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COHERENT SYSTEMS AND BGN EXTENSIONS ON NODAL REDUCIBLE

CURVES

SONIA BRIVIO AND FILIPPO F. FAVALE

Abstract. Let (C,w) be a polarized nodal reducible curve. In this paper we consider coherent

systems of type (r, d, k) on C with k < r. We prove that the moduli spaces of (w,α)-stable

coherent systems stabilize for large α and we generalize several results known for the irreducible

case when we chose a good polarization. Then, we study in details the components of moduli

spaces containing coherent systems arising from locally free sheaves.

Introduction

In this paper we deal with coherent systems on nodal reducible curves. Coherent systems,

on a smooth curve, are pairs (E,V ) where E is a locally free sheaf and V is a subspace of

global sections of E. Hence they can be seen as a generalisation of linear systems and they are

closely related to higher rank Brill-Noether theory. They were introduced for a smooth curve in

[BD91,Ber94,LP97] under different names and have been studied extensively by several authors

(see [BGPMN03,BPGN97,New11] for relevant results and [Bra09] for a survey). For any real

parameter α, the notion of α-stability has been introduced and it gives a family of coarse moduli

spaces parametrizing coherent systems (E,V ) of type (r, d, k), i.e. with rk(E) = r, deg(E) = d

and dimV = k. For comparison of different notions of stability in moduli theory see for instance

[BB12].

Actually, for any type, there are only a finite number of distinct moduli spaces and the “terminal”

one (which corresponds to the biggest possible choice for α for which the moduli space is not

empty) can be described by using different approaches according to whether k ≥ r or k < r. In

the first case, the description is related to Quot scheme of quotients of the trivial bundle of rank

k (see [BGPMN03]) while in the second case the moduli space parametrizes extensions of a sheaf

by the trivial bundle of rank k (see [BPGN97]). These extensions are said BGN extensions.

Coherent systems can be defined even on a singular reduced curve but in this case, in order to

have compact moduli spaces, one needs to consider not only locally free sheaves but also torsion

free sheaves. In particular, when C is a nodal curve, a coherent system is a pair (E,V ), where

E is a depth one sheaf and V ⊆ H0(E). A notion of w-rank and w-degree can be defined on

nodal curves once we fix a polarization w on C. Hence, for any coherent system one can define

the type and the notion of (w,α)-stability, as well the w-stability for any depth one sheaf. In

[KN95], for any α ∈ R, it has been proved the existence of coarse moduli spaces G(C,w),α(r, d, k)

parametrizing families of (w,α)-stable coherent systems of type (r, d, k). For details, the reader

can see Section 1.
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Many results which hold in the smooth case (concerning, for example, dimension, irreducibility,

values of the parameters for which these moduli spaces are empty and smoothness), have been

extended to the case of irreducible nodal curves in [Bho09, Bho07]. The authors have begun

studying coherent systems on reducible nodal curves of compact type in [BF20b], considering

coherent systems (E,V ) with k ≥ r and assuming that the rank of the restriction of E to each

component of the curve is the same. In this paper we consider also curves which are not of

compact type and we deal with the case k < r.

Let (C,w) be a polarized nodal curve with smooth irreducible components of genus at least 2.

As in the case of smooth or irreducible nodal curves, we prove that for any type (r, d, k) with

k < r there are only finitely many distinct moduli spaces (see Lemma 3.1 and Proposition 3.2) so

there is a “terminal” moduli space which will denote by G(C,w),L(r, d, k). In order to describe this

moduli space we generalize the notion of BGN extensions to nodal reducible curves (see Section

2). Proceeding as in the smooth case, more technicalities are involved as the curve is reducible,

depending also on the chosen polarization and the behaviour of these moduli spaces seems very

wild. The situation became a little bit better if one choses a polarization which is good. This

class of polarizations was introduced by the authors in [BF20c] by observing that depth one

sheaves on nodal curves equipped with good polarizations reflect a lot of properties that hold

for vector bundles on smooth curves. For curves of compact type, good polarizations are exactly

those for which OC is w-stable (in general, OC is not even w-semistable!). The definition of

good polarization on a nodal curve is rather technical so we refer to the preliminaries in Section

1.

In Section 3, by fixing a good polarization w on a nodal curve C we are able to describe (in

analogy to the smooth case) coherent systems of the moduli space G(C,w),L(r, d, k) as BGN

extensions of depth one sheaves which are w-semistable (see Theorem 3.10 and Theorem 3.11).

In the last section (i.e. Section 4) we analyze in details the moduli space G(C,w),L(r · 1, d, k)

parametrizing coherent systems (E,V ) where the restriction of E to any component has rank

r. We are interested in these moduli spaces as they contains coherent systems arising from

locally free sheaves. For any good polarization w on a nodal curve, we give a necessary and

sufficient condition for emptyness of G(C,w),L(r · 1, d, k). Moreover, we give a description of

all irreducible components containing coherent systems (E,V ) with E locally free, generalizing

the picture of the situation in the case of smooth curves. Such components are birational

to Grassmannian fibrations over irreducible components of the moduli space of w-semistable

depth one sheaves whose w-rank and w-degree are (r− k) and d respectively (see Theorem 4.1).

Finally, we investigate how coherent systems restrict to irreducible components of the curve C

(see Corollary 4.5).

1. Technical results and preliminaries

In this section we recall some definitions and we state relevant technical results about nodal

curves, depth one sheaves on them and coherent systems.

1.1. Nodal curves. Let C be a connected reduced nodal curve over the complex field (i.e. hav-

ing only ordinary double points as singularities). We will denote by γ the number of irreducible

components and δ the number of nodes of C. We will assume that each irreducible component

Ci is a smooth curve of genus gi ≥ 2. For the theory of nodal curves see [ACG11, Ch X]. We

will denote by

ν : Cν =
⊔γ

i=1
Ci → C
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the normalization map. From the exact sequence:

0 → OC → ν∗ν
∗(OC) →

⊕

p∈Sing(C)

Cp → 0,

we deduce that χ(OC) =
∑γ

i=1 χ(OCi
)− δ, and we obtain the arithmetic genus of C:

(1.1) pa(C) =

γ
∑

i=1

gi + δ − γ + 1.

For any irreducible component Ci let C
c
i be the closure of C \ Ci. We set ∆i = Ci · C

c
i , and we

denote by δi its degree, i.e. the number of nodes of C on Ci. We recall that C can be embedded

in a smooth projective surface S (see [AK79]) and this yields the exact sequence

(1.2) 0 → OCc
i
(−∆i) → OC → OCi → 0.

For more details on this sequence see [BF19]. Since C is a local complete intersection, Serre

duality Theorem holds. There exists on C a dualizing sheaf ωC , it is an invertible sheaf as C is

Gorestein. We recall that, for any i = 1 . . . γ, we have ωC |Ci
= ωCi

(∆i).

Finally, we recall some technical results. Let p be a node and denote by Ci1 and Ci2 the two

components such that p ∈ Ci1 ∩ Ci2 . Following the notations of [Ses82], chap. 8, we set:

Oxik
= OCik

,p, mxik
= mCik

,p, Op = OC,p mp = mC,p.

Then:

Op = {(f, g) ∈ Oxi1
⊕Oxi2

| f(p) = g(p)}, mp = mxi1
⊕mxi2

.

The isomorphisms Oxik
≃ mxik

obtained by sending f 7→ ftik , where tik is a local coordinate

on Cik at p, induce an isomorphism Oxi1
⊕Oxi2

≃ mp. We have the following exact sequences

of Op-moduli:

(1.3) 0 → Op → Oxi1
⊕Oxi2

→ C → 0 and 0 → mp → Op → C → 0.

Lemma 1.1. In the above hypothesis we have:

(a) HomOp(Oxik
,Oxij

) =

{

0 if k 6= j

Oxij
if k = j

, HomOp(Oxik
,Op) ≃ tik · Oxik

≃ mxik
;

(b) HomOp(C,Op) = HomOp(C,mp) = HomOp(C,Oxik
) = 0;

(c) Ext1Op
(C,Op) ≃ C, Ext1Op

(mP ,Op) = Ext1Op
(Oxik

,Op) = 0.

Proof. For (a) see [Ses82, Lemma 6, pag. 171]. (b) and (c) are obtained by applying HomOp(−,Op)

to the exact sequence 1.3. �

Definition 1.2. Let C be a nodal curve with γ irreducible components. A polarization on C

is a vector w = (w1, . . . , wγ) ∈ Qγ such that

(1.4) 0 < wi < 1

γ
∑

i=1

wi = 1.

We will say that the pair (C,w) is a polarized curve.
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1.2. Depth one sheaves on nodal curves. We recall the notion of depth one sheaves on

nodal curves (see [Ses82] for details).

A coherent sheaf E on a reduced curve is said to be of depth one if for any x ∈ Supp(E) the

stalk Ex is an Ox-module of depth one. For a nodal curve this is equivalent to say that E is

pure of dimension 1, i.e. dimF = dimSupp(F ) = 1 for every subsheaf F of E. Let C be a

nodal curve with smooth irreducible components Ci. Using the notations introduced above, a

coherent sheaf E on C is of depth one if the stalk of E at the node p ∈ Ci1 ∩ Ci2 is isomorphic

to Os
p ⊕ Oa1

xi1
⊕ Oa2

xi2
. In particular, any vector bundle on C is a sheaf of depth one and any

subsheaf of a depth one sheaf is of depth one too.

Let E be a depth one sheaf on C. Its dual sheaf E∗ = HomOC
(E,OC) is of depth one too and

E is reflexive, i.e. HomOC
(E∗,OC) ≃ E. In particular, Serre duality yields for any q ≥ 0 the

isomorphism Hq(E)∗ ≃ H1−q(E∗ ⊗ ωC).

Lemma 1.3. Let E be a depth one sheaf on C, then Ext1(E,OC) = 0.

Proof. If p ∈ C is a smooth point, then Ep ≃ Or
p so we have Ext1(Ep,Op) = 0. If p ∈ Ci1 ∩Ci2 ,

then Ep ≃ Os
p ⊕Oa1

xi1
⊕Oa2

xi2
. By Lemma 1.1(c) we have Ext1Op

(Oxik
,Op) = Ext1Op

(Op,Op) = 0

so Ext1Op
(Ep,Op) = 0. �

Let (C,w) be a polarized nodal curve with γ smooth irreducible components Ci. Let E be a

sheaf of depth one on C, we define the restriction of E modulo torsion on the component Ci as

Ei = E ⊗OCi
/Torsion. We set ri = rank(Ei). We define the multirank of E, the w-rank of E

and the w-degree of E respectively as

(1.5) rk(E) = (r1, . . . , rγ) rkw(E) =

γ
∑

i=1

wiri degw E = χ(E) − rkw(E)χ(OC ).

For brevity, we will denote by 1 the vector (1, . . . , 1) ∈ Zγ . Note that w-rank and w-degree

are not necessary integers. When E is a vector bundle on C, i.e. it is locally isomorphic to

Or
C , then rank(Ei) = r ∀i, the w-rank of E is actually r and its multirank is r · 1. Moreover

the w-degree of E is the sum of the degrees of Ei and, in particular, it is an integer too. In

general, this is not the case. In [BF20c] the authors have introduced and studied the function

∆w(E) = degw(E)−
∑γ

i=1 deg(Ei).

Lemma 1.4. Let (C,w) be a polarized nodal curve. Let E be a depth one sheaf on C, let Ei its

restriction modulo torsion to Ci with rank(Ei) = ri and deg(Ei) = di. Then the following hold:

(a) ∆w(E) =
∑γ

i=1 ri(1− gi−wiχ(OC))−
∑δ

j=1 spj , where spj is the rank of the free part of the

stalk of E at pj;

(b) ∆w(E ⊗ L) = ∆w(E) for any L line bundle on C;

(c) if ri = r for any i, then ∆w(E) ≥ 0 and equality holds if and only E is locally free;

(d) let wm = min{wi : i = 1, . . . , γ} and rM = max{ri : i = 1, . . . , γ}, we have

∆w(E) ≥ −(rM − rkw(E))(pa(C)− 1) ≥ −

(

1

wm
− 1

)

rkw(E)(pa(C)− 1).

Proof. Statements (a), (b) and (c) have been proved in [BF20c, Lemma 2.4]. From (a) we get

∆w(E) = −

γ
∑

i=1

ri(gi − 1) +

γ
∑

i=1

wiri(pa(C)− 1)−
δ

∑

j=1

spj ,
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since spj ≤ rM , ri ≤ rM and gi ≥ 2, we obtain

∆w(E) ≥ −rM

γ
∑

i=1

(gi − 1) + rkw(E)(pa(C)− 1)− δrM ≥ (rkw(E)− rM ) (pa(C)− 1) .

For all j we have rj ≤ rkw(E)/wm, so rM ≤ rkw(E)/wm and this proves (d). �

We recall the definition of good polarization (see [BF20c]).

Definition 1.5. A polarization w on C is said good if ∆w(E) ≥ 0 for all depth one sheaves E

on C and equality holds if and only if E is locally free.

In [BF20c] the authors proved that good polarizations exist on any stable nodal curve C with

pa(C) ≥ 2. If w is good, then OC is w-stable and the converse holds when C is a nodal curve of

compact type (see [BF20c, Theorem 3.9]). It is also conjectured that this should hold for any

nodal curve. The above lemma justifies the following definition:

Definition 1.6. Let (C,w) be a polarized nodal curve. We set

λw =







0 if w is good
(

1
wm

− 1
)

(pa(C)− 1) otherwise.

Notice that λw ≥ 0 for all w and, by Lemma 1.4, if E is a depth one sheaf on C we have

∆w(E) ≥ −λw rkw(E).

We recall the notion of w-semistability for depth one sheaves on a polarized nodal curve.

Definition 1.7. A depth one sheaf E is said w-(semi)stable if for any proper subsheaf F of E

we have µw(F ) < µw(E) (resp. ≤), where µw(E) = degw(E)/ rkw(E) is said w-slope of E.

For any d ∈ Q and r ∈ Q>0, there exists a coarse moduli space U(C,w)(r, d) for families of w-

semistable depth one sheaves on C with prescribed w-rank and w-degree. It is a projective vari-

ety. Moreover, when we fix (r1, . . . , rγ) ∈ Nγ , we obtain the moduli space U(C,w)((r1, . . . , rγ), d)

of classes of w-semistable depth one sheaves with prescribed multirank. When we will con-

sider the subscheme parametrizing w-stable classes we will use the notation Us(C,w)(r, d) and

Us(C,w)((r1, . . . , rγ), d). For details one can see [Ses82]. We will denote by [F ] the S-equivalence

class of a w-semistable sheaf in its moduli space. When F is w-stable, [F ] is the isomorphism

class of F . In this case, we will denote it simply by F .

When w is a good polarization, we generalize to w-semistable depth one sheaves a well known

result which holds for semistable vector bundles on a smooth curve.

Lemma 1.8. Let (C,w) be a polarized nodal curve with w good. Assume that E is a w-semistable

depth-one sheaf with degw(E) = d > 0. Then h0(E∗) = 0.

Proof. Assume that h0(E∗) 6= 0. As E∗ = Hom(E,OC), we have Hom(E,OC ) 6= 0 so there

exists a non zero homomorphism ϕ : E → OC . Denote by G the image of ϕ, so we have

E
ψ

// //

ϕ

))

G � � // OC .

We will show that this implies d ≤ 0 which contradicts our hypothesis. If G = OC or ψ is an

isomorphism, we conclude respectively by w-semistability of E and by w-stability of OC (which
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holds since w is good). Otherwise, we have that G is a depth one sheaf which is a proper subsheaf

of OC and a proper quotient of E. Then we have

d/ rkw(E) = µw(E) ≤ µw(G) < µw(OC) = 0

by w-semistability of E and w-stability of OC respectively. �

We stress that the above result does not hold when w is not good.

1.3. Coherent systems on nodal curves. Let (C,w) be a polarized nodal curve. We will

recall the notion of coherent systems on the curve C (see [KN95] for details).

Definition 1.9. A coherent system on the curve C is given by a pair (E,V ), where E is a depth

one sheaf on C and V is a subspace of H0(E).

A coherent subsystem (F,U) of (E,V ) is a coherent system which consists of a subsheaf F ⊆ E

and a subspace U ⊆ V ∩ H0(F ). We say that (F,U) is a proper subsystem if (F,U) 6= (0, 0)

and (F,U) 6= (E,V ). A coherent system (E,V ) is said to be of type (r, d, k) if rkw(E) = r,

degwE = d and dimV = k; if the multirank of E is rk(E) = (r1, · · · , rγ) then it is said to be of

multitype ((r1, · · · , rγ), d, k).

Let (E,V ) be a coherent system on C. Let Ci be a component of C, from the exact sequence

(1.2), we obtain that the restriction map E → E ⊗OCi
is surjective. Then, the map E → Ei is

also surjective and induces the map of global sections

ρi : H
0(E) → H0(Ei).

We define Vi as the image of V by the map ρi. We will call (Ei, Vi) the restriction of (E,V ) to the

curve Ci. A coherent system (E,V ) is called generated if the evaluation map evV : V ⊗OC → E

is surjective.

Lemma 1.10. Let (E,V ) be a generated coherent system on (C,w) of type (r, d, k). Then,

(a) r ≤ k, (Ei, Vi) is generated and deg(Ei) ≥ 0;

(b) if either w is good or rk(Ei) = r for all i = 1, . . . , γ, then d ≥ 0.

Proof. Since (E,V ) is generated, the evaluation map evV : V ⊗ OC → E is surjective. This

implies k ≥ r. By [BF20b, Lemma 3.3], each restriction (Ei, Vi) is generated too so deg(Ei) ≥ 0.

(b) follows easily from Lemma 1.4 or the definition of good polarization as deg(Ei) ≥ 0 for all

i. �

Definition 1.11. Let (E,V ) be a coherent system on the curve C. Fix α ∈ R and a polarization

w on C. We say that (E,V ) is (w,α)-(semi)stable if for any proper coherent subsystem (F,U)

we have

µw,α(F,U) < µw,α(E,V ) (resp. ≤)

where µ(w,α) is the (w,α)-slope, which is defined as

µw,α(E,V ) =
degw(E)

rkw(E)
+ α

k

rkw(E)
= µw(E) + α

k

rkw(E)
.

Fix (r, d, k) with r, d ∈ R, r > 0, k ∈ N and α ∈ R positive. In [KN95] it is proved that

there exists a projective scheme G̃(C,w),α(r, d, k) which is a coarse moduli space for families of

(w,α)-semistable coherent systems of type (r, d, k) on the polarized curve (C,w). Moreover,

the open subscheme G(C,w),α(r, d, k) ⊂ G̃(C,w),α(r, d, k), parametrizing (w,α)-stable pairs, is a

coarse moduli space for (w,α)-stable coherent systems of type (r, d, k). Finally, when we fix
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(r1, . . . , rγ) ∈ Nγ we obtain the moduli space G(C,w),α((r1, . . . , rγ), d, k) parametrizing (w,α)-

stable coherent systems (E,V ) of multitype ((r1, . . . , rγ), d, k). For brevity, if (E,V ) is a (w,α)-

stable coherent system, we denote by (E,V ) also its isomorphism class in its moduli space.

In the last section we will focus on the moduli spaces G(C,w),α(r · 1, d, k). In particular, we will

consider coherent systems (E,V ) where E is locally free. For these points, we can extend a local

smoothness condition, which holds when C is smooth or nodal irreducible (see [BGPMN03] and

[Bho09]). We can define the Brill-Noether number

βC(r, d, k) = r2(pa(C)− 1) + 1− k(k − d+ r(pa(C)− 1)).

For any (E,V ) ∈ G(C,w),α(r · 1, d, k) with E locally free, we can define the Petri map

µ(E,V ) : V ⊗H0(ωC ⊗ E∗) → H0(ωC ⊗ E ⊗ E∗),

which is given by multiplication by global sections.

Proposition 1.12. Let (E,V ) ∈ G(C,w),α(r · 1, d, k), assume that E is locally free and that the

evaluation map evV is injective. Then the Petri map µ(E,V ) is injective too and the moduli space

G(C,w),α(r · 1, d, k) is a smooth at (E,V ) with dimension βC(r, d, k).

Proof. The result follows from [BF20b, Prop 2.7] once we prove that the Petri map µ(E,V ) is

injective. As evV is injective and E∗ ⊗ ωC is locally free, we have an exact sequence

0 → V ⊗ E∗ ⊗ ωC → E ⊗ E∗ ⊗ ωC .

The induced map in cohomology is injective and it is µ(E,V ). �

2. BGN extensions on nodal reducible curves

Let (C,w) be a polarized nodal curve with γ irreducible smooth components Ci of genus gi ≥ 2

and δ nodes. In this section we generalize the notion of BGN extension defined in [BPGN97]

to nodal reducible curves.

Definition 2.1. Let r and d two positive rational numbers and k an integer such that 0 < k < r.

A BGN extension on C of type (r, d, k) is an extension

0 → V ⊗OC → E → F → 0

such that

• V is a vector space of dimension k;

• F is a depth one sheaf with rkw(F ) = r − k, degw(F ) = d;

• let e = (e1, . . . , ek) ∈ Ext1(F, V ⊗ OC) = V ⊗ Ext1(F,OC) ≃ Ext1(F,OC)
⊕k be the

corresponding extension class, {e1, . . . , ek} are linearly independent in Ext1(F,OC).

Two BGN extensions are said to be equivalent if they are equivalent as extensions. A BGN

extension does not depend on the choice of F in its isomorphism class.

In the sequel, we will be interested in BGN extensions arising from depth one sheaves F which are

w-semistable. Note that, when C is smooth, and F is semistable with deg(F ) > 0, then h0(F ∗) =

0. So this condition was required in the definition of BGN extensions given in [BPGN97]. This

property does not always occur if C is reducible. Nevertheless, by Lemma 1.8, this holds when

w is a good polarization.

Proposition 2.2. Consider a BGN extension

e : 0 → V ⊗OC → E → F → 0

of a depth one sheaf F and denote by (r, d, k) its type. Then we have:
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(a) E is a depth one sheaf on C with rkw(E) = r and degw(E) = d. Moreover, E is locally free

if and only if F is locally free.

(b) The following sequence is also exact

e∗ : 0 → F ∗ → E∗ → V ∗ ⊗OC → 0.

(c) All BGN extensions on C of F of type (r, d, k) are classified by Gr(k,H1(F ∗)) ≃ Gr(k,H0(F⊗

ωC)
∗).

Proof. (a) It is enough to describe the stalk of E at nodes. If p ∈ Ci1 ∩Ci2 , the stalk Fp can be

written as Os
p ⊕Oa1

xi1
⊕Oa2

xi2
, with s+ aj = rij . We have the exact sequence of Op-moduli

(2.1) 0 → Ok
p → Ep → Fp → 0.

By Lemma 1.3 we have Ext1(Fp,Op)
⊗k = 0 so Ep ≃ Fp ⊕ Ok

p ≃ Os+k
p ⊕ Oa1

xi1
⊕ Oa2

xi2
, which

proves (a).

(b) This follows from Lemma 1.3 by applying HomOC
(−,OC) to the exact sequence defining

the BGN extension.

(c) All BGN extensions on C of F of type (r, d, k) are classified by linearly independent k-tuples

of elements of Ext1(F,OC ) modulo to the action of GL(k). Hence, they are parametrized by

the variety Gr(k,Ext1(F,OC)). By Serre duality we have Ext1(F,OC ) ≃ Ext1(F ⊗ ωC , ωC) ≃

H0(F ⊗ ωC)
∗ ≃ H1(F ∗). �

Proposition 2.3. Let (C,w) be a polarized nodal curve. Let F be a locally free sheaf on C of

rank r − k and degree d. Let Fi be the restriction to the component Ci and di = deg(Fi). If Fi
is semistable, di > 0 and 0 < k ≤ di + (r − k)(gi − 1), there exists a non empty open subset

U ⊂ Gr(k,H1(F ∗)) such that any u ∈ U defines a BGN extension of F whose restriction to the

curve Ci is a BGN extension on Ci of Fi of type (r, di, k).

Proof. Consider a BGN extension corresponding to e ∈ Ext1(F, V ⊗OC) = V ⊗H1(F ∗):

e : 0 → V ⊗OC → E → F → 0.

Since F is locally free, Tor1OC
(OCi

, F ) = 0, so by tensoring with OCi
we get the exact sequence

on Ci:

0 → V ⊗OCi
→ Ei → Fi → 0.

Its corresponding extension class is an element ei ∈ Ext1(Fi, V ⊗ OCi
) = V ⊗ H1(F ∗

i ), where

F ∗
i = HomOCi

(Fi,OCi
). This gives us a natural map αi : V ⊗H1(F ∗) → V ⊗H1(F ∗

i ), sending

e→ ei. As F is locally free, we have F ∗
i ≃ F ∗⊗OCi

. Hence we have a restriction map ρi : F
∗ →

F ∗
i on the component Ci. We claim that αi = idV ⊗H1(ρi), where H

1(ρi) : H
1(F ∗) → H1(F ∗

i )

is the map induced by ρi. In fact, consider the following commutative diagram:

Hom(F, V ⊗OC)

��

� � // Hom(F,E)

��

// Hom(F,F )

��

δ
// V ⊗H1(F ∗)

��

Hom(Fi, V ⊗OCi
) �
�

// Hom(Fi, Ei) // Hom(Fi, Fi)
δi

// V ⊗H1(F ∗
i )

where the vertical arrows are induced by the restriction to Ci. As the extension class e is the

image by δ of idF and ei is the image by δi of idFi
, the claim follows.

Since h0(F ∗
i ) = 0, to prove that ei defines a BGN extension on Ci it is enough to verify that

{ei1, . . . e
i
k} are linearly independent vectors in H1(F ∗

i ). Gr(k,H1(F ∗
i )) 6= ∅ since we assume

k ≤ di + (r − k)(gi − 1). Note that the restriction map H1(ρi) : H
1(F ∗) → H1(F ∗

i ) is a linear
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surjective map. The image of a k-dimensional subspace W of H1(F ∗) has dimension k if and

only if it has trivial intersection with the kernel of H1(ρi). This happens for W in an open

subset U of Gr(k,H1(F ∗)) since we are assuming k ≤ h1(F ∗
i ). Hence H

1(ρi) induces a rational

surjective map between Grassmannian varieties

Gr(k,H1(F ∗))
Ai

//❴❴❴ Gr(k,H1(F ∗
i ))

which is defined on U . Each extension class in U gives, by restriction to the curve Ci, a BGN

extension class on Ci of Fi of type (r, di, k). �

3. Coherent systems and BGN extensions

Let (C,w) be a polarized nodal curve with γ irreducible smooth components of genus gi ≥ 2

and δ nodes. In this section we will study moduli spaces G(C,w),α(r, d, k) with k < r by using

BGN extensions. Recall that α > 0 is a critical value for coherent systems of type (r, d, k) if it

is numerically possible to have a proper coherent subsystem (F,W ) of (E,V ) with

µ(w,α)(F,W ) = µ(w,α)(E,V ), µw(F ) 6= µw(E).

In our first result we prove that, as in the smooth case, on a polarized curve (C,w) there are

only finitely many spaces G(C,w),α(r, d, k) for fixed (r, d, k).

Lemma 3.1. Let (C,w) be a polarized nodal curve. Fix M > 0, there are up to finitely many

critical value in (0,M) for coherent systems of type (r, d, k) with k < r:

0 < α1 < · · · < αiM < M.

Moreover, within the intervals (0, α1), (αi, αi+1) and (αiM ,M) the property of (w,α)-stability is

independent of α.

Proof. Denote by wm = min{wi | i = 1, . . . , γ}. The critical value of α for coherent systems of

type (r, d, k) can be written as

α =
rd′ − r′d

r′k − rk′
with rk′ 6= r′k

where

(1) k′ ∈ N, 0 ≤ k′ ≤ k;

(2) r′ =
∑γ

i=1 wir
′
i, with r

′
i ∈ N, 0 ≤ r′i ≤ ri ≤ r/wm;

(3) d′ + r′χ(OC) ∈ Z.

Note that, by (1) and (2), there are only finite possibilities for k′ and r′. Moreover, by (3), once

we fix r′, d′ varies in a discrete set. Since α ∈ (0,M), this gives finitely values for d′.

In order to prove the last assertion, let α, β ∈ (0,M) with α, β not critical. Assume that

there exists (E,V ) which is (w,α)-stable but it is not (w, β)-stable. It is enough to prove that

between α and β there is a critical value. Let (F,W ) be a coherent subsystem of (E,V ) such

that µ(w,β)(F,W ) ≥ µ(w,β)(E,V ). If µ(w,β)(F,W ) = µ(w,β)(E,V ), as β is not a critical value, we

have µw(F ) = µw(E) and so dimW
rkw(F ) = dimV

rkw(E) . This implies that µ(w,α)(F,W ) = µ(w,α)(E,V ),

which contradicts the (w,α)-stability of (E,V ). So we can assume

µ(w,β)(F,W )− µ(w,β)(E,V ) > 0 µ(w,α)(F,W )− µ(w,α)(E,V ) < 0.

We claim that there exists t ∈ (0, 1) such that tα + (1 − t)β is a critical value. Let t ∈ (0, 1),

then we have:

µ(w,tα+(1−t)β)(F,W )− µ(w,tα+(1−t)β)(E,V ) =

t[µ(w,α)(F,W )− µ(w,α)(E,V )] + (1− t)[µ(w,β)(F,W )− µ(w,β)(E,V )].
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So there exists t0 ∈ (0, 1) such that

µ(w,t0α+(1−t0)β)(F,W )− µ(w,t0α+(1−t0)β)(E,V ) = 0.

If µw(F ) = µw(E) we get a contradiction as before, whereas if µw(F ) 6= µw(E), then t0α+ (1−

t0)β ∈ (0,M) is a critical value. �

Proposition 3.2. Let (C,w) be a polarized nodal curve. Let r > 0 and d be rational numbers

and k be an integer such that 0 < k < r. Then the moduli space G̃(C,w),α(r, d, k) is empty for any

α >
d+rλw
r−k and G(C,w),α(r, d, k) is empty for any α ≥

d+rλw
r−k . Moreover, if G(C,w),α(r, d, k) 6= ∅,

then d > −rλw.

Proof. Let (E,V ) be a coherent system of type (r, d, k) which is (w,α)-semistable. We have

rkw(E) = r and degw(E) = χ(E) − rkw(E)χ(OC ) = d. Since k < r the evaluation map

evV : V ⊗OC → E is not surjective, let F be its image. It is a non zero sheaf and it is of depth

one so (F, V ) is a generated coherent system, which is a proper coherent subsystem of (E,V ).

Let s = rkw(F ), by Lemma 1.10, we have 0 < s ≤ k. By (w,α)-semistability of (E,V ) we have

µ(w,α)(F, V ) ≤ µ(w,α)(E,V ), i.e.

(3.1)
degw(F )

s
+ α

k

s
≤
d

r
+ α

k

r
.

This is equivalent to the following inequality:

kα

(

1

s
−

1

r

)

≤
d

r
−

degw(F )

s
.

As 0 < s ≤ k < r, by Lemma 1.4 and Definition 1.6 we can write

α ≤
sd

k(r − s)
−
r degw(F )

k(r − s)
≤

sd

k(r − s)
−
r
∑γ

i=1 deg(Fi)

k(r − s)
+

rsλw
k(r − s)

.

Since (F, V ) is generated, by Lemma 1.10, we have deg(Fi) ≥ 0 so we obtain

(3.2) 0 ≤ α ≤
s

k(r − s)
(d+ rλw)

This implies that d+ rλw ≥ 0. Hence, since r − s ≥ r − k we obtain

(3.3) α ≤
d+ rλw
r − k

.

If we assume the existence of (E,V ) which is (w,α)-stable then we would get

(3.4) α <
d+ rλw
r − k

,

and d > −rλw. �

Corollary 3.3. Let (C,w) be a polarized nodal curve with w good. If G(C,w),α(r, d, k) 6= ∅, then

d > 0 and α ∈ (0, d/(r − k)).

We point out that these bounds are exactly the same which hold for a smooth curve (see

[BDGPW95]) and an irreducible nodal curve (see [Bho09]).

When C is a smooth or a nodal irreducible curve, moduli spaces of α-stable coherent systems

with k < r are closely related to BGN extensions. We would like to show that this connection

holds also on nodal reducible curve. Note that, given a BGN extension

e : 0 → V ⊗OC → E → F → 0

of type (r, d, k) we have a coherent system (E,V ) of type (r, d, k), such that evV is injective. We

will call (E,V ) the coherent system defined by e.
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Lemma 3.4. Let (C,w) be a polarized nodal curve. Let r and d be rational numbers and k be an

integer such that 0 < k < r. Let (E,V ) be a (w,α)-semistable coherent system of type (r, d, k).

If the evaluation map evV : V ⊗ OC → E is injective, then either d > 0 and α ≤ d/(r − k) or

α = d = 0.

Proof. Since evV is injective and k < r, V ⊗OC is a proper subsheaf of E. The pair (V ⊗OC , V )

is a proper coherent subsystem of (E,V ). Since it is (w,α)-semistable we have:

µ(w,α)(V ⊗OC , V ) ≤ µ(w,α)(E,V ),

that is

α ≤
d

r
+ α

k

r
,

since 0 < k < r this implies α ≤ d/(r − k) and hence d > 0 unless α = 0 (which implies

d = 0). �

In light of these facts and the discussion made above, it is natural to fix a good polarization w

on C. Hence, from now on, w will be a good polarization. Then, by Proposition 3.2, all critical

values for coherent systems of type (r, d, k) are in the interval
(

0, d
r−k

)

. We will denote by αL

the biggest among the critical values. We will denote by G(C,w),L(r, d, k) the ”limit” moduli

space of coherent systems of type (r, d, k) which are (w,α)-stable for α ∈ (αL,
d
r−k ).

Lemma 3.5. Let C be a nodal curve and w be a good polarization. Let r > 0 and d > 0

be rational numbers and let k be an integer with 0 < k < r. There exists 0 < αI < d
r−k

such that if α ∈ (αI ,
d
r−k ) for any (w,α)-semistable coherent system (E,V ) the evaluation map

evV : V ⊗OC → E is injective.

Proof. Let 0 < α < d
r−k and let (E,V ) be a coherent system which is (w,α)-semistable. Assume

that the evaluation map evV is not injective, so we have an exact sequence of sheaves:

0 → N → V ⊗OC → F → 0,

where N and F are non zero sheaves satisfying the following properties:

- N is a proper subsheaf of V ⊗OC , so it is a depth one sheaf too; let rkw(N) = η, then we have

η ≥ wm, where wm = min(w1, . . . , wγ).

- F is proper subsheaf of E, so F is a depth one sheaf too; let rkw(F ) = s, then we have

s = k − η, wm ≤ s ≤ k − wm.

The pair (F, V ) is a generated coherent system, which is a proper subsystem of (E,V ). As this

is (w,α)-semistable, we have µ(w,α)(F, V ) ≤ µ(w,α)(E,V ), which implies

(3.5)
degw(F )

s
+ α

k

s
≤
d

r
+ α

k

r
.

As s < k < r, we can proceed as in the proof of Proposition 3.2 and we obtain:

α ≤
sd

k(r − s)
−
r degw(F )

k(r − s)
≤

sd

k(r − s)
−
r
∑γ

i=1 deg(Fi)

k(r − s)
+

rsλw
k(r − s)

Since (F, V ) is generated, then deg(Fi) ≥ 0. Then, as w is good, we have λw = 0. Hence we

obtain

α ≤
sd

k(r − s)
.

Finally as s ≤ k − wm we get:

(3.6) α ≤
(k − wm)d

k(r − k + wm)
= αI .
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Note that 0 < αI <
d
r−k . We can conclude that if α ∈ (αI ,

d
r−k ) the evaluation map is injective

for any (w,α)-semistable (E,V ). �

Remark 3.6. Notice that, without assuming w good, the proof of Lemma 3.5 still works and

yields the bound

α ≤ (d+ rλw)
(k − wm)

k(r − k + wm)
= α′

I .

Hence, if α > α′
I , every (w,α)-semistable coherent system has evV injective. Nevertheless, by

Lemma 3.4, for such coherent systems one has necessarily α < d/(r − k). Unfortunately, for a

general polarization, it can happens that α′
I > d/(r − k).

Lemma 3.7. Let C be a nodal curve and w be a good polarization on it. Let r > 0 and d > 0 be

rational numbers and let k be an integer with 0 < k < r. There exists 0 < αT <
d
r−k such that

if α ∈ (αT ,
d
r−k ) for any (w,α)-semistable coherent system (E,V ) we have an exact sequence:

(3.7) 0 → V ⊗OC → E → F → 0,

where F is a sheaf of depth one.

Proof. Let α ∈ (αI ,
d
r−k ). Let (E,V ) be a coherent system which is (w,α)-semistable. By

Lemma 3.5 the evaluation map V ⊗ OC → E is injective. So we have an exact sequence of

sheaves:

0 → V ⊗OC → E → F → 0.

Assume that F is not of depth one. Let T be the maximal torsion subsheaf of F . Then dimT = 0,

rkw(T ) = 0 and degw(T ) = χ(T ) = τ ≥ 1. The quotient F0 = F/T is a depth one sheaf on C.

We have the following commutative diagram:

(3.8) V ⊗OC
� � // E0

// //
� _

��

T � _

��

V ⊗OC
� � // E // //

��
��

F

��
��

F0 F0

The pair (E0, V ) is a proper coherent subsystem of (E,V ) of type (k, τ, k). By (w,α)-semistability

of (E,V ) we have:

µ(w,α)(E0, V ) ≤ µ(w,α)(E,V ),

that is:
τ

k
+ α ≤

d

r
+ α

k

r
.

This implies:

α

(

1−
k

r

)

≤
d

r
−
τ

k
.

Since k < r and τ ≥ 1, we have:

α ≤
d

r − k
−

rτ

k(r − k)
≤

d

r − k
−

r

k(r − k)
= α̃T .

Note that α̃T < d
r−k . Hence we can conclude by defining αT to be the maximum between αI

and α̃T . �
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Let (E,V ) be a coherent system of type (r, d, k) with d > 0 and 0 < k < r defining an exact

sequence as follows

0 → V ⊗OC → E → F → 0,

where F is a sheaf of depth one. Let e ∈ Ext1(F, V ⊗OC) be the corresponding extension class.

We have Ext1(F, V ⊗OC) ≃ V ⊗ Ext1(F,OC ), so e = (e1, . . . , ek), ei ∈ Ext1(F,OC).

Lemma 3.8. With the above notations, let (E,V ) be (w,α)-semistable, with α ≤ d
r−k , then we

have:

(1) if e = 0 then α = d
r−k ;

(2) if α < d
r−k , then e1, . . . , ek are linearly independent in Ext1(F,OC). In particular,

k ≤ h1(F ∗).

Proof. (1) Assume that e = 0, then we have (E,V ) ≃ (V ⊗ OC , V ) ⊕ (F, 0). In particular, as

(E,V ) is (w,α)-semistable, we must have:

degw(F )

rkw(F )
≤
d

r
+ α

k

r
,

that is
d

r − k
≤
d

r
+ α

k

r
,

which implies: α ≥ d
r−k . Since we assumed α ≤ d

r−k , we get the equality.

(2) Assume that e1, . . . , ek are linearly dependent. After a base change, we can assume that

e = (e1, . . . , el, 0, . . . 0), with 1 ≤ l < k and e1, . . . , el linearly independent. This implies that

(E,V ) ≃ (E1, V1)⊕ (V2 ⊗OC , V2),

with dimV1 = l and dimV2 = k − l. We have the following relation between (w,α)-slopes:

µ(w,α)(E,V ) =
r − (k − l)

r
µ(w,α)(E1, V1) +

k − l

r
µ(w,α)(V2 ⊗OC , V2).

So we have the following cases:

(1) µ(w,α)(E,V ) = µ(w,α)(E1, V1) = µ(w,α)(V2 ⊗OC , V2),

(2) either (E1, V1) or (V2 ⊗OC , V2) destabilizes (E,V ).

In the first case we obtain α = d
r−k , the second one cannot occur since (E,V ) is (w,α)-semistable.

�

Lemma 3.9. Let C be a nodal curve and let w be a good polarization. Let r, d > 0 rational and k

an integer with 0 < k < r. Then, there exists αS > αT and αS <
d
r−k such that if α ∈ (αS ,

d
r−k ),

any (w,α)-semistable coherent system (E,V ) defines a BGN extension

(3.9) 0 → V ⊗OC → E → F → 0,

of type (r, d, k) with F w-semistable and h0(F ∗) = 0.

Proof. Let (E,V ) be (w,α)-semistable with α > αT . Then, by Lemma 3.7 and Lemma 3.8, it

defines a BGN extension with F of depth one. We have to prove that F is w-semistable for α

big enough. Let F ′ ⊂ F be a proper subsheaf of F such that the quotient Q = F/F ′ is a sheaf

of depth one. We denote by s′ = rkw(F
′) and d′ = degw(F

′). Then we have wm ≤ s′ < r − k,
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where wm = min{w1, . . . , wγ}. From the commutative diagram:

V ⊗OC
� � // E′ // //

� _

��

F ′
� _

��

V ⊗OC
� � // E // //

��
��

F

��
��

Q Q

we obtain a coherent system (E′, V ) of type (s′+k, d′, k) which is a proper subsystem of (E,V ).

Since this is (w,α)-semistable we have:

µ(w,α)(E
′, V ) ≤ µ(w,α)(E,V ),

that is
d′

k + s′
+ α

k

k + s′
≤
d

r
+ α

k

r
.

We can write the above inequality as follows

s′

k + s′
µw(F

′) + α
k

k + s′
≤

s′

k + s′
µw(F ) +

(

r − k

r
−

s′

k + s′

)

µw(F ) + α
k

r
,

equivalently

s′

k + s′
(µw(F

′)− µw(F )) ≤ α

(

k

r
−

k

k + s′

)

+
k(r − k − s′)

r(k + s′)
µw(F ),

as s′ > 0 and k + s′ > 0, we get

(µw(F
′)− µw(F )) ≤

k(r − k − s′)

rs′
(µw(F )− α).

Note that µw(F ) =
d
r−k and s′ ≥ wm > 0, so we obtain:

µw(F
′)− µw(F ) ≤

k(r − k − wm)

rwm

(

d

r − k
− α

)

.

Let s′ =
∑γ

i=1wis
′
i, as s

′ < r − k, then we have 0 ≤ s′i ≤ (r − k)/wm. In particular, for a fixed

polarization w, there are finitely many values for s′. As d′ = χ(F ′)−s′χ(OC), the possible value

of d′ lies in a discrete set whose intersection with any bounded subset is finite. In particular,

the possible values which the difference µw(F
′)−µw(F ) can assume in [0, 1] are finite. So there

exists q > 0 such that µw(F
′)− µw(F ) ≤ q implies µw(F

′)− µw(F ) ≤ 0. If we choose

α >
d

r − k
− q

rwm
k(r − k − wm)

,

then we have

µw(F
′)− µw(F ) ≤ q

and so µw(F
′) ≤ µw(F ). We set αS = d

r−k − q rwm

k(r−k−wm) . It is easy to see that αS > αT .

Finally, as F is w-semistable with degw(F ) = d > 0 and w is good, by Lemma 1.8 we have that

h0(F ∗) = 0. �

The consequence of all previous technical result is the following Theorem.
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Theorem 3.10. Let C be a nodal curve and w a good polarization on it. Let r > 0 and d > 0

be rational numbers and let k be an integer with 0 < k < r. If G(C,w),L(r, d, k) is not empty, we

have a morphism

η : G(C,w),L(r, d, k) → U(C,w)(r − k, d)

sending a coherent system (E,V ) to [coker(evV )].

Proof. First of all we point out that coker(evV ) does not depend on the isomorphism class of

(E,V ). By Lemma 3.8 and Lemma 3.9 if α ∈
(

αS ,
d
r−k

)

any (w,α)-stable coherent system

(E,V ) defines a BGN extension of type (r, d, k), where F = coker evV is a depth one sheaf

which is w-semistable, with rkw(F ) = r − k and degw(F ) = d. If αS < αL, then this holds

for any (E,V ) ∈ G(C,w),L(r, d, k). Let αS > αL, then for any (E,V ) ∈ G(C,w),L(r, d, k), (w,α)-

stability does not change if α varies in (αL,
d
r−k ) by Lemma 3.1. As Hence, we obtain that η is

well defined.

To prove that η is a morphism we consider a family of (w,α)-stable coherent systems of type

(r, d, k) parametrized by a variety S. In particular, in our hypothesis, we have a coherent sheaf

E on S × C, which is flat on S such that Es = E ⊗ Os×C is a depth one sheaf, a vector bundle

V on S of rank k and a map of sheaves ξ : πS
∗V → E , where πS : S × C → S is the projection.

Moreover, for any s the map ξ|s×C : Vs ⊗ Os×C → Es is injective and its cokernel Fs is a w-

semistable depth one sheaf with rkw(Fs) = r − k and degw(Fs) = d. If we assume that S is

irreducible and reduced, we can prove that ξ is an injective map of sheaves on S × C.

This implies that its cokernel F is a coherent sheaf on S×C, which is flat on S too and Fs = Fs
defined as above. So F defines a family of w-semistable sheaves of depth one of w-rank (r − k)

and w-degree d, parametrized by S. Hence we have a natural morphism S → U(C,w)(r − k, d),

sending s 7→ [Fs]. This proves that η is a morphism. �

Theorem 3.11. Assume that we are in the same hypothesis of Theorem 3.10. Then the image

of η contains the subscheme Us(C,w)(r − k, d) parametrizing w-stable sheaves and the fiber of η

over F ∈ Us(C,w)(r − k, d) is Gr(k,H1(F ∗)).

Proof. Let F be a w-stable sheaf of depth one on C with rkw(F ) = r− k and degw(F ) = d. Let

e ∈ Ext1(F, V ⊗OC) be the class of a BGN extension of type (r, d, k):

(3.10) 0 → V ⊗OC → E
β
−→ F → 0.

Let (E,V ) be the coherent system on C defined by e. We will prove that (E,V ) is (w,α)-stable

for α ∈ (αL, d/(r − k)). At this end, let (E′, V ′) be a proper coherent subsystem of (E,V ) with

V ′ = V ∩H0(E′), it is enough to see that

µ(w,α)(E
′, V ′) < µ(w,α)(E,V ),

for α sufficiently close to d
r−k . For this reason, we set α = d−ǫ

r−k , with ǫ > 0.

We consider the restriction of β of (3.10) to E′: β|E′ : E′ → F . We will distinguish two cases

depending on the fact the β|E′ is the zero map.

Case (a): β|E′ = 0. Then E′ is a nonzero subsheaf of V ⊗OC with rkw(E
′) = r′ ≤ k < r. As

w is good we have that V ⊗OC is w-semistable (see [BF20c]), then we have:

µw(E
′) ≤ µw(V ⊗OC) = 0,

which implies degw(E
′) = d′ ≤ 0. Let k′ = dimV ′, then 0 ≤ k′ ≤ k. If k′ > 0, since V ′ ⊆ V ,

then we have an injective map V ′ ⊗OC → E′ which implies k′ ≤ r′ ≤ k < r. So we have:

µ(w,α)(E
′, V ′) =

d′

r′
+ α

k′

r′
≤ α.
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As we have chosen α = d−ǫ
r−k , it follows that

µ(w,α)(E,V ) =
d

r
+ α

k

r
= α+

ǫ

r
> α.

These two inequalities allow us to conclude:

µ(w,α)(E
′, V ′) ≤ α < µ(w,α)(E,V ).

Case (b): β|E′ 6= 0. Then we set G′ = Ker(β|E′) and F ′ = Im(β|E′). They are depth one

sheaves on C, G′ is a subsheaf of V ⊗OC and F ′ is a non zero subsheaf of F , they fit into the

following exact sequence:

0 → G′ → E′ β|′
E−−→ F ′ → 0.

We distinguish two cases depending on the fact that F ′ coincide with F or not.

(b1): F ′ is a proper subsheaf of F . Let SF = {µw(F
′′) |F ′′ proper subsheaf of F}. Since F is

w-stable, the intersection SF ∩ (0, µw(F )) is finite. So we can choose δ > 0 such that for any

proper subsheaf F ′ of F we have:

µw(F
′) ≤ µw(F )−

δ

r − k
.

We set

rkw(G
′) = l′ rkw(E

′) = r′ rkw(F
′) = r′ − l′,

with 0 ≤ l′ < r′, and

degw(E
′) = d′ = degw(G

′) + degw(F
′).

As G′ ⊆ V ⊗ OC and w is good, by w-semistability of V ⊗ OC we have degw(G
′) ≤ 0, hence

degw(E
′) ≤ degw(F

′). So we have:

(3.11) µw(E
′) =

degw(E
′)

r′
≤

degw(F
′)

r′
≤
r′ − l′

r′
µw(F

′) ≤
r′ − l′

r′

[

µw(F )−
δ

r − k

]

.

We set k′ = dimV ′, as V ′ ⊆ V , then we have an injective map V ′ ⊗OC → G′, so k′ ≤ l′ < r′.

Finally, (E′, V ′) is a proper coherent subystem of (E,V ) of type (r′, d′, k′). By using Equation

(3.11) we have:

µ(w,α)(E
′, V ′)− µ(w,α)(E,V ) = µw(E

′)− µw(E) + α

(

k′

r′
−
k

r

)

≤

≤
r′ − l′

r′

[

µw(F )−
δ

r − k

]

− µw(F )
r − k

r
+ α

(

k′

r′
−
k

r

)

≤

≤ µw(F )
k′ − l′

r′
−

δ

r − k

(

1−
l′

r′

)

+
ǫ

r − k

(

k

r
−
k′

r′

)

.

Since k′ ≤ l′ and µw(F ) ≥ 0 by assumption, we have µw(F )
k′−l′

r′
≤ 0; as l′ < r′, then − δ

r−k (1−
l′

r′
) < 0. Note that if k

r
− k′

r′
≤ 0, then ǫ

r−k (
k
r
− k′

r′
) ≤ 0 for any ǫ > 0. If k

r
− k′

r′
> 0, then k′

r′
can

assume finitely many values, hence we can find ǫ > 0 small enough in order to obtain

µ(w,α)(E
′, V ′) < µ(w,α)(E,V ).

(b2): F ′ = F . Let rkw(G
′) = l′ ≤ k and degw(G

′) = m′. Then rkw(E
′) = r − k + l′. As in case

(b1) we have degw(G
′) ≤ 0, so we we have:

degw(E
′) = degw(G

′) + degw(F ) = degw(F ) +m′,

which implies

(3.12) µw(E
′) = µw(F )

r − k

r − k + l′
+

m′

r − k + l′
.
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Let k′ = dimV ′. As in case (b1) we have k′ ≤ l′. So we have a proper coherent subsystem of

(E,V ). By using Equation (3.12) we have

µ(w,α)(E
′, V ′)− µ(w,α)(E,V ) = µw(E

′)− µw(E) + α

(

k′

r − k + l′
−
k

r

)

≤

≤ µw(F )
r − k

r − k + l′
− µw(F )

r − k

r
+
d− ǫ

r − k

(

k′

r − k + l′
−
k

r

)

+
m′

r − k + l′
≤

≤ µw(F )
k′ − l′

r − k + l′
+

ǫ

r − k

(

k

r
−

k′

r − k − l′

)

+
m′

r − k + l′
.

Note that µw(F )
k′−l′

r−k+l′ +
m′

r−k+l′ ≤ 0 and it is zero if and only if k′ = l′ and m′ = 0. Assume that

we are in this case. Then, the injection V ′ ⊗ OC → G′ is an isomorphism G′ ≃ V ′ ⊗ OC . Let

V = V ′ ⊕ V ′′, then the quotient E
E′ ≃ V ′′ ⊗OC , hence E ≃ E′ ⊕ (V ′′ ⊗OC) and then Extension

(3.10) would splits. But this is impossible since the vectors e1, . . . , ek are linearly independent

in Ext1(F,OC ).

We can conclude, as in the case (b1), that µw(F )
k′−l′

r−k+l′ +
m′

r−k+l′ < 0, so for ǫ small enough we

have:

µ(w,α)(E
′, V ′) < µ(w,α)(E,V )

so (E,V ) is (w,α)-stable as claimed.

The claim about the fiber over points of Us(C,w)(r − k, d) follows by Proposition 2.2(c).

�

4. On the moduli space G(C,w),L(r · 1, d, k)

Let C be a nodal curve with γ smooth irreducible components Ci of genus gi ≥ 2 and δ nodes.

Let w be a good polarization on C. In this section we will consider coherent systems (E,V )

of type (r, d, k) with multirank r · 1, k < r and d > 0. This case is interesting as it includes

coherent systems with E locally free. Coherent systems with such features which are (w,α)-

stable are parametrized by the subscheme G(C,w),α(r ·1, d, k) of the moduli space G(C,w),α(r, d, k).

Hence, we can consider the map η defined in Theorem 3.10 and restrict it to the subscheme

G(C,w),L(r · 1, d, k), we obtain a morphism

(4.1) ψ : G(C,w),L(r · 1, d, k) → U(C,w)((r − k) · 1, d).

The moduli spaces U(C,w)(s · 1, d) have been described by Teixidor i Bigas (see [TiB91] and

[TiB95]). We briefly recall the most relevant results. First of all, for any integers s ≥ 1 and

d, the moduli space U(C,w)(s · 1, d) is never irreducible but it is connected and each irreducible

component has dimension 1+ s2(pa(C)−1). The generic element of each irreducible component

is the isomorphism class of a locally free sheaf F , which is w-stable and whose restrictions to

Ci are stable too. Each component is identified by a γ-uple (d1, . . . , dγ), where di is the degree

of the restriction to Ci of the generic element and
∑γ

i=1 di = d. We will denote by Xd1,...,dγ

the component of U(C,w)(s · 1, d) corresponding to (d1, . . . , dγ). The intersection of two such

components consists of sheaves which are not locally free. Finally, for w general, the number of

irreducible components is h · sγ−1 where h is the number of spanning tree in the dual graph of

C.

The main result of this section is the following:

Theorem 4.1. Let (C,w) be a polarized nodal curve with w good. Let 0 < k < r and d > 0

integers. Then the following hold:
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(a) the moduli space G(C,w),L(r · 1, d, k) is non empty if and only if k ≤ d+r(pa(C)−1)
pa(C) ;

(b) for any irreducible component Xd1,...,dγ ⊂ U(C,w)((r − k) · 1, d) we have an irreducible com-

ponent Yd1,...,dγ ⊂ G(C,w),L(r · 1, d, k) which is birational to a Grassmanian fibration over

Xd1,...,dγ ;

(c) any component Yd1,...,dγ has dimension β(r, d, k) and the generic element is a coherent system

(E,V ) with E locally free;

(d) the above components are the only ones which contains coherent systems (E,V ) with E

locally free.

Proof. For simplicity, we set U = U(C,w)((r − k) · 1, d) and Us = Us(C,w)((r − k) · 1, d).

Let F ∈ Us, by Theorem 3.11, we have that ψ−1(F ) ≃ Gr(k,H0(F ⊗ ωC)
∗). Hence

dimψ−1(F ) = k(h0(F ⊗ ωC)− k).

By Serre duality and Lemma 1.8 we have h1(F ⊗ ωC) = h0(F ∗) = 0. So

h0(F ⊗ ωC) = χ(F ⊗ ωC) = degw(F ⊗ ωC) + (r − k)(1− pa(C)).

Since ωC ⊗OCi
= ωCi

(∆i), then by Lemma 1.4 we obtain

degw(F ⊗ ωC) = ∆w(F ) +

γ
∑

i=1

[di + (r − k)(2gi − 2 + δi)] = d+ 2(r − k)(pa(C)− 1)

so h0(F ⊗ ωC) = d+ (r − k)(pa(C)− 1) and

dim ψ−1(F ) = k[d+ (r − k)(pa(C)− 1)− k].

In particular, this proves (a): the moduli space G(C,w),L(r · 1, d, k) is non empty if and only if

k ≤
d+ r(pa(C)− 1)

pa(C)
.

In this case, since Us is an open dense subset of U , we can conclude that ψ is dominant.

Let Xd1,...,dγ ⊂ U be the irreducible component corresponding to (d1, . . . , dγ). We denote by

Xs
d1,...,dγ

its open subset corresponding to w-stable sheaves. Then ψ−1(Xs
d1,...,dγ

) is an irreducible

quasi-projective variety: in fact it is a Grassmannian fibration over Xs
d1,...,dγ

, with fibers Gr(k,N)

with N = d+ (r − k)(pa(C)− 1). Hence we have

dim(ψ−1(Xs
d1,...,dγ

)) = 1 + (r − k)2(pa(C)− 1) + k(N − k).

Let (E,V ) be a generic element of ψ−1(Xs
d1,...,dγ

). Then E is locally free and the evaluation

map evV is injective. By Proposition 1.12, it follows that the moduli space G(C,w),L(r ·1, d, k)) is

smooth at the point (E,V ) with dimension βC(r, d, k). Actually, it is immediate to check that

βC(r, d, k) = dim(ψ−1(Xs
d1,...,dγ

)).

This allow us to conclude that the closure of ψ−1(Xs
d1,...,dγ

) in G(C,w),L(r ·1, d, k) is an irreducible

component of G(C,w),L(r · 1, d, k): we denote it by Yd1,...,dγ .

We claim now that the above components are the only ones containing coherent systems (E,V )

with E locally free. By contradiction, assume that there exists an irreducible component Y ⊂

G(C,w),L(r · 1, d, k), such that Y 6= Yd1,··· ,dγ and Y contains (E0, V0) with E0 locally free. Note

that by Proposition 1.12, (E0, V0) is a smooth point of the moduli space (and then of Y ). This

implies dim(Y ) = β(r, d, k).

Consider the irreducible bounded set W = {coker(evV ) | (E,V ) ∈ Y }. By assumption, for the

general (E,V ) ∈ Y we have that coker(evV ) is w-semistable but not w-stable. As w-stability is

an open property, we have that all F ∈ W are w-semistable but not w-stable. We recall that
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BGN extensions of F ∈ W are parametrized by the Grassmannian variety Gr(k,H0(F ⊗OC)
∗).

By Lemma 1.8 we have h1(F ⊗ ωC) = 0 for all F ∈ W, so dimGr(k,H0(F ⊗OC)
∗) = k(N − k)

with N as above.

Moreover, since (w,α)-stability is an open condition, for any F ∈ W there is an open subset of

Gr(k,H0(F ⊗ OC)
∗) parametrizing (w,α)-stable coherent systems of Y with coker(evV ) = F .

This implies that W depends on 1 + (r − k)2(pa(C)− 1) parameters. We claim that this is not

possible. Any F ∈ W fits into an exact sequence

0 → F →

γ
⊕

i=1

Fi → T → 0,

where Fi is the restriction of F modulo torsion to Ci and T is a torsion sheaf whose support

is contained in the set of nodes (see [Ses82]). A general element of W is locally free and its

restriction Fi is a locally free sheaf of rank r − k and degree di on Ci. Let

Wi = {Fi |F ∈ W, F locally free}, i = 1, . . . γ.

As h1(F ⊗ ωC) = 0, we have h1(Fi ⊗ ωCi
(∆i)) = 0 for any i. This implies that the set Wi is a

bounded set, as, up to tensoring with a fixed ample line bundle, all the elements of Wi can be

seen as quotient of a fixed trivial bundle. In particular, Wi depends on at most 1+(r−k)2(gi−1)

parameters, by [BPGN97, Remark 4.2].

A general element of W is obtained by glueing its restrictions at the nodes by choosing an

isomorphism between the fibers. By a dimensional count it turns out that Wi depends actually

on 1 + (r− k)2(gi − 1) parameters, hence it contains all stable vector bundles of rank r− k and

degree di. By [TiB95], a general F obtained in this way is actually w-stable. This is impossible

as we have seen that elements of W are never w-stable. �

Remark 4.2. It is easy to see that if d ≥ r, then G(C,w),L(r · 1, d, k) is not empty whenever

0 < k < r.

Remark 4.3. We stress that, a priori, there could be other components of the moduli space

G(C,w),L(r ·1, d, k) besides the components Yd1,...,dγ defined in Theorem 4.1. These should contain

coherent systems (E,V ) consisting of depth one sheaves E which are not locally free such that

coker(evV ) are not w-stable.

Let (E,V ) ∈ Yd1,...,dγ , we can consider its restriction (Ei, Vi) to the component Ci. We wonder if

(Ei, Vi) is α-semistable for some α. This does never happen when deg(Ei) < 0 by [BDGPW95,

Cor 3.2].

Remark 4.4. Notice that, in general, taking restriction does not preserve stability properties.

For example, w-stable locally free sheaves can have restrictions which are not even semistable

(see [BF20]).

We denote by GCi,L(r, di, k) the terminal moduli space for α-stable coherent systems of type

(r, di, k) on the curve Ci. Then we have the following:

Corollary 4.5. Let Yd1,...,dγ be an irreducible component of G(C,w),L(r·1, d, k) defined in Theorem

4.1. Assume moreover that di > 0 and k ≤ di + (r − k)(gi − 1). Then for a general coherent

system (E,V ) ∈ Yd1,...,dγ the restriction (Ei, Vi) is an element of GCi,L(r, di, k).

Proof. Let F ∈ Xs
d1,...,dγ

be a general element, it is locally free and Fi is stable with deg(Fi) =

di > 0 by assumption. Then, by Proposition 2.3 it follows that a general element (E,V ) ∈

ψ−1(F ) is a BGN extension of type (r, d, k) whose restriction (Ei, Vi) to Ci is a BGN extension
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of type (r, di, k). By [BGP02], the coherent system (Ei, Vi) is α-stable for any α big enough.

Hence (Ei, Vi) ∈ GCi,L(r, di, k). �
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