We extend Turaev’s theory of Euler structures and torsion invariants on a 3-manifold M to the case of vector fields having generic behavior on ∂M. This allows to easily define gluings of Euler structures and to develop a completely general gluing formula for Reidemeister torsion of 3-manifolds. Lastly, we describe a combinatorial presentation of Euler structures via stream-spines, as a tool to effectively compute torsion.

Borghini, S. (2015). A gluing formula for Reidemeister–Turaev torsion. ANNALI DI MATEMATICA PURA ED APPLICATA, 194(5), 1535-1561 [10.1007/s10231-014-0433-3].

A gluing formula for Reidemeister–Turaev torsion

Borghini, S
2015

Abstract

We extend Turaev’s theory of Euler structures and torsion invariants on a 3-manifold M to the case of vector fields having generic behavior on ∂M. This allows to easily define gluings of Euler structures and to develop a completely general gluing formula for Reidemeister torsion of 3-manifolds. Lastly, we describe a combinatorial presentation of Euler structures via stream-spines, as a tool to effectively compute torsion.
Articolo in rivista - Articolo scientifico
Reidemeister torsion; Euler structures; Spines;
English
11-giu-2014
2015
194
5
1535
1561
open
Borghini, S. (2015). A gluing formula for Reidemeister–Turaev torsion. ANNALI DI MATEMATICA PURA ED APPLICATA, 194(5), 1535-1561 [10.1007/s10231-014-0433-3].
File in questo prodotto:
File Dimensione Formato  
Gluing_formula_Reidemeister-Turaev_torsion_IRIS.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 481.95 kB
Formato Adobe PDF
481.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/314201
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact