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Abstract

We apply the method of linear perturbations to the case of Spin(7)-
structures, showing that the only nontrivial perturbations are those de-
termined by a rank one nilpotent matrix.

We consider linear perturbations of the Bryant-Salamon metric on the
spin bundle over S4 that retain invariance under the action of Sp(2),
showing that the metrics obtained in this way are isometric.

Riemannian metrics with holonomy Spin(7) have been studied in differen-
tial geometry since the celebrated theorem of Berger [3], listing the possible
holonomy groups of an irreducible, nonsymmetric simply connected Rieman-
nian manifold. Metrics with holonomy contained in Spin(7) are known to be
Ricci-flat [4], and they imply the presence of a parallel spinor [24]. They are
also relevant for string theory (see [14]).

The first local examples of metrics with holonomy Spin(7) were constructed
in [5], and the first complete metric was obtained in [6]; the latter takes the form
of an explicit Sp(2)-invariant metric on the spinor bundle over S4. It was later
shown in [10] that this metric belongs to a one-parameter family of invariant
metrics.

We note that the metrics of [6] are of cohomogeneity one; other coho-
mogeneity one metrics with holonomy contained in Spin(7) have been con-
structed in [11, 18, 14, 23, 9, 7, 1, 2]. Outside of the cohomogeneity one setting
other constructions exist, but the metrics they determine are not explicit (see
[16, 17, 13, 20]).

As observed in [5], a metric with holonomy contained in Spin(7) is defined
by a closed form Ω which is pointwise linearly equivalent to a reference 4-form
on R8 with stabilizer Spin(7). It is then possible to define perturbations of
a Spin(7)-metric by replacing Ω with a perturbed form Ω + δ which remains
pointwise linearly equivalent to Ω. Notice that for the parallel 3-forms ϕ arising
in the context of holonomy G2 the form ϕ + δ is always linearly equivalent to
ϕ for δ sufficiently small; in other terms, ϕ is stable in the sense of [15]. The
Spin(7) form Ω is not stable, however, so more work is needed in order to obtain
a perturbation.
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One possible approach was considered in [19, Section 5.2] by taking

δ = v[ ∧ (wyΩ)− w[ ∧ (vyΩ), (1)

for v, w vector fields on M . In terms of the infinitesimal action ρ of gl(TxM)
on Λ4T ∗xM , this amounts to setting δ = ρ(A)Ω, where A is the skew-symmetric
endomorphism A = v[ ⊗ w − w[ ⊗ v. We recall that under Spin(7) the bundle
of four-forms splits as

Λ4
1 ⊕ Λ4

7 ⊕ Λ4
27 ⊕ Λ4

35; (2)

the skew-symmetric A determines a perturbation term δ in Λ4
7. Whilst this

construction gives nontrivial perturbations of the original metric in the case of
G2 (mutatis mutandis: the relevant decomposition is Λ3

1 ⊕ Λ3
7 ⊕ Λ3

27 and the
perturbation δ an element of Λ3

7), it turns out that in the Spin(7) case the
perturbed form never defines a Spin(7)-structure ([19]).

A different ansatz was considered in [8] in the context of Sp(2)Sp(1)-structures,
which amounts to imposing that A be nilpotent, rather than skew-symmetric.
The key observation, working at a point, is that when

ρ(A)(ρ(A)Ω) = 0, (3)

the form
Ω + tδ, δ = ρ(A)Ω

is always in the same GL(8,R)-orbit as Ω for any t; one then says that δ is a
linear perturbation of Ω. It turns out (see [8]) that one can assume A to be
nilpotent without loss of generality.

In this paper we study nilpotent perturbations of the Spin(7)-form Ω. By
a case-by-case analysis of the possible Jordan forms of a nilpotent matrix in
gl(8,R), and making use of Spin(7)-invariance of (3), we prove that any linear
perturbation of the Spin(7) form Ω is defined by a rank one nilpotent matrix,
i.e. it has the form

δ = v[ ∧ (wyΩ),

with v, w orthogonal vector fields. In terms of (2), the resulting perturbations
of the Spin(7) form turn out to be elements of Λ4

7 ⊕ Λ4
35.

We apply the method of linear perturbations to the Bryant-Salamon metric;
we construct a family of linear perturbations parameterized by three functions
of one variable. However, it turns out that the resulting metrics are isometric;
due to the fact that nilpotent perturbations preserve volumes, we do not recover
the squashed deformations of [10].

Our result complements the result of [21], stating that the Bryant-Salamon
is rigid in the class of asymptotically conical Spin(7) metrics.

Acknowledgements. This work is partly based on the second author’s
master thesis [22]. We thank Thomas Madsen for useful discussions.

1 Linear perturbations

In this section we classify linear perturbation at a point of 4-forms defining
a Spin(7)-structure, proving that they are in one-to-one correspondence with
nilpotent matrices of rank one in gl(8,R).
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We first recall some results from [8]. For a lighter notation, we shall write
Rn∗ instead of (Rn)∗. Denote by

gl(Rn∗)× ΛkRn∗ → ΛkRn∗, (A,ω) 7→ ρ(A)ω

the natural action of gl(Rn∗) on ΛkRn∗. We shall write ρ(A)2ω for ρ(A)(ρ(A)ω).

Proposition 1.1 ([8]). Fix ω ∈ ΛkRn∗ and a solution A ∈ gl(Rn∗) of

ρ(A)2ω = 0. (4)

Then
βt = ω + tρ(A)ω

lies in the same GL(n,R)-orbit as ω for all t ∈ R.

It turns out that there is no loss of generality in assuming that A is nilpotent.
Indeed, we can apply the Jordan decomposition and write A = S +N , where S
is semisimple and N is nilpotent. We have the following:

Proposition 1.2 ([8]). Let ω ∈ ΛkRn∗ and A ∈ gl(Rn∗) a solution of (4) with
Jordan decomposition A = S +N . Then

ρ(N)ω = ρ(A)ω, ρ(N)2ω = 0.

Remark 1.3. Let v ∈ Rn, α ∈ V ∗ and ω ∈ ΛpRn∗. Then ρ(v⊗α)ω = α∧ (vyω).
Indeed it suffices to prove the claim for p = 2: let ε1, ε2 ∈ Rn∗, then

ρ(v ⊗ α)ε1 ∧ ε2 = (v ⊗ α)(ε1) ∧ ε2 + ε1 ∧ (v ⊗ α)(ε2)

= ε1(v)α ∧ ε2 + ε1 ∧ ε2(v)α = α ∧ (vy ε1) ∧ ε2 − α ∧ ε1 ∧ (vy ε2)

= α ∧
(
vy (ε1 ∧ ε2)

)
where last equality follows from Leibnitz’s rule.

Remark 1.4. Let A be a nilpotent, rank-one endomorphism of Rn∗, then

ρ(A)2 = 0.

In particular A is a solution of (4) for all ω.
Indeed if A has rank 1 there exists a basis v1, . . . , vn of Rn∗ such that

Av1 = v2, Av2 = · · · = Avn = 0.

We can write A in tensorial form as A = v1 ⊗ v2, where v1, . . . , vn is the corre-
sponding dual basis in Rn. Let ω ∈ ΛpRn∗; we have

ρ(v1 ⊗ v2)2ω = v2 ∧
(
v1y

(
v2 ∧ (v1yω)

))
= v2 ∧

(
(v1y v

2) ∧ (v1yω)− v2 ∧ (v1y v1yω)
)

= 0

where the first identity follows from Remark 1.3 and the second one holds by
the Leibnitz rule for y .
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Recall that if e1, . . . , e8 is the standard basis of R8 and α, β,Ω are the linear
forms defined by

α = e12 + e34 + e56 + e78,

β = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6) ∧ (e7 + ie8),

Ω =
α2

2
+Re(β),

then the stabilizer in GL(8,R) of the 4-form Ω is a subgroup of SO(8) isomorphic
to Spin(7) (see [4, 5]). Moreover, Spin(7) acts transitively on the sphere S7 ⊂
R8, and the stabilizer of e8 is isomorphic to G2, which acts transitively on the
sphere S6 ⊂ R7 ∼= R7 × {0}. From now on we shall make the identifications
Spin(7) = Stab(Ω), G2 = Stab(Ω) ∩ Stab(e8). Giving a Spin(7)-structure on a
8-manifold amounts to giving a 4-form linearly equivalent to Ω at each point.

Thus, we are interested in linear perturbations of Ω; in particular, we set
n = 8 and k = 4. Up to change of basis, nilpotent matrices are classified over
the reals by partitions with weight 8, giving 22 possibilities that can be encoded
in terms of Young diagrams. For example, the diagram

Γ = .

describes an endomorphism of R8∗ with Jordan blocks of size (3, 2, 1, 1, 1), which,
with respect to some basis {w1, v2, v3, w4, v5, v6, v7, v8}, satisfies

w1 7→ v2 7→ v3 7→ 0

w4 7→ v5 7→ 0

v6, v7, v8 7→ 0.

In the rest of this paper we will use the notation illustrated in the last exam-
ple: for each Jordan block Ji of dimension r ≥ 2 we fix an element wi such
that wi, Awi, . . . , Ar−1wi are linearly indipendent, and denote the other basis
elements by vj . The dual basis of Rn will be denoted by {wi, vj}.

In the following, we will need to consider the Young diagrams

Γ1 = , Γ2 = , Γ3 = , Γ4 = , Γ5 = , Γ6 = .

describing six particular configurations of Jordan blocks. Notice that Γ5 corre-
sponds to rank-one nilpotent endomorphisms and Γ6 to zero.

Given a four-form ω on R8 and two vectors u, v ∈ R8, we will say that
the contraction uy vyω is degenerate if so is the bilinear form induced on the
quotient R8/Span {u, v}, i.e.

(uy vyω)3 6= 0.
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Lemma 1.5. Fix ω ∈ Λ4R8∗ and let A ∈ gl(Rn∗) be a nilpotent solution of (4).
If A has diagram Γ1,Γ2,Γ3,Γ4 and {wi, vk} is a Jordan basis of A, then

wiywjyω is degenerate for all i, j. (5)

Proof. Case Γ2: writing A in tensorial form we have

A =

4∑
i=1

wi ⊗ vi.

The following hold:

ρ(A)2ω = ρ

( 4∑
i=1

wi ⊗ vi
)2

ω =
∑

1≤i,j≤4

ρ(wi ⊗ vi)ρ(wj ⊗ vj)ω

= 2
∑

1≤i<j≤4

vi ∧ vj ∧ (wiywjyω).

The second equality follows from the identities

ρ(wi ⊗ vi)ρ(wj ⊗ vj) = ρ(wj ⊗ vj)ρ(wi ⊗ vi),
ρ(wi ⊗ vi)2 = 0,

(easy consequences of Remark 1.3 and Remark 1.4), and the last equality holds
because of Remark 1.3. Thus, we can write (4) in the form∑

1≤i<j≤4

vij ∧ (wiywjyω) = 0. (6)

Contracting by wk, multiplying with vl and using Remark 1.3 and Remark 1.4
we obtain the following identities:

vlij ∧ (wkywiywjyω) = 0 ∀i, j, k, l : {i, j, l, k} = {1, 2, 3, 4}. (7)

We can decompose ω as

ω =

4∑
i=1

wi ∧ αi +
∑

1≤i<j≤4

wij ∧ βij +
∑

1≤i<j<k≤4

wijk ∧ γijk + δw1234 + ε (8)

αi, βij , γijk, ε ∈ Λ Span
{
v1, . . . , v4

}
, δ ∈ R.

We have that (7) implies

δ = 0, γijk = clvl ∀ {i, j, l, k} = {1, 2, 3, 4}, cl ∈ R. (9)

Notice that in order to prove the degeneracy of wiywjyω it is sufficient to prove
cl = 0 for l = 1, 2, 3, 4. Substituting (8) and (9) in (6) and writing (6) in the form
w1∧ I1 +w2∧ I2 +w3∧ I3 +w4∧ I4 = 0 it turns out that I1 = 0 = I2 = I3 = I4;
this implies the linear system

1 −1 0 −1
0 −1 1 −1
1 0 −1 1
−1 1 −1 0



c1

c2

c3

c4

 = 0;
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by nonsingularity of the matrix, we have cl = 0, l = 1, . . . , 4.
Case Γ1: this time we have

A = v4 ⊗ v1 +

3∑
i=1

wi ⊗ vi.

Arguing as in case Γ2, Equation (4) can be written as

2
∑

1≤i<j≤3

vij ∧ (wiywjyω) + v4 ∧
(
w1yω + 2

3∑
i=1

vi ∧ (wiy v1yω)

)
= 0. (10)

Multiplying by v4 and contracting by wk with k = 1, 2, 3 gives

vij4 ∧ (w3yw2yw1yω) = 0 ∀ 1 ≤ i < j ≤ 3. (11)

Similarly as in the case of Γ2, we write

ω =

3∑
i=1

wi ∧ αi +
∑

1≤i<j≤3

wij ∧ βij + w123 ∧ γ123 + δw123 + ε, (12)

and (11) gives
γ123 = λv4 , λ ∈ R. (13)

It is sufficient to prove λ = 0: substituting (12), (13) in (11) and writing

β12 =
∑
i<j

yijv
ij ; β13 =

∑
i<j

xijv
ij ; β23 =

∑
i<j

zijv
ij ,

we obtain an equation of the form

I1v
124 ∧ w3 + I2v

134 ∧ w2 + I3v
234 ∧ w1 + · · · = 0 I1, I2, I3 ∈ R,

resulting in I1 = 0 = I2 = I3; explicitly, we have the linear system 1 3 0
−1 0 3
1 2 −2

 λ
x12

y13

 = 0,

with nonsingular matrix, so λ = x12 = y13 = 0.
Cases Γ3,Γ4 are similar (and easier).

We will need the following:

Proposition 1.6. Let u, v ∈ R8 be linearly indipendent. Then uy vyΩ is non-
degenerate.

Proof. It is sufficient to prove the thesis with u, v orthogonal and normalized,
because the following hold:

(uy vyΩ)3 = ‖u‖3‖v‖3
(

u

‖u‖
y
v

‖v‖
yΩ

)3

,

uy vyΩ = uy
(
v − Puv

)
yΩ,
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where Pu is the orthogonal projection onto the subspace generated by u. So
let u, v be orthogonal vectors in S7; since Spin(7) acts transitively on S7, there
exists R1 ∈ Spin(7) such that R1v = e8; in particular R1 is an isometry, so
R1u ⊥ R1v = e8 and R1u ∈ R7. It follows that R1u ∈ S6, but G2 is transitive
on S6 so there exists R2 ∈ G2 such that R2R1u = e7. Setting R = R−1

1 R−1
2 we

have u = Re7 and v = Re8. For all x, y ∈ R8 we have

(uy vyΩ)(x, y) = Ω(Re7, Re8, x, y) = Ω(e7, e8, R
−1x,R−1y)

= (e7y e8yΩ)(R−1x,R−1y) = (R−1)∗(e7y e8yΩ)(x, y); (14)

the second equality holds by the Spin(7)-invariance of Ω. So from (14) we have

(uy vyΩ)3 = (R−1)∗(e7y e8yΩ)3,

but

(e7ye8yΩ)3 = (e35 + e48 + e67)3 = 6e354867 6= 0.

We can finally prove:

Theorem 1.7. If ρ(A)Ω is a linear perturbation of Ω, i.e. ρ(A)2Ω = 0, then
the nilpotent part of A has rank at most one.

Proof. For each diagram Γ, we can fix a representative endomorphism AΓ and
compute the space

KΓ =
{
ω ∈ Λ4R8∗

∣∣∣ ρ(AΓ)2ω = 0
}
.

The equation ρ(A)2Ω = 0 has a solution with diagram Γ if ρ(AΓ)2ω = 0 for
some ω in the same GL(8,R)-orbit as Ω; by Proposition 1.6, this implies that
for any linearly indipendent vectors u, v ∈ R8 the map

KΓ → Λ4R8∗

ω 7→ (uy vyω)3

is not identically zero. As observed in [8], this rules out all cases except
Γ1, . . . ,Γ6. Let A be a solution with Γ one of the remaining diagrams. Us-
ing again Proposition 1.6, we have that uy vyΩ is nondegenerate for any choice
of linearly independent vectors u, v ∈ R8; it follows from Lemma 1.5 that all
nilpotent solutions of ρ(A)2Ω = 0 are either zero or rank-one nilpotent endo-
morphisms.

Remark 1.8. Linear perturbations of a Spin(7) form lie in the module Λ4
7⊕Λ4

35.
Indeed, the map

sl(8,R)→ Λ4R8, A 7→ ρ(A)Ω,

is Spin(7)-equivariant and its kernel spin(7) has dimension 21; the image is
therefore the only Spin(7)-module of dimension 42 inside Λ4R8.

Notice that we cosider sl(8,R) instead of gl(8,R) because we assume A to
be nilpotent.
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2 A cohomogeneity one description of the Bryant-
Salamon metric

Recall from [6] that the spinor bundle S over S4 carries a cohomogeneity one
metric with holonomy Spin(7); this metric has cohomogeneity one under the
action of Sp(2). In this section we give a description of these metrics in terms
of cohomogeneity one actions which will be needed in order to study the linear
perturbations.

Explicitly, the Lie group Sp(2) = {g ∈ GL(2,H) | gg∗ = I} contains two
copies of Sp(1), i.e.

Sp(1)+ =

{(
p 0
0 1

)
|p ∈ Sp(1)

}
, Sp(1)− =

{(
1 0
0 q

)
|q ∈ Sp(1)

}
.

At the Lie algebra level,

sp(2) =

{(
a b

−b c

)}
, sp+ =

{(
a 0
0 0

)}
, sp− =

{(
0 0
0 c

)}
,

with a, c ∈ ImH, b ∈ H.
The spinor bundle S has the form

S = (Sp(2)×H)/(Sp(1)+ × Sp(1)−),

where (p, q) ∈ Sp(1)+ × Sp(1)− acts on the right by

(g, v)(p, q) = (g(p, q), p−1vq).

S is of cohomogeneity one under the action of Sp(2); there is one singular orbit,
namely Sp(2)/Sp(1)+× Sp(1)− = S4, and the complement of the singular orbit
has the form

S \ S4 = Sp(2)/Sp(1)+ × R+.

Notice that the following

A1 =
1√
12

(
i 0
0 0

)
, A2 =

1√
12

(
j 0
0 0

)
, A3 =

1√
12

(
k 0
0 0

)
,

A4 =
1√
12

(
0 0
0 i

)
, A5 =

1√
12

(
0 0
0 j

)
, A6 =

1√
12

(
0 0
0 k

)
,

X1 =
1√
24

(
0 i
i 0

)
, X2 =

1√
24

(
0 j
j 0

)
, X3 =

1√
24

(
0 k
k 0

)
, X4 =

1√
24

(
0 1
−1 0

)
.

(15)
is an orthonormal basis of sp(2) with respect to the Killing metric. Let a =
a0 + ia1 + ja2 + ka3 be the standard real coordinates in H; following [6], we
define H-valued one-forms on Sp(2)×H

φ = iA4 + jA5 + kA6, ω = X4 + iX1 + jX2 + kX3, α = da− aφ;

we then define ImH-valued two-forms

B =
1

2
(ᾱ ∧ α), Ω =

1

2
(ω̄ ∧ ω).
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When needed, we will use indices to indicate components in H, i.e.

iB1 + jB2 + kB3 = i(α0 ∧ α1 − α2 ∧ α3) + j(α0 ∧ α2 − α3 ∧ α1) + k(α0 ∧ α3 − α1 ∧ α2).

The Bryant-Salamon 4-form is a linear combination of the forms

ψ1 = α0 ∧ α1 ∧ α2 ∧ α3, ψ=B1 ∧ Ω1 +B2 ∧ Ω2 +B3 ∧ Ω3,

ψ3 = ω0 ∧ ω1 ∧ ω2 ∧ ω3,

with coefficients determined by the smooth functions on H

f(r) = 4
(
1 + r

)−2/5
, g(r) = 5k

(
1 + r

)3/5
,

where we have set r = aā = ‖a‖2. More precisely, the Bryant-Salamon 4-form
Φ ∈ Ω4

(
Sp(2)×H

)
is defined as

Φ = f2ψ1 + fgψ2 + g2ψ3. (16)

Since Φ is basic relative to the action of Sp(1)× Sp(1), it induces a form on the
quotient S = Sp(2)×H/Sp(1)× Sp(1), also to be denoted by Φ.

Proposition 2.1. Under the inclusion

χ̃ : Sp(2)× R+ → Sp(2)×H, (g, t) 7→ (g,
√
t),

the Bryant-Salamon 4-form pulls back to

χ̃∗Φ = −dt
2
∧
(
tf(t)2A456 + f(t)g(t)

(
A4 ∧ (−X14 −X23) +A5 ∧ (−X24 +X13)

+A6 ∧ (−X34 −X12)
))
− tf(t)g(t)

(
A56 ∧ (−X14 −X23) +A64 ∧ (−X24 +X13)

+A45 ∧ (−X34 −X12)
)
− g(t)2X1234.

Proof. By definition we have χ̃∗a =
√
t, χ̃∗r = t, so

χ̃∗α =
dt

2
√
t
− i
√
tφ1 − j

√
tφ2 − k

√
tφ3.

We obtain

χ̃∗ψ1 = −tdt
2
∧ φ1 ∧ φ2 ∧ φ3 = −tdt

2
∧A456;

χ̃∗ψ2 = −dt
2
∧ (φ1 ∧ Ω1 + φ2 ∧ Ω2 + φ3 ∧ Ω3)− t(φ2 ∧ φ3 ∧ Ω1 + φ3 ∧ φ1 ∧ Ω2 + φ1 ∧ φ2 ∧ Ω3)

= −dt
2
∧
(
A4 ∧ (−X14 −X23) +A5 ∧ (−X24 +X13) +A6 ∧ (−X34 −X12)

)
− t
(
A56 ∧ (−X14 −X23) +A64 ∧ (−X24 +X13) +A45 ∧ (−X34 −X12)

)
;

χ̃∗ψ3 = ω0 ∧ ω1 ∧ ω2 ∧ ω3 = −X1234.

The statement follows immediately.
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3 Linear perturbations of the Bryant-Salamon
metric

In this section we study Sp(2)-invariant linear perturbations of the Bryant-
Salamon metric.

By Theorem 1.7, a linear perturbation of a Spin(7)-structure is obtained
by the choice of a rank one nilpotent endomorphism of the tangent bundle at
each point. Thus, the global data for a linear perturbation is given by the
choice of a vector field X and a one form α with α(X) = 0. Since we work
in the Sp(2)-invariant setting, we will require both vector field and form to be
invariant.

Thus, the first step is to construct an Sp(2)-invariant vector field on the
cohomogeneity one manifold Sp(2)/Sp(1)+ × R+. We will need the following
observation:

Lemma 3.1. Let a Lie group G act transitively on M , and let H be the stabilizer
at a point m. Then X ∈ g defines a G-invariant vector field on M of the form

X+
gm = g∗

d

dt
|t=0 exp(tX)m

if and only if X belongs to

n(H) = {X ∈ g | AdhX −X ∈ h ∀h ∈ H } (17)

All G-invariant vector fields on M are of this form.

Proof. The vector field X+ is well defined and invariant if and only if X+
gm =

X+
g′m whenever gm = g′m; in other words, we need X+

gm = X+
ghm for all g ∈

G, h ∈ H. Since

X+
ghm = g∗h∗

d

dt
|t=0 exp(tX)m = g∗

d

dt
|t=0 h exp(tX)h−1m

= g∗
d

dt
|t=0 exp(tAdhX)m,

we obtain that X+ is well defined when

d

dt
|t=0 exp(tX)m =

d

dt
|t=0 exp(tAdhX)m ∀h ∈ H,

which is equivalent to X lying in n(H).
Conversely, given an invariant vector field Y on M , we have Ygm = g∗Ym,

where

Ym =
d

dt
|t=0 exp(tX)m, X ∈ g.

By invariance, Y = X+, and X lies in n(H) by the first part.

Proposition 3.2. Relative to the action of G = Sp(2) on Sp(2)/Sp(1)+ we
have

n(Sp(1)+) = sp(1)+ × sp(1)−. (18)
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Proof. An element (
x y
−ȳ w

)
∈ sp(2)

lies in n(Sp(1)+) if and only if for all p in Sp(1) we have(
p 0
0 1

)(
x y
−ȳ w

)(
p̄ 0
0 1

)
−
(
x y
−ȳ w

)
∈ sp(1)+.

This is equivalent to py = y for all p, i.e. y = 0, so the statement is proved.

Summing up, we have a linear map

sp(1)+ × sp(1)− → XSp(2)(Sp(2)/Sp(1)+), X 7→ X+;

its kernel is sp(1)+, showing that invariant vector fields on Sp(2)/Sp(1)+ take
the form

X = x4A4 + x5A5 + x6A6 ∈ sp(1)−.

Lemma 3.3. Every Sp(2)-invariant vector field Y on Sp(2)/Sp(1)+ satisfies

LY

(
A56 ∧ (−X14 −X23) +A64 ∧ (−X24 +X13) +A45 ∧ (−X34 −X12)

)
= 0

LYX
1234 = 0

Proof. As an Sp(1)−-module, sp(2) decomposes as

3R+H+sp(1)− = Span {A1, A2, A3}+Span {X1, X2, X3, X4}+Span {A4, A5, A6} ,

with Λ2H splitting as 3R + sp(1)−. The inclusion of sp(1)− in Λ2H is realized
by the Sp(1)−-equivariant map

A4 7→ Ω1, A5 7→ Ω2, A6 7→ Ω3.

It follows that A56∧Ω1 +A64∧Ω2 +A45∧Ω3 is Sp(1)−-invariant. As an element
of Λ4H, X1234 is also Sp(1)−-invariant.

Writing Y = aA+
4 + bA+

5 + cA+
6 , the statement follows.

Theorem 3.4. Given smooth even functions a, b, c : R→ R, the 4-form

Φ + dt ∧ (a(t)A+
4 + b(t)A+

5 + c(t)A+
6 )yΦ (19)

is closed and defines an Sp(2)-invariant metric with holonomy contained in
Spin(7).

Proof. Observe first that the vector field a(t)A+
4 + b(t)A+

5 + c(t)A+
6 is globally

defined and vanishes on the special orbit, i.e. the zero section of the spinor
bundle.

The 4-form (19) is a linear perturbation of the Bryant-Salamon form by
a nilpotent endomorphism of rank one (see Remark 1.4), so it defines again
a Spin(7)-structure. In order to check that it is closed, write Y = a(t)A+

4 +
b(t)A+

5 + c(t)A+
6 ; we have

d(dt ∧ Y yΦ) = −dt ∧ d(Y yΦ) = −dt ∧ LY Φ.

Since Y is Sp(2)-invariant, by Lemma 3.3 we have that LY annihilates the
restriction of Φ to each principal orbit {t = t0}, and therefore dt ∧ LY Φ = 0.
By [12], the metric defined by the perturbed form has holonomy contained in
Spin(7).
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It is now natural to ask whether the perturbed metrics are isometric to the
Bryant-Salamon metric. It turns out that they are isometric under an Sp(2)-
equivariant diffeomorphism, due to the following:

Lemma 3.5. Any Sp(2)-invariant vector field on S is a Killing field for the
Bryant-Salamon metric.

Proof. The Bryant-Salamon metric takes the form

f(α2
0 + · · ·+ α2

3) + g(ω2
0 + · · ·+ ω2

3)

= f(
1

4t
dt2 + t((A4)2 + (A5)2 + (A6)2)) + g((X1)2 + (X2)2 + (X3)2 + (X4)2).

Since (A4)2 + (A5)2 + (A6)2 and (X1)2 + (X2)2 + (X3)2 + (X4)2 are Sp(1)−-
invariant, the claim follows.

Arguing as in [8, Proposition 5.2], we obtain:

Proposition 3.6. The Sp(2)-invariant linear perturbations of the Bryant-Salamon
metric are obtained from the Bryant-Salamon metric via an Sp(2)-equivariant
diffeomorphism.
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