairs IL-8 release. TOXICOLOGY IN VITRO, 52, 365-373 [10.1016/j.tiv.2018.07.016].

Milan winter fine particulate matter (wPM2.5) induces IL-6 and IL-8 synthesis in human bronchial BEAS-2B cells, but specifically impairs IL-8 release

Longhin E.
;
Gualtieri M.;Camatini M.;
2018

Abstract

Inflammatory responses have an important role in the onset of many lung diseases associated with urban airborne particulate matter (PM). Here we investigate effects and mechanisms linked to PM-induced expression and release of two main interleukins, IL-6 and IL-8, in human bronchial epithelial BEAS-2B cells. The cells were exposed to well characterized Milan city PM, winter PM2.5 (wPM2.5) and summer PM10 (sPM10), representing combustion and non-combustion sources, respectively. Both wPM2.5 and sPM10 increased mRNA-synthesis and intracellular protein levels of IL-6 and IL-8. Exposure to sPM10 also resulted in continuous and time-dependent increases in release of IL-6 and IL-8 for up to 48 h. By comparison, in wPM2.5-exposed cells IL-8 release was not significantly augmented, while extracellular IL-6 levels were increased but remained constant beyond 24 h exposure. Moreover, wPM2.5 also reduced the lipopolysaccharide (LPS)-increased release of IL-8. No cytotoxicity or significant adsorption of cytokines to wPM2.5 were observed. Immunofluorescence microscopy revealed an accumulation of IL-8 in intracellular vesicles and alterations in actin filament organization in wPM2.5 exposed cells, suggesting that the trafficking of vesicles carrying interleukins to the plasma membrane might be inhibited. Thus, wPM2.5 appeared to impair cytokine release in BEAS-2B cells, in particular of IL-8, possibly by damaging cytoskeletal function involved in protein secretion.
Articolo in rivista - Articolo scientifico
Cytoskeleton; Inflammation; Interleukin release; Particulate matter;
English
2018
52
365
373
reserved
Longhin, E., Holme, J., Gualtieri, M., Camatini, M., Ovrevik, J. (2018). Milan winter fine particulate matter (wPM2.5) induces IL-6 and IL-8 synthesis in human bronchial BEAS-2B cells, but specifically impairs IL-8 release. TOXICOLOGY IN VITRO, 52, 365-373 [10.1016/j.tiv.2018.07.016].
File in questo prodotto:
File Dimensione Formato  
40 - Longhin et al 2018 TIV.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/352832
Citazioni
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 41
Social impact