In the present study, an ethylene glycol-based electrolyte is used to electrodeposit copper onto zinc for the synthesis of the Zn/Cu/Sn stack, precursor of Cu2ZnSnS4. The employed solution contains diethanolamine (DEA) which supports the formation of amine-complexes, whose features are studied by UV–vis absorption, ESI-MS, and FTIR measurements, providing insight on the optimal concentration of DEA for copper complexation. Cyclic voltammetries (CVs) are carried out at increasing [DEA]/[Cu2+] ratios, highlighting the amine effect on the reduction potential of the copper species. The displacement reaction between copper and zinc is investigated by immersion potential measurements, showing a direct correlation to the voltammetric data. The optimized copper solution resulted in a negligible displacement contribution, allowing the electrochemical synthesis of Mo(sub)/Zn/Cu/Sn stack on a relatively large area (4 cm2). The metallic precursor is analyzed by SEM/EDS, AFM, XRD, and GDOES techniques. Finally, the kesterite CZTS phase is obtained through reactive annealing with elemental sulfur and it is characterized by SEM/EDS, XRD, and Raman spectroscopy. Photoelectrochemical water splitting on CZTS/CdS/Pt heterostructure is carried out in an aqueous solution at pH 6.85, showing a photocurrent of -5.05 mA/cm2 at 0 V vs RHE. A maximum applied bias photon-to-current efficiency (ABPE) value of 2.15% was found at 0.84 V bias.
Panzeri, G., Dell'Oro, R., Sansotera, M., Marchionna, S., Parravicini, J., Acciarri, M., et al. (2021). Design and characterization of a chloride-free organic copper solution: Electrochemical synthesis of Zn/Cu/Sn precursor stack for CZTS-based photoconversion devices. ELECTROCHIMICA ACTA, 372(10 March 2021) [10.1016/j.electacta.2021.137857].
Design and characterization of a chloride-free organic copper solution: Electrochemical synthesis of Zn/Cu/Sn precursor stack for CZTS-based photoconversion devices
Marchionna S.;Parravicini J.;Acciarri M.;Binetti S.;
2021
Abstract
In the present study, an ethylene glycol-based electrolyte is used to electrodeposit copper onto zinc for the synthesis of the Zn/Cu/Sn stack, precursor of Cu2ZnSnS4. The employed solution contains diethanolamine (DEA) which supports the formation of amine-complexes, whose features are studied by UV–vis absorption, ESI-MS, and FTIR measurements, providing insight on the optimal concentration of DEA for copper complexation. Cyclic voltammetries (CVs) are carried out at increasing [DEA]/[Cu2+] ratios, highlighting the amine effect on the reduction potential of the copper species. The displacement reaction between copper and zinc is investigated by immersion potential measurements, showing a direct correlation to the voltammetric data. The optimized copper solution resulted in a negligible displacement contribution, allowing the electrochemical synthesis of Mo(sub)/Zn/Cu/Sn stack on a relatively large area (4 cm2). The metallic precursor is analyzed by SEM/EDS, AFM, XRD, and GDOES techniques. Finally, the kesterite CZTS phase is obtained through reactive annealing with elemental sulfur and it is characterized by SEM/EDS, XRD, and Raman spectroscopy. Photoelectrochemical water splitting on CZTS/CdS/Pt heterostructure is carried out in an aqueous solution at pH 6.85, showing a photocurrent of -5.05 mA/cm2 at 0 V vs RHE. A maximum applied bias photon-to-current efficiency (ABPE) value of 2.15% was found at 0.84 V bias.File | Dimensione | Formato | |
---|---|---|---|
Panzeri-Parravicini2021.pdf
Solo gestori archivio
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Dimensione
3.62 MB
Formato
Adobe PDF
|
3.62 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.