A central problem in graph mining is finding dense subgraphs, with several applications in different fields, a notable example being identifying communities. While a lot of effort has been put in the problem of finding a single dense subgraph, only recently the focus has been shifted to the problem of finding a set of densest subgraphs. An approach introduced to find possible overlapping subgraphs is the Top-k-Overlapping Densest Subgraphs problem. Given an integer k≥ 1 and a parameter λ> 0 , the goal of this problem is to find a set of k dense subgraphs that may share some vertices. The objective function to be maximized takes into account the density of the subgraphs, the parameter λ and the distance between each pair of subgraphs in the solution. The Top-k-Overlapping Densest Subgraphs problem has been shown to admit a 110-factor approximation algorithm. Furthermore, the computational complexity of the problem has been left open. In this paper, we present contributions concerning the approximability and the computational complexity of the problem. For the approximability, we present approximation algorithms that improve the approximation factor to 12, when k is smaller than the number of vertices in the graph, and to 23, when k is a constant. For the computational complexity, we show that the problem is NP-hard even when k= 3.

Dondi, R., Hosseinzadeh, M., Mauri, G., Zoppis, I. (2021). Top-k overlapping densest subgraphs: approximation algorithms and computational complexity. JOURNAL OF COMBINATORIAL OPTIMIZATION, 41(1), 80-104 [10.1007/s10878-020-00664-3].

Top-k overlapping densest subgraphs: approximation algorithms and computational complexity

Dondi R.
;
Hosseinzadeh M. M.;Mauri G.;Zoppis I.
2021

Abstract

A central problem in graph mining is finding dense subgraphs, with several applications in different fields, a notable example being identifying communities. While a lot of effort has been put in the problem of finding a single dense subgraph, only recently the focus has been shifted to the problem of finding a set of densest subgraphs. An approach introduced to find possible overlapping subgraphs is the Top-k-Overlapping Densest Subgraphs problem. Given an integer k≥ 1 and a parameter λ> 0 , the goal of this problem is to find a set of k dense subgraphs that may share some vertices. The objective function to be maximized takes into account the density of the subgraphs, the parameter λ and the distance between each pair of subgraphs in the solution. The Top-k-Overlapping Densest Subgraphs problem has been shown to admit a 110-factor approximation algorithm. Furthermore, the computational complexity of the problem has been left open. In this paper, we present contributions concerning the approximability and the computational complexity of the problem. For the approximability, we present approximation algorithms that improve the approximation factor to 12, when k is smaller than the number of vertices in the graph, and to 23, when k is a constant. For the computational complexity, we show that the problem is NP-hard even when k= 3.
Articolo in rivista - Articolo scientifico
Approximation algorithms; Computational complexity; Densest subgraph; Graph algorithms; Graph mining;
English
4-nov-2020
2021
41
1
80
104
open
Dondi, R., Hosseinzadeh, M., Mauri, G., Zoppis, I. (2021). Top-k overlapping densest subgraphs: approximation algorithms and computational complexity. JOURNAL OF COMBINATORIAL OPTIMIZATION, 41(1), 80-104 [10.1007/s10878-020-00664-3].
File in questo prodotto:
File Dimensione Formato  
10281-300658_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 500.24 kB
Formato Adobe PDF
500.24 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/300658
Citazioni
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
Social impact