In this paper we analyze the capacitary potential due to a charged body in order to deduce sharp analytic and geometric inequalities, whose equality cases are saturated by domains with spherical symmetry. In particular, for a regular bounded domain Ω ⊂ Rn, n ≥ 3, we prove that if the mean curvature H of the boundary obeys the condition (Formula Presented) then Ω is a round ball.

Borghini, S., Mascellani, G., Mazzieri, L. (2019). Some sphere theorems in linear potential theory. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 371(11), 7757-7790 [10.1090/tran/7637].

Some sphere theorems in linear potential theory

Borghini, Stefano
;
2019

Abstract

In this paper we analyze the capacitary potential due to a charged body in order to deduce sharp analytic and geometric inequalities, whose equality cases are saturated by domains with spherical symmetry. In particular, for a regular bounded domain Ω ⊂ Rn, n ≥ 3, we prove that if the mean curvature H of the boundary obeys the condition (Formula Presented) then Ω is a round ball.
Articolo in rivista - Articolo scientifico
capacity, electrostatic potential, overdetermined boundary value problems;
English
19-mar-2019
2019
371
11
7757
7790
open
Borghini, S., Mascellani, G., Mazzieri, L. (2019). Some sphere theorems in linear potential theory. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 371(11), 7757-7790 [10.1090/tran/7637].
File in questo prodotto:
File Dimensione Formato  
Sphere_Potential_IRIS.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 353.16 kB
Formato Adobe PDF
353.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/314210
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
Social impact