Let (C,w̲[removed]) be a polarized nodal reducible curve. In this paper, we consider coherent systems of type (r,d,k) on C with k < r. We prove that the moduli spaces of (w̲<,α)-stable coherent systems stabilize for large α and we generalize several results known for the irreducible case when we choose a good polarization. Then, we study in detail the components of moduli spaces containing coherent systems arising from locally free sheaves.

Brivio, S., Favale, F. (2022). Coherent systems and BGN extensions on nodal reducible curves. INTERNATIONAL JOURNAL OF MATHEMATICS, 33(4) [10.1142/S0129167X22500276].

Coherent systems and BGN extensions on nodal reducible curves

Brivio, S;Favale, F
2022

Abstract

Let (C,w̲[removed]) be a polarized nodal reducible curve. In this paper, we consider coherent systems of type (r,d,k) on C with k < r. We prove that the moduli spaces of (w̲<,α)-stable coherent systems stabilize for large α and we generalize several results known for the irreducible case when we choose a good polarization. Then, we study in detail the components of moduli spaces containing coherent systems arising from locally free sheaves.
Articolo in rivista - Articolo scientifico
Coherent systems; extensions; moduli spaces; nodal curves; polarizations; stability;
English
2022
33
4
2250027
partially_open
Brivio, S., Favale, F. (2022). Coherent systems and BGN extensions on nodal reducible curves. INTERNATIONAL JOURNAL OF MATHEMATICS, 33(4) [10.1142/S0129167X22500276].
File in questo prodotto:
File Dimensione Formato  
Brivio-2022-IntJMath-VoR.pdf

Solo gestori archivio

Descrizione: Articolo VoR
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 368.58 kB
Formato Adobe PDF
368.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Brivio-2021-Arxiv-preprint.pdf

accesso aperto

Descrizione: Articolo-preprint
Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 291.66 kB
Formato Adobe PDF
291.66 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/351073
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
Social impact