Suppose that a compact and connected Lie group G acts on a complex Hodge manifold M in a holomorphic and Hamiltonian manner, and that the action linearizes to a positive holomorphic line bundle A on M. Then there is an induced unitary representation on the associated Hardy space and, if the moment map of the action is nowhere vanishing, the corresponding isotypical components are all finite dimensional. We study the asymptotic concentration behavior of the corresponding equivariant Szegö kernels near certain loci defined by the moment map.
Paoletti, R. (2022). Szegö kernel equivariant asymptotics under Hamiltonian Lie group actions. THE JOURNAL OF GEOMETRIC ANALYSIS, 32(4 (April 2022)) [10.1007/s12220-021-00829-4].
Szegö kernel equivariant asymptotics under Hamiltonian Lie group actions
Paoletti R.
2022
Abstract
Suppose that a compact and connected Lie group G acts on a complex Hodge manifold M in a holomorphic and Hamiltonian manner, and that the action linearizes to a positive holomorphic line bundle A on M. Then there is an induced unitary representation on the associated Hardy space and, if the moment map of the action is nowhere vanishing, the corresponding isotypical components are all finite dimensional. We study the asymptotic concentration behavior of the corresponding equivariant Szegö kernels near certain loci defined by the moment map.File | Dimensione | Formato | |
---|---|---|---|
Paoletti-2022-JGA-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
528.82 kB
Formato
Adobe PDF
|
528.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Paoletti-2022-JGA-Preprint.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Creative Commons
Dimensione
346.98 kB
Formato
Adobe PDF
|
346.98 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.