We apply the method of linear perturbations to the case of Spin(7)-structures, showing that the only nontrivial perturbations are those determined by a rank one nilpotent matrix. We consider linear perturbations of the Bryant-Salamon metric on the spin bundle over S4 that retain invariance under the action of Sp(2), showing that the metrics obtained in this way are isometric.

Conti, D., Perolini, D. (2021). Linear perturbations of metrics with holonomy Spin(7). DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 78 [10.1016/j.difgeo.2021.101792].

Linear perturbations of metrics with holonomy Spin(7)

Conti, Diego
;
Perolini, Daniel
2021

Abstract

We apply the method of linear perturbations to the case of Spin(7)-structures, showing that the only nontrivial perturbations are those determined by a rank one nilpotent matrix. We consider linear perturbations of the Bryant-Salamon metric on the spin bundle over S4 that retain invariance under the action of Sp(2), showing that the metrics obtained in this way are isometric.
Articolo in rivista - Articolo scientifico
Cohomogeneity one metrics; Linear perturbations; Ricci-flat metrics; Spin(7) holonomy;
English
2021
78
101792
open
Conti, D., Perolini, D. (2021). Linear perturbations of metrics with holonomy Spin(7). DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 78 [10.1016/j.difgeo.2021.101792].
File in questo prodotto:
File Dimensione Formato  
linear.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 315.71 kB
Formato Adobe PDF
315.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/341547
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact