We show that there exists a constant a such that, for every subgroup H of a finite group G, the number of maximal subgroups of G containing H is bounded above by a | G: H | 3 / 2 alvert G:Hrvert3/2. In particular, a transitive permutation group of degree n has at most a ⁢ n 3 / 2 an3/2 maximal systems of imprimitivity. When G is soluble, generalizing a classic result of Tim Wall, we prove a much stronger bound, that is, the number of maximal subgroups of G containing H is at most | G: H | - 1 lvert G:Hrvert-1.

Lucchini, A., Moscatiello, M., Spiga, P. (2020). A polynomial bound for the number of maximal systems of imprimitivity of a finite transitive permutation group. FORUM MATHEMATICUM, 32(3), 713-721 [10.1515/forum-2019-0222].

A polynomial bound for the number of maximal systems of imprimitivity of a finite transitive permutation group

Spiga P.
2020

Abstract

We show that there exists a constant a such that, for every subgroup H of a finite group G, the number of maximal subgroups of G containing H is bounded above by a | G: H | 3 / 2 alvert G:Hrvert3/2. In particular, a transitive permutation group of degree n has at most a ⁢ n 3 / 2 an3/2 maximal systems of imprimitivity. When G is soluble, generalizing a classic result of Tim Wall, we prove a much stronger bound, that is, the number of maximal subgroups of G containing H is at most | G: H | - 1 lvert G:Hrvert-1.
Articolo in rivista - Articolo scientifico
maximal subgroups; permutation groups; systems of imprimitivity; Wall conjecture;
English
2020
32
3
713
721
open
Lucchini, A., Moscatiello, M., Spiga, P. (2020). A polynomial bound for the number of maximal systems of imprimitivity of a finite transitive permutation group. FORUM MATHEMATICUM, 32(3), 713-721 [10.1515/forum-2019-0222].
File in questo prodotto:
File Dimensione Formato  
Lucchini-2020-Forum Mathematicum-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 675.9 kB
Formato Adobe PDF
675.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/345928
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact