Linear perturbations of metrics with holonomy Spin(7)

Diego Conti and Daniel Perolini

May 11, 2021

Abstract

We apply the method of linear perturbations to the case of $\operatorname{Spin}(7)$ structures, showing that the only nontrivial perturbations are those determined by a rank one nilpotent matrix.

We consider linear perturbations of the Bryant-Salamon metric on the spin bundle over S^{4} that retain invariance under the action of $\operatorname{Sp}(2)$, showing that the metrics obtained in this way are isometric.

Riemannian metrics with holonomy $\operatorname{Spin}(7)$ have been studied in differential geometry since the celebrated theorem of Berger [3], listing the possible holonomy groups of an irreducible, nonsymmetric simply connected Riemannian manifold. Metrics with holonomy contained in $\operatorname{Spin}(7)$ are known to be Ricci-flat [4], and they imply the presence of a parallel spinor [24]. They are also relevant for string theory (see [14]).

The first local examples of metrics with holonomy $\operatorname{Spin}(7)$ were constructed in [5], and the first complete metric was obtained in [6]; the latter takes the form of an explicit $\mathrm{Sp}(2)$-invariant metric on the spinor bundle over S^{4}. It was later shown in [10] that this metric belongs to a one-parameter family of invariant metrics.

We note that the metrics of [6] are of cohomogeneity one; other cohomogeneity one metrics with holonomy contained in $\operatorname{Spin}(7)$ have been constructed in $[11,18,14,23,9,7,1,2]$. Outside of the cohomogeneity one setting other constructions exist, but the metrics they determine are not explicit (see [16, 17, 13, 20]).

As observed in [5], a metric with holonomy contained in $\operatorname{Spin}(7)$ is defined by a closed form Ω which is pointwise linearly equivalent to a reference 4 -form on \mathbb{R}^{8} with stabilizer $\operatorname{Spin}(7)$. It is then possible to define perturbations of a $\operatorname{Spin}(7)$-metric by replacing Ω with a perturbed form $\Omega+\delta$ which remains pointwise linearly equivalent to Ω. Notice that for the parallel 3 -forms φ arising in the context of holonomy G_{2} the form $\varphi+\delta$ is always linearly equivalent to φ for δ sufficiently small; in other terms, φ is stable in the sense of [15]. The $\operatorname{Spin}(7)$ form Ω is not stable, however, so more work is needed in order to obtain a perturbation.

[^0]One possible approach was considered in [19, Section 5.2] by taking

$$
\begin{equation*}
\left.\left.\delta=v^{b} \wedge(w\lrcorner \Omega\right)-w^{b} \wedge(v\lrcorner \Omega\right), \tag{1}
\end{equation*}
$$

for v, w vector fields on M. In terms of the infinitesimal action ρ of $\mathfrak{g l}\left(T_{x} M\right)$ on $\Lambda^{4} T_{x}^{*} M$, this amounts to setting $\delta=\rho(A) \Omega$, where A is the skew-symmetric endomorphism $A=v^{b} \otimes w-w^{b} \otimes v$. We recall that under $\operatorname{Spin}(7)$ the bundle of four-forms splits as

$$
\begin{equation*}
\Lambda_{1}^{4} \oplus \Lambda_{7}^{4} \oplus \Lambda_{27}^{4} \oplus \Lambda_{35}^{4} ; \tag{2}
\end{equation*}
$$

the skew-symmetric A determines a perturbation term δ in Λ_{7}^{4}. Whilst this construction gives nontrivial perturbations of the original metric in the case of G_{2} (mutatis mutandis: the relevant decomposition is $\Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}$ and the perturbation δ an element of Λ_{7}^{3}), it turns out that in the $\operatorname{Spin}(7)$ case the perturbed form never defines a $\operatorname{Spin}(7)$-structure ([19]).

A different ansatz was considered in [8] in the context of $\operatorname{Sp}(2) \operatorname{Sp}(1)$-structures, which amounts to imposing that A be nilpotent, rather than skew-symmetric. The key observation, working at a point, is that when

$$
\begin{equation*}
\rho(A)(\rho(A) \Omega)=0, \tag{3}
\end{equation*}
$$

the form

$$
\Omega+t \delta, \quad \delta=\rho(A) \Omega
$$

is always in the same $\mathrm{GL}(8, \mathbb{R})$-orbit as Ω for any t; one then says that δ is a linear perturbation of Ω. It turns out (see [8]) that one can assume A to be nilpotent without loss of generality.

In this paper we study nilpotent perturbations of the $\operatorname{Spin}(7)$-form Ω. By a case-by-case analysis of the possible Jordan forms of a nilpotent matrix in $\mathfrak{g l}(8, \mathbb{R})$, and making use of $\operatorname{Spin}(7)$-invariance of (3), we prove that any linear perturbation of the $\operatorname{Spin}(7)$ form Ω is defined by a rank one nilpotent matrix, i.e. it has the form

$$
\left.\delta=v^{\mathrm{b}} \wedge(w\lrcorner \Omega\right)
$$

with v, w orthogonal vector fields. In terms of (2), the resulting perturbations of the $\operatorname{Spin}(7)$ form turn out to be elements of $\Lambda_{7}^{4} \oplus \Lambda_{35}^{4}$.

We apply the method of linear perturbations to the Bryant-Salamon metric; we construct a family of linear perturbations parameterized by three functions of one variable. However, it turns out that the resulting metrics are isometric; due to the fact that nilpotent perturbations preserve volumes, we do not recover the squashed deformations of [10].

Our result complements the result of [21], stating that the Bryant-Salamon is rigid in the class of asymptotically conical $\operatorname{Spin}(7)$ metrics.

Acknowledgements. This work is partly based on the second author's master thesis [22]. We thank Thomas Madsen for useful discussions.

1 Linear perturbations

In this section we classify linear perturbation at a point of 4 -forms defining a $\operatorname{Spin}(7)$-structure, proving that they are in one-to-one correspondence with nilpotent matrices of rank one in $\mathfrak{g l}(8, \mathbb{R})$.

We first recall some results from [8]. For a lighter notation, we shall write $\mathbb{R}^{n *}$ instead of $\left(\mathbb{R}^{n}\right)^{*}$. Denote by

$$
\mathfrak{g l}\left(\mathbb{R}^{n *}\right) \times \Lambda^{k} \mathbb{R}^{n *} \rightarrow \Lambda^{k} \mathbb{R}^{n *}, \quad(A, \omega) \mapsto \rho(A) \omega
$$

the natural action of $\mathfrak{g l}\left(\mathbb{R}^{n *}\right)$ on $\Lambda^{k} \mathbb{R}^{n^{*}}$. We shall write $\rho(A)^{2} \omega$ for $\rho(A)(\rho(A) \omega)$.
Proposition 1.1 ([8]). Fix $\omega \in \Lambda^{k} \mathbb{R}^{n *}$ and a solution $A \in \mathfrak{g l}\left(\mathbb{R}^{n *}\right)$ of

$$
\begin{equation*}
\rho(A)^{2} \omega=0 \tag{4}
\end{equation*}
$$

Then

$$
\beta_{t}=\omega+t \rho(A) \omega
$$

lies in the same $\mathrm{GL}(n, \mathbb{R})$-orbit as ω for all $t \in \mathbb{R}$.
It turns out that there is no loss of generality in assuming that A is nilpotent. Indeed, we can apply the Jordan decomposition and write $A=S+N$, where S is semisimple and N is nilpotent. We have the following:

Proposition 1.2 ([8]). Let $\omega \in \Lambda^{k} \mathbb{R}^{n *}$ and $A \in \mathfrak{g l}\left(\mathbb{R}^{n *}\right)$ a solution of (4) with Jordan decomposition $A=S+N$. Then

$$
\rho(N) \omega=\rho(A) \omega, \rho(N)^{2} \omega=0
$$

Remark 1.3. Let $v \in \mathbb{R}^{n}, \alpha \in V^{*}$ and $\omega \in \Lambda^{p} \mathbb{R}^{n *}$. Then $\left.\rho(v \otimes \alpha) \omega=\alpha \wedge(v\lrcorner \omega\right)$.
Indeed it suffices to prove the claim for $p=2$: let $\varepsilon_{1}, \varepsilon_{2} \in \mathbb{R}^{n *}$, then

$$
\begin{gathered}
\rho(v \otimes \alpha) \varepsilon_{1} \wedge \varepsilon_{2}=(v \otimes \alpha)\left(\varepsilon_{1}\right) \wedge \varepsilon_{2}+\varepsilon_{1} \wedge(v \otimes \alpha)\left(\varepsilon_{2}\right) \\
\left.\left.=\varepsilon_{1}(v) \alpha \wedge \varepsilon_{2}+\varepsilon_{1} \wedge \varepsilon_{2}(v) \alpha=\alpha \wedge(v\lrcorner \varepsilon_{1}\right) \wedge \varepsilon_{2}-\alpha \wedge \varepsilon_{1} \wedge(v\lrcorner \varepsilon_{2}\right) \\
\left.=\alpha \wedge(v\lrcorner\left(\varepsilon_{1} \wedge \varepsilon_{2}\right)\right)
\end{gathered}
$$

where last equality follows from Leibnitz's rule.
Remark 1.4. Let A be a nilpotent, rank-one endomorphism of $\mathbb{R}^{n *}$, then

$$
\rho(A)^{2}=0
$$

In particular A is a solution of (4) for all ω.
Indeed if A has rank 1 there exists a basis v^{1}, \ldots, v^{n} of $\mathbb{R}^{n *}$ such that

$$
A v^{1}=v^{2}, \quad A v^{2}=\cdots=A v^{n}=0 .
$$

We can write A in tensorial form as $A=v_{1} \otimes v^{2}$, where v_{1}, \ldots, v_{n} is the corresponding dual basis in \mathbb{R}^{n}. Let $\omega \in \Lambda^{p} \mathbb{R}^{n *}$; we have

$$
\begin{aligned}
\rho\left(v_{1} \otimes v^{2}\right)^{2} \omega=v^{2} \wedge\left(v_{1}\right\lrcorner & \left.\left.\left(v^{2} \wedge\left(v_{1}\right\lrcorner \omega\right)\right)\right) \\
& \left.\left.\left.\left.=v^{2} \wedge\left(\left(v_{1}\right\lrcorner v^{2}\right) \wedge\left(v_{1}\right\lrcorner \omega\right)-v^{2} \wedge\left(v_{1}\right\lrcorner v_{1}\right\lrcorner \omega\right)\right)=0
\end{aligned}
$$

where the first identity follows from Remark 1.3 and the second one holds by the Leibnitz rule for \lrcorner.

Recall that if e_{1}, \ldots, e_{8} is the standard basis of \mathbb{R}^{8} and α, β, Ω are the linear forms defined by

$$
\begin{aligned}
& \alpha=e^{12}+e^{34}+e^{56}+e^{78} \\
& \beta=\left(e^{1}+i e^{2}\right) \wedge\left(e^{3}+i e^{4}\right) \wedge\left(e^{5}+i e^{6}\right) \wedge\left(e^{7}+i e^{8}\right) \\
& \Omega=\frac{\alpha^{2}}{2}+\operatorname{Re}(\beta)
\end{aligned}
$$

then the stabilizer in $\mathrm{GL}(8, \mathbb{R})$ of the 4 -form Ω is a subgroup of $\mathrm{SO}(8)$ isomorphic to $\operatorname{Spin}(7)($ see $[4,5])$. Moreover, $\operatorname{Spin}(7)$ acts transitively on the sphere $S^{7} \subset$ \mathbb{R}^{8}, and the stabilizer of e_{8} is isomorphic to G_{2}, which acts transitively on the sphere $S^{6} \subset \mathbb{R}^{7} \cong \mathbb{R}^{7} \times\{0\}$. From now on we shall make the identifications $\operatorname{Spin}(7)=\operatorname{Stab}(\Omega), G_{2}=\operatorname{Stab}(\Omega) \cap \operatorname{Stab}\left(e_{8}\right)$. Giving a $\operatorname{Spin}(7)$-structure on a 8 -manifold amounts to giving a 4 -form linearly equivalent to Ω at each point.

Thus, we are interested in linear perturbations of Ω; in particular, we set $n=8$ and $k=4$. Up to change of basis, nilpotent matrices are classified over the reals by partitions with weight 8 , giving 22 possibilities that can be encoded in terms of Young diagrams. For example, the diagram

describes an endomorphism of $\mathbb{R}^{8^{*}}$ with Jordan blocks of size $(3,2,1,1,1)$, which, with respect to some basis $\left\{w^{1}, v^{2}, v^{3}, w^{4}, v^{5}, v^{6}, v^{7}, v^{8}\right\}$, satisfies

$$
\begin{gathered}
w^{1} \mapsto v^{2} \mapsto v^{3} \mapsto 0 \\
w^{4} \mapsto v^{5} \mapsto 0 \\
v^{6}, v^{7}, v^{8} \mapsto 0
\end{gathered}
$$

In the rest of this paper we will use the notation illustrated in the last example: for each Jordan block J_{i} of dimension $r \geq 2$ we fix an element w^{i} such that $w^{i}, A w^{i}, \ldots, A^{r-1} w^{i}$ are linearly indipendent, and denote the other basis elements by v^{j}. The dual basis of \mathbb{R}^{n} will be denoted by $\left\{w_{i}, v_{j}\right\}$.

In the following, we will need to consider the Young diagrams

describing six particular configurations of Jordan blocks. Notice that Γ_{5} corresponds to rank-one nilpotent endomorphisms and Γ_{6} to zero.

Given a four-form ω on \mathbb{R}^{8} and two vectors $u, v \in \mathbb{R}^{8}$, we will say that the contraction $u\lrcorner v\lrcorner \omega$ is degenerate if so is the bilinear form induced on the quotient $\mathbb{R}^{8} / \operatorname{Span}\{u, v\}$, i.e.

$$
(u\lrcorner v\lrcorner \omega)^{3} \neq 0 .
$$

Lemma 1.5. Fix $\omega \in \Lambda^{4} \mathbb{R}^{8^{*}}$ and let $A \in \mathfrak{g l}\left(\mathbb{R}^{n *}\right)$ be a nilpotent solution of (4). If A has diagram $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ and $\left\{w^{i}, v^{k}\right\}$ is a Jordan basis of A, then

$$
\begin{equation*}
\left.\left.w_{i}\right\lrcorner w_{j}\right\lrcorner \omega \text { is degenerate for all } i, j \text {. } \tag{5}
\end{equation*}
$$

Proof. Case Γ_{2} : writing A in tensorial form we have

$$
A=\sum_{i=1}^{4} w_{i} \otimes v^{i}
$$

The following hold:

$$
\begin{gathered}
\rho(A)^{2} \omega=\rho\left(\sum_{i=1}^{4} w_{i} \otimes v^{i}\right)^{2} \omega=\sum_{1 \leq i, j \leq 4} \rho\left(w_{i} \otimes v^{i}\right) \rho\left(w_{j} \otimes v^{j}\right) \omega \\
\left.\left.=2 \sum_{1 \leq i<j \leq 4} v^{i} \wedge v^{j} \wedge\left(w_{i}\right\lrcorner w_{j}\right\lrcorner \omega\right) .
\end{gathered}
$$

The second equality follows from the identities

$$
\begin{aligned}
\rho\left(w_{i} \otimes v^{i}\right) \rho\left(w_{j} \otimes v^{j}\right) & =\rho\left(w_{j} \otimes v^{j}\right) \rho\left(w_{i} \otimes v^{i}\right), \\
\rho\left(w_{i} \otimes v^{i}\right)^{2} & =0
\end{aligned}
$$

(easy consequences of Remark 1.3 and Remark 1.4), and the last equality holds because of Remark 1.3. Thus, we can write (4) in the form

$$
\begin{equation*}
\left.\left.\sum_{1 \leq i<j \leq 4} v^{i j} \wedge\left(w_{i}\right\lrcorner w_{j}\right\lrcorner \omega\right)=0 . \tag{6}
\end{equation*}
$$

Contracting by w_{k}, multiplying with v^{l} and using Remark 1.3 and Remark 1.4 we obtain the following identities:

$$
\begin{equation*}
\left.\left.\left.v^{l i j} \wedge\left(w_{k}\right\lrcorner w_{i}\right\lrcorner w_{j}\right\lrcorner \omega\right)=0 \quad \forall i, j, k, l \quad: \quad\{i, j, l, k\}=\{1,2,3,4\} \tag{7}
\end{equation*}
$$

We can decompose ω as

$$
\begin{gather*}
\omega=\sum_{i=1}^{4} w^{i} \wedge \alpha_{i}+\sum_{1 \leq i<j \leq 4} w^{i j} \wedge \beta_{i j}+\sum_{1 \leq i<j<k \leq 4} w^{i j k} \wedge \gamma_{i j k}+\delta w^{1234}+\varepsilon \tag{8}\\
\alpha_{i}, \beta_{i j}, \gamma_{i j k}, \varepsilon \in \Lambda \operatorname{Span}\left\{v^{1}, \ldots, v^{4}\right\} \quad, \quad \delta \in \mathbb{R} .
\end{gather*}
$$

We have that (7) implies

$$
\begin{equation*}
\delta=0, \quad \gamma_{i j k}=c^{l} v^{l} \quad \forall\{i, j, l, k\}=\{1,2,3,4\}, \quad c^{l} \in \mathbb{R} \tag{9}
\end{equation*}
$$

Notice that in order to prove the degeneracy of $\left.\left.w_{i}\right\lrcorner w_{j}\right\lrcorner \omega$ it is sufficient to prove $c^{l}=0$ for $l=1,2,3,4$. Substituting (8) and (9) in (6) and writing (6) in the form $w^{1} \wedge I_{1}+w^{2} \wedge I_{2}+w^{3} \wedge I_{3}+w^{4} \wedge I_{4}=0$ it turns out that $I_{1}=0=I_{2}=I_{3}=I_{4} ;$ this implies the linear system

$$
\left(\begin{array}{cccc}
1 & -1 & 0 & -1 \\
0 & -1 & 1 & -1 \\
1 & 0 & -1 & 1 \\
-1 & 1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
c^{1} \\
c^{2} \\
c^{3} \\
c^{4}
\end{array}\right)=0
$$

by nonsingularity of the matrix, we have $c^{l}=0, l=1, \ldots, 4$.
Case Γ_{1} : this time we have

$$
A=v_{4} \otimes v^{1}+\sum_{i=1}^{3} w_{i} \otimes v^{i}
$$

Arguing as in case Γ_{2}, Equation (4) can be written as

$$
\begin{equation*}
\left.\left.\left.\left.\left.2 \sum_{1 \leq i<j \leq 3} v^{i j} \wedge\left(w_{i}\right\lrcorner w_{j}\right\lrcorner \omega\right)+v^{4} \wedge\left(w_{1}\right\lrcorner \omega+2 \sum_{i=1}^{3} v^{i} \wedge\left(w_{i}\right\lrcorner v_{1}\right\lrcorner \omega\right)\right)=0 \tag{10}
\end{equation*}
$$

Multiplying by v^{4} and contracting by w_{k} with $k=1,2,3$ gives

$$
\begin{equation*}
\left.\left.\left.v^{i j 4} \wedge\left(w_{3}\right\lrcorner w_{2}\right\lrcorner w_{1}\right\lrcorner \omega\right)=0 \quad \forall 1 \leq i<j \leq 3 . \tag{11}
\end{equation*}
$$

Similarly as in the case of Γ_{2}, we write

$$
\begin{equation*}
\omega=\sum_{i=1}^{3} w^{i} \wedge \alpha_{i}+\sum_{1 \leq i<j \leq 3} w^{i j} \wedge \beta_{i j}+w^{123} \wedge \gamma_{123}+\delta w^{123}+\varepsilon \tag{12}
\end{equation*}
$$

and (11) gives

$$
\begin{equation*}
\gamma_{123}=\lambda v^{4} \quad, \quad \lambda \in \mathbb{R} \tag{13}
\end{equation*}
$$

It is sufficient to prove $\lambda=0$: substituting (12), (13) in (11) and writing

$$
\beta_{12}=\sum_{i<j} y_{i j} v^{i j} ; \quad \beta_{13}=\sum_{i<j} x_{i j} v^{i j} ; \quad \beta_{23}=\sum_{i<j} z_{i j} v^{i j}
$$

we obtain an equation of the form

$$
I_{1} v^{124} \wedge w^{3}+I_{2} v^{134} \wedge w^{2}+I_{3} v^{234} \wedge w^{1}+\cdots=0 \quad I_{1}, I_{2}, I_{3} \in \mathbb{R}
$$

resulting in $I_{1}=0=I_{2}=I_{3}$; explicitly, we have the linear system

$$
\left(\begin{array}{ccc}
1 & 3 & 0 \\
-1 & 0 & 3 \\
1 & 2 & -2
\end{array}\right)\left(\begin{array}{c}
\lambda \\
x_{12} \\
y_{13}
\end{array}\right)=0
$$

with nonsingular matrix, so $\lambda=x_{12}=y_{13}=0$.
Cases Γ_{3}, Γ_{4} are similar (and easier).
We will need the following:
Proposition 1.6. Let $u, v \in \mathbb{R}^{8}$ be linearly indipendent. Then $\left.\left.u\right\lrcorner v\right\lrcorner \Omega$ is nondegenerate.

Proof. It is sufficient to prove the thesis with u, v orthogonal and normalized, because the following hold:

$$
\begin{aligned}
(u\lrcorner v\lrcorner \Omega)^{3} & \left.\left.=\|u\|^{3}\|v\|^{3}\left(\frac{u}{\|u\|}\right\lrcorner \frac{v}{\|v\|}\right\lrcorner \Omega\right)^{3}, \\
u\lrcorner v\lrcorner \Omega & \left.=u\lrcorner\left(v-P_{u} v\right)\right\lrcorner \Omega
\end{aligned}
$$

where P_{u} is the orthogonal projection onto the subspace generated by u. So let u, v be orthogonal vectors in S^{7}; $\operatorname{since} \operatorname{Spin}(7)$ acts transitively on S^{7}, there exists $R_{1} \in \operatorname{Spin}(7)$ such that $R_{1} v=e_{8}$; in particular R_{1} is an isometry, so $R_{1} u \perp R_{1} v=e_{8}$ and $R_{1} u \in \mathbb{R}^{7}$. It follows that $R_{1} u \in S^{6}$, but G_{2} is transitive on S^{6} so there exists $R_{2} \in G_{2}$ such that $R_{2} R_{1} u=e_{7}$. Setting $R=R_{1}^{-1} R_{2}^{-1}$ we have $u=R e_{7}$ and $v=R e_{8}$. For all $x, y \in \mathbb{R}^{8}$ we have

$$
\begin{align*}
(u\lrcorner v\lrcorner \Omega)(x, y)= & \Omega\left(\operatorname{Re}_{7}, R e_{8}, x, y\right)=\Omega\left(e_{7}, e_{8}, R^{-1} x, R^{-1} y\right) \\
& \left.\left.\left.\left.=\left(e_{7}\right\lrcorner e_{8}\right\lrcorner \Omega\right)\left(R^{-1} x, R^{-1} y\right)=\left(R^{-1}\right)^{*}\left(e_{7}\right\lrcorner e_{8}\right\lrcorner \Omega\right)(x, y) ; \tag{14}
\end{align*}
$$

the second equality holds by the $\operatorname{Spin}(7)$-invariance of Ω. So from (14) we have

$$
\left.\left.(u\lrcorner v\lrcorner \Omega)^{3}=\left(R^{-1}\right)^{*}\left(e_{7}\right\lrcorner e_{8}\right\lrcorner \Omega\right)^{3},
$$

but

$$
\left.\left.\left(e_{7}\right\lrcorner e_{8}\right\lrcorner \Omega\right)^{3}=\left(e^{35}+e^{48}+e^{67}\right)^{3}=6 e^{354867} \neq 0 .
$$

We can finally prove:
Theorem 1.7. If $\rho(A) \Omega$ is a linear perturbation of Ω, i.e. $\rho(A)^{2} \Omega=0$, then the nilpotent part of A has rank at most one.

Proof. For each diagram Γ, we can fix a representative endomorphism A_{Γ} and compute the space

$$
K_{\Gamma}=\left\{\omega \in \Lambda^{4} \mathbb{R}^{8^{*}} \mid \rho\left(A_{\Gamma}\right)^{2} \omega=0\right\}
$$

The equation $\rho(A)^{2} \Omega=0$ has a solution with diagram Γ if $\rho\left(A_{\Gamma}\right)^{2} \omega=0$ for some ω in the same GL $(8, \mathbb{R})$-orbit as Ω; by Proposition 1.6 , this implies that for any linearly indipendent vectors $u, v \in \mathbb{R}^{8}$ the map

$$
\begin{gathered}
K_{\Gamma} \rightarrow \Lambda^{4} \mathbb{R}^{8^{*}} \\
\omega \mapsto(u\lrcorner v\lrcorner \omega)^{3}
\end{gathered}
$$

is not identically zero. As observed in [8], this rules out all cases except $\Gamma_{1}, \ldots, \Gamma_{6}$. Let A be a solution with Γ one of the remaining diagrams. Using again Proposition 1.6, we have that $u\lrcorner v\lrcorner \Omega$ is nondegenerate for any choice of linearly independent vectors $u, v \in \mathbb{R}^{8}$; it follows from Lemma 1.5 that all nilpotent solutions of $\rho(A)^{2} \Omega=0$ are either zero or rank-one nilpotent endomorphisms.

Remark 1.8. Linear perturbations of a $\operatorname{Spin}(7)$ form lie in the module $\Lambda_{7}^{4} \oplus \Lambda_{35}^{4}$. Indeed, the map

$$
\mathfrak{s l}(8, \mathbb{R}) \rightarrow \Lambda^{4} \mathbb{R}^{8}, \quad A \mapsto \rho(A) \Omega
$$

is $\operatorname{Spin}(7)$-equivariant and its kernel $\mathfrak{s p i n}(7)$ has dimension 21 ; the image is therefore the only $\operatorname{Spin}(7)$-module of dimension 42 inside $\Lambda^{4} \mathbb{R}^{8}$.

Notice that we cosider $\mathfrak{s l}(8, \mathbb{R})$ instead of $\mathfrak{g l}(8, \mathbb{R})$ because we assume A to be nilpotent.

2 A cohomogeneity one description of the BryantSalamon metric

Recall from [6] that the spinor bundle S over S^{4} carries a cohomogeneity one metric with holonomy $\operatorname{Spin}(7)$; this metric has cohomogeneity one under the action of $\mathrm{Sp}(2)$. In this section we give a description of these metrics in terms of cohomogeneity one actions which will be needed in order to study the linear perturbations.

Explicitly, the Lie group $\operatorname{Sp}(2)=\left\{g \in \mathrm{GL}(2, \mathbb{H}) \mid g g^{*}=I\right\}$ contains two copies of $\operatorname{Sp}(1)$, i.e.

$$
\operatorname{Sp}(1)_{+}=\left\{\left.\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right) \right\rvert\, p \in \operatorname{Sp}(1)\right\}, \quad \operatorname{Sp}(1)_{-}=\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
0 & q
\end{array}\right) \right\rvert\, q \in \operatorname{Sp}(1)\right\}
$$

At the Lie algebra level,

$$
\mathfrak{s p}(2)=\left\{\left(\begin{array}{cc}
a & b \\
-\bar{b} & c
\end{array}\right)\right\}, \mathfrak{s p}_{+}=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & 0
\end{array}\right)\right\}, \mathfrak{s p} \mathfrak{p}_{-}=\left\{\left(\begin{array}{cc}
0 & 0 \\
0 & c
\end{array}\right)\right\}
$$

with $a, c \in \operatorname{Im} \mathbb{H}, b \in \mathbb{H}$.
The spinor bundle S has the form

$$
S=(\mathrm{Sp}(2) \times \mathbb{H}) /\left(\operatorname{Sp}(1)_{+} \times \operatorname{Sp}(1)_{-}\right),
$$

where $(p, q) \in \mathrm{Sp}(1)_{+} \times \mathrm{Sp}(1)_{-}$acts on the right by

$$
(g, v)(p, q)=\left(g(p, q), p^{-1} v q\right)
$$

S is of cohomogeneity one under the action of $\mathrm{Sp}(2)$; there is one singular orbit, namely $\operatorname{Sp}(2) / \operatorname{Sp}(1)_{+} \times \operatorname{Sp}(1)_{-}=S^{4}$, and the complement of the singular orbit has the form

$$
S \backslash S^{4}=\mathrm{Sp}(2) / \mathrm{Sp}(1)_{+} \times \mathbb{R}_{+}
$$

Notice that the following

$$
\begin{gather*}
A_{1}=\frac{1}{\sqrt{12}}\left(\begin{array}{ll}
i & 0 \\
0 & 0
\end{array}\right), A_{2}=\frac{1}{\sqrt{12}}\left(\begin{array}{ll}
j & 0 \\
0 & 0
\end{array}\right), A_{3}=\frac{1}{\sqrt{12}}\left(\begin{array}{ll}
k & 0 \\
0 & 0
\end{array}\right), \\
A_{4}=\frac{1}{\sqrt{12}}\left(\begin{array}{ll}
0 & 0 \\
0 & i
\end{array}\right), A_{5}=\frac{1}{\sqrt{12}}\left(\begin{array}{ll}
0 & 0 \\
0 & j
\end{array}\right), A_{6}=\frac{1}{\sqrt{12}}\left(\begin{array}{ll}
0 & 0 \\
0 & k
\end{array}\right), \\
X_{1}=\frac{1}{\sqrt{24}}\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right), X_{2}=\frac{1}{\sqrt{24}}\left(\begin{array}{ll}
0 & j \\
j & 0
\end{array}\right), X_{3}=\frac{1}{\sqrt{24}}\left(\begin{array}{ll}
0 & k \\
k & 0
\end{array}\right), X_{4}=\frac{1}{\sqrt{24}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) . \tag{15}
\end{gather*}
$$

is an orthonormal basis of $\mathfrak{s p}(2)$ with respect to the Killing metric. Let $a=$ $a_{0}+i a_{1}+j a_{2}+k a_{3}$ be the standard real coordinates in \mathbb{H}; following [6], we define \mathbb{H}-valued one-forms on $\operatorname{Sp}(2) \times \mathbb{H}$

$$
\phi=i A^{4}+j A^{5}+k A^{6}, \quad \omega=X^{4}+i X^{1}+j X^{2}+k X^{3}, \quad \alpha=d a-a \phi ;
$$

we then define $\operatorname{Im} \mathbb{H}$-valued two-forms

$$
B=\frac{1}{2}(\bar{\alpha} \wedge \alpha), \quad \Omega=\frac{1}{2}(\bar{\omega} \wedge \omega) .
$$

When needed, we will use indices to indicate components in \mathbb{H}, i.e.

$$
i B_{1}+j B_{2}+k B_{3}=i\left(\alpha_{0} \wedge \alpha_{1}-\alpha_{2} \wedge \alpha_{3}\right)+j\left(\alpha_{0} \wedge \alpha_{2}-\alpha_{3} \wedge \alpha_{1}\right)+k\left(\alpha_{0} \wedge \alpha_{3}-\alpha_{1} \wedge \alpha_{2}\right) .
$$

The Bryant-Salamon 4-form is a linear combination of the forms

$$
\begin{gathered}
\psi_{1}=\alpha_{0} \wedge \alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3}, \quad \psi=B_{1} \wedge \Omega_{1}+B_{2} \wedge \Omega_{2}+B_{3} \wedge \Omega_{3}, \\
\psi_{3}=\omega_{0} \wedge \omega_{1} \wedge \omega_{2} \wedge \omega_{3},
\end{gathered}
$$

with coefficients determined by the smooth functions on \mathbb{H}

$$
f(r)=4(1+r)^{-2 / 5}, \quad g(r)=5 k(1+r)^{3 / 5}
$$

where we have set $r=a \bar{a}=\|a\|^{2}$. More precisely, the Bryant-Salamon 4-form $\Phi \in \Omega^{4}(\operatorname{Sp}(2) \times \mathbb{H})$ is defined as

$$
\begin{equation*}
\Phi=f^{2} \psi_{1}+f g \psi_{2}+g^{2} \psi_{3} \tag{16}
\end{equation*}
$$

Since Φ is basic relative to the action of $\operatorname{Sp}(1) \times \operatorname{Sp}(1)$, it induces a form on the quotient $S=\operatorname{Sp}(2) \times \mathbb{H} / \operatorname{Sp}(1) \times \operatorname{Sp}(1)$, also to be denoted by Φ.
Proposition 2.1. Under the inclusion

$$
\tilde{\chi}: \operatorname{Sp}(2) \times \mathbb{R}_{+} \rightarrow \operatorname{Sp}(2) \times \mathbb{H}, \quad(g, t) \mapsto(g, \sqrt{t}),
$$

the Bryant-Salamon 4-form pulls back to

$$
\begin{gathered}
\tilde{\chi}^{*} \Phi=-\frac{d t}{2} \wedge\left(t f(t)^{2} A^{456}+f(t) g(t)\left(A^{4} \wedge\left(-X^{14}-X^{23}\right)+A^{5} \wedge\left(-X^{24}+X^{13}\right)\right.\right. \\
\left.\left.+A^{6} \wedge\left(-X^{34}-X^{12}\right)\right)\right)-t f(t) g(t)\left(A^{56} \wedge\left(-X^{14}-X^{23}\right)+A^{64} \wedge\left(-X^{24}+X^{13}\right)\right. \\
\left.+A^{45} \wedge\left(-X^{34}-X^{12}\right)\right)-g(t)^{2} X^{1234}
\end{gathered}
$$

Proof. By definition we have $\tilde{\chi}^{*} a=\sqrt{t}, \tilde{\chi}^{*} r=t$, so

$$
\tilde{\chi}^{*} \alpha=\frac{d t}{2 \sqrt{t}}-i \sqrt{t} \phi_{1}-j \sqrt{t} \phi_{2}-k \sqrt{t} \phi_{3}
$$

We obtain

$$
\begin{aligned}
\tilde{\chi}^{*} \psi_{1}= & -t \frac{d t}{2} \wedge \phi_{1} \wedge \phi_{2} \wedge \phi_{3}=-t \frac{d t}{2} \wedge A^{456} \\
\tilde{\chi}^{*} \psi_{2}= & -\frac{d t}{2} \wedge\left(\phi_{1} \wedge \Omega_{1}+\phi_{2} \wedge \Omega_{2}+\phi_{3} \wedge \Omega_{3}\right)-t\left(\phi_{2} \wedge \phi_{3} \wedge \Omega_{1}+\phi_{3} \wedge \phi_{1} \wedge \Omega_{2}+\phi_{1} \wedge \phi_{2} \wedge \Omega_{3}\right) \\
= & -\frac{d t}{2} \wedge\left(A^{4} \wedge\left(-X^{14}-X^{23}\right)+A^{5} \wedge\left(-X^{24}+X^{13}\right)+A^{6} \wedge\left(-X^{34}-X^{12}\right)\right) \\
& -t\left(A^{56} \wedge\left(-X^{14}-X^{23}\right)+A^{64} \wedge\left(-X^{24}+X^{13}\right)+A^{45} \wedge\left(-X^{34}-X^{12}\right)\right) \\
\tilde{\chi}^{*} \psi_{3}= & \omega_{0} \wedge \omega_{1} \wedge \omega_{2} \wedge \omega_{3}=-X^{1234}
\end{aligned}
$$

The statement follows immediately.

3 Linear perturbations of the Bryant-Salamon metric

In this section we study $\operatorname{Sp}(2)$-invariant linear perturbations of the BryantSalamon metric.

By Theorem 1.7, a linear perturbation of a $\operatorname{Spin}(7)$-structure is obtained by the choice of a rank one nilpotent endomorphism of the tangent bundle at each point. Thus, the global data for a linear perturbation is given by the choice of a vector field X and a one form α with $\alpha(X)=0$. Since we work in the $\mathrm{Sp}(2)$-invariant setting, we will require both vector field and form to be invariant.

Thus, the first step is to construct an $\mathrm{Sp}(2)$-invariant vector field on the cohomogeneity one manifold $\operatorname{Sp}(2) / \operatorname{Sp}(1)_{+} \times \mathbb{R}_{+}$. We will need the following observation:

Lemma 3.1. Let a Lie group G act transitively on M, and let H be the stabilizer at a point m. Then $X \in \mathfrak{g}$ defines a G-invariant vector field on M of the form

$$
X_{g m}^{+}=\left.g^{*} \frac{d}{d t}\right|_{t=0} \exp (t X) m
$$

if and only if X belongs to

$$
\begin{equation*}
\mathfrak{n}(H)=\left\{X \in \mathfrak{g} \mid \operatorname{Ad}_{h} X-X \in \mathfrak{h} \quad \forall h \in H\right\} \tag{17}
\end{equation*}
$$

All G-invariant vector fields on M are of this form.
Proof. The vector field X^{+}is well defined and invariant if and only if $X_{g m}^{+}=$ $X_{g^{\prime} m}^{+}$whenever $g m=g^{\prime} m$; in other words, we need $X_{g m}^{+}=X_{g h m}^{+}$for all $g \in$ $G, h \in H$. Since

$$
\begin{gathered}
X_{g h m}^{+}=\left.g^{*} h^{*} \frac{d}{d t}\right|_{t=0} \exp (t X) m=\left.g^{*} \frac{d}{d t}\right|_{t=0} h \exp (t X) h^{-1} m \\
=\left.g^{*} \frac{d}{d t}\right|_{t=0} \exp \left(t \operatorname{Ad}_{h} X\right) m
\end{gathered}
$$

we obtain that X^{+}is well defined when

$$
\left.\frac{d}{d t}\right|_{t=0} \exp (t X) m=\left.\frac{d}{d t}\right|_{t=0} \exp \left(t \operatorname{Ad}_{h} X\right) m \quad \forall h \in H
$$

which is equivalent to X lying in $\mathfrak{n}(H)$.
Conversely, given an invariant vector field Y on M, we have $Y_{g m}=g^{*} Y_{m}$, where

$$
Y_{m}=\left.\frac{d}{d t}\right|_{t=0} \exp (t X) m, \quad X \in \mathfrak{g}
$$

By invariance, $Y=X^{+}$, and X lies in $\mathfrak{n}(H)$ by the first part.
Proposition 3.2. Relative to the action of $G=S p(2)$ on $S p(2) / \operatorname{Sp}(1)_{+}$we have

$$
\begin{equation*}
\mathfrak{n}\left(\mathrm{Sp}(1)_{+}\right)=\mathfrak{s p}(1)_{+} \times \mathfrak{s p}(1)_{-} . \tag{18}
\end{equation*}
$$

Proof. An element

$$
\left(\begin{array}{cc}
x & y \\
-\bar{y} & w
\end{array}\right) \in \mathfrak{s p}(2)
$$

lies in $\mathfrak{n}\left(\operatorname{Sp}(1)_{+}\right)$if and only if for all p in $S p(1)$ we have

$$
\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x & y \\
-\bar{y} & w
\end{array}\right)\left(\begin{array}{cc}
\bar{p} & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
x & y \\
-\bar{y} & w
\end{array}\right) \in \mathfrak{s p}(1)_{+} .
$$

This is equivalent to $p y=y$ for all p, i.e. $y=0$, so the statement is proved.
Summing up, we have a linear map

$$
\mathfrak{s p}(1)_{+} \times \mathfrak{s p}(1)_{-} \rightarrow \mathfrak{X}_{S p(2)}\left(S p(2) / S p(1)_{+}\right), \quad X \mapsto X^{+} ;
$$

its kernel is $\mathfrak{s p}(1)_{+}$, showing that invariant vector fields on $\operatorname{Sp}(2) / \operatorname{Sp}(1)_{+}$take the form

$$
X=x_{4} A_{4}+x_{5} A_{5}+x_{6} A_{6} \in \mathfrak{s p}(1)_{-} .
$$

Lemma 3.3. Every $\operatorname{Sp}(2)$-invariant vector field Y on $\operatorname{Sp}(2) / \mathrm{Sp}(1)_{+}$satisfies

$$
\begin{aligned}
& \mathcal{L}_{Y}\left(A^{56} \wedge\left(-X^{14}-X^{23}\right)+A^{64} \wedge\left(-X^{24}+X^{13}\right)+A^{45} \wedge\left(-X^{34}-X^{12}\right)\right)=0 \\
& \mathcal{L}_{Y} X^{1234}=0
\end{aligned}
$$

Proof. As an $\operatorname{Sp}(1)_{-}-$module, $\mathfrak{s p}(2)$ decomposes as
$3 \mathbb{R}+\mathbb{H}+\mathfrak{s p}(1)_{-}=\operatorname{Span}\left\{A_{1}, A_{2}, A_{3}\right\}+\operatorname{Span}\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}+\operatorname{Span}\left\{A_{4}, A_{5}, A_{6}\right\}$,
with $\Lambda^{2} \mathbb{H}$ splitting as $3 \mathbb{R}+\mathfrak{s p}(1)_{-}$. The inclusion of $\mathfrak{s p}(1)_{-}$in $\Lambda^{2} \mathbb{H}$ is realized by the $\operatorname{Sp}(1)_{\text {_-equivariant map }}$

$$
A_{4} \mapsto \Omega_{1}, A_{5} \mapsto \Omega_{2}, A_{6} \mapsto \Omega_{3} .
$$

It follows that $A^{56} \wedge \Omega_{1}+A^{64} \wedge \Omega_{2}+A^{45} \wedge \Omega_{3}$ is $\operatorname{Sp}(1)_{-}$-invariant. As an element of $\Lambda^{4} \mathbb{H}, X^{1234}$ is also $\operatorname{Sp}(1)_{-}$-invariant.

Writing $Y=a A_{4}^{+}+b A_{5}^{+}+c A_{6}^{+}$, the statement follows.
Theorem 3.4. Given smooth even functions $a, b, c: \mathbb{R} \rightarrow \mathbb{R}$, the 4 -form

$$
\begin{equation*}
\left.\Phi+d t \wedge\left(a(t) A_{4}^{+}+b(t) A_{5}^{+}+c(t) A_{6}^{+}\right)\right\lrcorner \Phi \tag{19}
\end{equation*}
$$

is closed and defines an $\mathrm{Sp}(2)$-invariant metric with holonomy contained in Spin(7).
Proof. Observe first that the vector field $a(t) A_{4}^{+}+b(t) A_{5}^{+}+c(t) A_{6}^{+}$is globally defined and vanishes on the special orbit, i.e. the zero section of the spinor bundle.

The 4 -form (19) is a linear perturbation of the Bryant-Salamon form by a nilpotent endomorphism of rank one (see Remark 1.4), so it defines again a $\operatorname{Spin}(7)$-structure. In order to check that it is closed, write $Y=a(t) A_{4}^{+}+$ $b(t) A_{5}^{+}+c(t) A_{6}^{+}$; we have

$$
d(d t \wedge Y\lrcorner \Phi)=-d t \wedge d(Y\lrcorner \Phi)=-d t \wedge \mathcal{L}_{Y} \Phi
$$

Since Y is $\operatorname{Sp}(2)$-invariant, by Lemma 3.3 we have that \mathcal{L}_{Y} annihilates the restriction of Φ to each principal orbit $\left\{t=t_{0}\right\}$, and therefore $d t \wedge \mathcal{L}_{Y} \Phi=0$. By [12], the metric defined by the perturbed form has holonomy contained in Spin(7).

It is now natural to ask whether the perturbed metrics are isometric to the Bryant-Salamon metric. It turns out that they are isometric under an $\operatorname{Sp}(2)$ equivariant diffeomorphism, due to the following:

Lemma 3.5. Any $\mathrm{Sp}(2)$-invariant vector field on S is a Killing field for the Bryant-Salamon metric.

Proof. The Bryant-Salamon metric takes the form

$$
\begin{aligned}
& f\left(\alpha_{0}^{2}+\cdots+\alpha_{3}^{2}\right)+g\left(\omega_{0}^{2}+\cdots+\omega_{3}^{2}\right) \\
= & f\left(\frac{1}{4 t} d t^{2}+t\left(\left(A^{4}\right)^{2}+\left(A^{5}\right)^{2}+\left(A^{6}\right)^{2}\right)\right)+g\left(\left(X^{1}\right)^{2}+\left(X^{2}\right)^{2}+\left(X^{3}\right)^{2}+\left(X^{4}\right)^{2}\right)
\end{aligned}
$$

Since $\left(A^{4}\right)^{2}+\left(A^{5}\right)^{2}+\left(A^{6}\right)^{2}$ and $\left(X^{1}\right)^{2}+\left(X^{2}\right)^{2}+\left(X^{3}\right)^{2}+\left(X^{4}\right)^{2}$ are $\operatorname{Sp}(1)_{--}$ invariant, the claim follows.

Arguing as in [8, Proposition 5.2], we obtain:
Proposition 3.6. The $\mathrm{Sp}(2)$-invariant linear perturbations of the Bryant-Salamon metric are obtained from the Bryant-Salamon metric via an $\mathrm{Sp}(2)$-equivariant diffeomorphism.
D. Conti: Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, via Cozzi 55, 20125 Milano, Italy.
diego.conti@unimib.it
D. Perolini: Dipartimento di Matematica F. Casorati, Università di Pavia, via Ferrata 5, 27100 Pavia, Italy.
daniel. perolini2@gmail.com

References

[1] Ya. V. Bazaĭkin. On new examples of complete noncompact metrics with $\operatorname{Spin}(7)$ holonomy group. Sibirsk. Mat. Zh., 48(1):11-32, 2007.
[2] Ya. V. Bazaǐkin. Noncompact Riemann spaces with the holonomy group Spin(7) and 3-Sasakian manifolds. Tr. Mat. Inst. Steklova, 263(Geometriya, Topologiya i Matematicheskaya Fizika. I):6-17, 2008.
[3] M. Berger. Sur les groupes d'holonomie des variétés riemanniennes non symétriques. C. R. Acad. Sci. Paris, 237:1306-1308, 1953.
[4] E. Bonan. Sur des variétés riemanniennes à groupe d'holonomie G_{2} ou spin (7). C. R. Acad. Sci. Paris Sér. A-B, 262:A127-A129, 1966.
[5] R. Bryant. Metrics with exceptional holonomy. Ann. of Math. (2), 126(3):525576, 1987.
[6] R. Bryant and S. Salamon. On the construction of some complete metrics with exceptional holonomy. Duke Math. J., 58:829-850, 1989.
[7] H. Chi. Spin(7) metrics of cohomogeneity one with Aloff-Wallach spaces as principal orbits. arXiv:2101.09676.
[8] D. Conti, T. B. Madsen, and S. Salamon. Quaternionic geometry in dimension 8. In Geometry and physics. Vol. I, pages 91-113. Oxford Univ. Press, Oxford, 2018.
[9] M. Cvetič, G. W. Gibbons, H. Lu, and C. N. Pope. Cohomogeneity one manifolds of Spin(7) and G_{2} holonomy. Ann. Physics, 300(2):139-184, 2002.
[10] M. Cvetič, G. W. Gibbons, H. Lü, and C. N. Pope. New complete noncompact Spin(7) manifolds. Nuclear Phys. B, 620(1-2):29-54, 2002.
[11] M. Cvetič, G. W. Gibbons, H. Lü, and C. N. Pope. New cohomogeneity one metrics with Spin(7) holonomy. J. Geom. Phys., 49(3-4):350-365, 2004.
[12] M. Fernández. A classification of Riemannian manifolds with structure group Spin(7). Ann. Mat. Pura Appl. (4), 143:101-122, 1986.
[13] L. Foscolo. Complete noncompact $\operatorname{Spin}(7)$ manifolds from self-dual Einstein 4orbifolds. Geom. Topol., 25(1):339-408, 2021.
[14] S. Gukov and J. Sparks. M-theory on Spin(7) manifolds. Nuclear Phys. B, 625(1-2):3-69, 2002.
[15] N. Hitchin. Stable forms and special metrics. In Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), volume 288 of Contemp. Math., pages 70-89. Amer. Math. Soc., Providence, RI, 2001.
[16] D. D. Joyce. Compact 8-manifolds with holonomy Spin(7). Invent. Math., 123(3):507-552, 1996.
[17] D. D. Joyce. A new construction of compact 8-manifolds with holonomy $\operatorname{Spin}(7)$. J. Differential Geom., 53(1):89-130, 1999.
[18] H. Kanno and Y. Yasui. On $\operatorname{Spin}(7)$ holonomy metric based on $\operatorname{SU}(3) / \mathrm{U}(1)$. I. J. Geom. Phys., 43(4):293-309, 2002.
[19] S. Karigiannis. Deformations of G_{2} and $\operatorname{Spin}(7)$ structures. Canad. J. Math., 57(5):1012-1055, 2005.
[20] A. Kovalev. Asymptotically cylindrical manifolds with holonomy $\operatorname{Spin}(7)$. i, 2013. arXiv:1309.5027.
[21] F. Lehmann. Deformations of asymptotically conical $\operatorname{Spin}(7)$-manifolds. arXiv:2101.10310.
[22] D. Perolini. Strutture $\operatorname{Spin}(7)$ e deformazioni lineari. Master's thesis, Università di Milano Bicocca, 2018.
[23] F. Reidegeld. Exceptional holonomy and Einstein metrics constructed from AloffWallach spaces. Proc. Lond. Math. Soc. (3), 102(6):1127-1160, 2011.
[24] M. Y. Wang. Parallel spinors and parallel forms. Ann. Global Anal. Geom., 7(1):59-68, 1989.

[^0]: MSC class 2020: Primary 53C29; Secondary 53C25, 57S15
 Keywords: $\operatorname{Spin}(7)$ holonomy, linear perturbations, Ricci-flat metrics, cohomogeneity one metrics.

