Three diazabicyclo analogs of BMS-378806, in which theaxial methyl group present on its piperazine ring is replaced by a carbon bridge, were synthesized and tested, through a viral neutralization assay, on a panel of six pseudoviruses. The diazabicyclooctane and-nonane derivatives maintained a significant infectivity reduction power, whereas the diazabicycloheptane derivative was much less effective. A modeling study allowed to relate the antiviral activity to the conformational preferences of the compounds. Moreover, similarly to BMS-378806, theoretical calculations predict the existence of different conformational families corresponding to the possible arrangements at the two planar amido functions of the compounds. High-field 1H NMR spectra confirm these results, as they show two distinct series of signals. A viral neutralization assay on a panel of six HIV-related pseudoviruses allowed the determination of the antiviral activity of three diazabicyclo analogs of BMS-378806, in which the axial methyl group on its piperazine ring is replaced by a carbon bridge. The diazabicyclooctane and-nonane derivatives show a significant infectivity reduction power that is related to their conformational preference.

Legnani, L., Colombo, D., Cocchi, E., Solano, L., Villa, S., Lopalco, L., et al. (2011). Modeling and Spectroscopic Studies of Synthetic Diazabicyclo Analogs of the HIV-1 Inhibitor BMS-378806 and Evaluation of Their Antiviral Activity. EUROPEAN JOURNAL OF ORGANIC CHEMISTRY(2), 287-294 [10.1002/ejoc.201001073].

Modeling and Spectroscopic Studies of Synthetic Diazabicyclo Analogs of the HIV-1 Inhibitor BMS-378806 and Evaluation of Their Antiviral Activity

LEGNANI, LAURA;
2011

Abstract

Three diazabicyclo analogs of BMS-378806, in which theaxial methyl group present on its piperazine ring is replaced by a carbon bridge, were synthesized and tested, through a viral neutralization assay, on a panel of six pseudoviruses. The diazabicyclooctane and-nonane derivatives maintained a significant infectivity reduction power, whereas the diazabicycloheptane derivative was much less effective. A modeling study allowed to relate the antiviral activity to the conformational preferences of the compounds. Moreover, similarly to BMS-378806, theoretical calculations predict the existence of different conformational families corresponding to the possible arrangements at the two planar amido functions of the compounds. High-field 1H NMR spectra confirm these results, as they show two distinct series of signals. A viral neutralization assay on a panel of six HIV-related pseudoviruses allowed the determination of the antiviral activity of three diazabicyclo analogs of BMS-378806, in which the axial methyl group on its piperazine ring is replaced by a carbon bridge. The diazabicyclooctane and-nonane derivatives show a significant infectivity reduction power that is related to their conformational preference.
Articolo in rivista - Articolo scientifico
Antiviral agents; Inhibitors; Molecular modeling; NMR spectroscopy;
English
2011
2
287
294
reserved
Legnani, L., Colombo, D., Cocchi, E., Solano, L., Villa, S., Lopalco, L., et al. (2011). Modeling and Spectroscopic Studies of Synthetic Diazabicyclo Analogs of the HIV-1 Inhibitor BMS-378806 and Evaluation of Their Antiviral Activity. EUROPEAN JOURNAL OF ORGANIC CHEMISTRY(2), 287-294 [10.1002/ejoc.201001073].
File in questo prodotto:
File Dimensione Formato  
repr151.pdf

Solo gestori archivio

Dimensione 573.98 kB
Formato Adobe PDF
573.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/352038
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact