We observed Hubble Deep Field South with the new panoramic integral-field spectrograph MUSE that we built and have just commissioned at the VLT. The data cube resulting from 27 h of integration covers one arcmin2 field of view at an unprecedented depth with a 1σ emission-line surface brightness limit of 1 × 10-19 erg s-1 cm-2 arcsec-2, and contains ∼90 000 spectra. We present the combined and calibrated data cube, and we performed a first-pass analysis of the sources detected in the Hubble Deep Field South imaging. We measured the redshifts of 189 sources up to a magnitude I814 = 29.5, increasing the number of known spectroscopic redshifts in this field by more than an order of magnitude. We also discovered 26 Lyα emitting galaxies that are not detected in the HST WFPC2 deep broad-band images. The intermediate spectral resolution of 2.3 Å allows us to separate resolved asymmetric Lyα emitters, [O ii]3727 emitters, and C iii]1908 emitters, and the broad instantaneous wavelength range of 4500 Å helps to identify single emission lines, such as [O iii]5007, Hβ, and Hα, over a very wide redshift range. We also show how the three-dimensional information of MUSE helps to resolve sources that are confused at ground-based image quality. Overall, secure identifications are provided for 83% of the 227 emission line sources detected in the MUSE data cube and for 32% of the 586 sources identified in the HST catalogue. The overall redshift distribution is fairly flat to z = 6.3, with a reduction between z = 1.5 to 2.9, in the well-known redshift desert. The field of view of MUSE also allowed us to detect 17 groups within the field. We checked that the number counts of [O ii]3727 and Lyα emitters are roughly consistent with predictions from the literature. Using two examples, we demonstrate that MUSE is able to provide exquisite spatially resolved spectroscopic information on the intermediate-redshift galaxies present in the field. This unique data set can be used for a wide range of follow-up studies. We release the data cube, the associated products, and the source catalogue with redshifts, spectra, and emission-line fluxes.

Bacon, R., Brinchmann, J., Richard, J., Contini, T., Drake, A., Franx, M., et al. (2015). The MUSE 3D view of the Hubble Deep Field South. ASTRONOMY & ASTROPHYSICS, 575 [10.1051/0004-6361/201425419].

The MUSE 3D view of the Hubble Deep Field South

Cantalupo S.;
2015

Abstract

We observed Hubble Deep Field South with the new panoramic integral-field spectrograph MUSE that we built and have just commissioned at the VLT. The data cube resulting from 27 h of integration covers one arcmin2 field of view at an unprecedented depth with a 1σ emission-line surface brightness limit of 1 × 10-19 erg s-1 cm-2 arcsec-2, and contains ∼90 000 spectra. We present the combined and calibrated data cube, and we performed a first-pass analysis of the sources detected in the Hubble Deep Field South imaging. We measured the redshifts of 189 sources up to a magnitude I814 = 29.5, increasing the number of known spectroscopic redshifts in this field by more than an order of magnitude. We also discovered 26 Lyα emitting galaxies that are not detected in the HST WFPC2 deep broad-band images. The intermediate spectral resolution of 2.3 Å allows us to separate resolved asymmetric Lyα emitters, [O ii]3727 emitters, and C iii]1908 emitters, and the broad instantaneous wavelength range of 4500 Å helps to identify single emission lines, such as [O iii]5007, Hβ, and Hα, over a very wide redshift range. We also show how the three-dimensional information of MUSE helps to resolve sources that are confused at ground-based image quality. Overall, secure identifications are provided for 83% of the 227 emission line sources detected in the MUSE data cube and for 32% of the 586 sources identified in the HST catalogue. The overall redshift distribution is fairly flat to z = 6.3, with a reduction between z = 1.5 to 2.9, in the well-known redshift desert. The field of view of MUSE also allowed us to detect 17 groups within the field. We checked that the number counts of [O ii]3727 and Lyα emitters are roughly consistent with predictions from the literature. Using two examples, we demonstrate that MUSE is able to provide exquisite spatially resolved spectroscopic information on the intermediate-redshift galaxies present in the field. This unique data set can be used for a wide range of follow-up studies. We release the data cube, the associated products, and the source catalogue with redshifts, spectra, and emission-line fluxes.
Articolo in rivista - Articolo scientifico
Cosmology: observations; Galaxies: evolution; Galaxies: formation; Galaxies: high-redshift; Techniques: imaging spectroscopy
English
32
Bacon, R., Brinchmann, J., Richard, J., Contini, T., Drake, A., Franx, M., et al. (2015). The MUSE 3D view of the Hubble Deep Field South. ASTRONOMY & ASTROPHYSICS, 575 [10.1051/0004-6361/201425419].
Bacon, R; Brinchmann, J; Richard, J; Contini, T; Drake, A; Franx, M; Tacchella, S; Vernet, J; Wisotzki, L; Blaizot, J; Bouche, N; Bouwens, R; Cantalupo, S; Carollo, C; Carton, D; Caruana, J; Clement, B; Dreizler, S; Epinat, B; Guiderdoni, B; Herenz, C; Husser, T; Kamann, S; Kerutt, J; Kollatschny, W; Krajnovic, D; Lilly, S; Martinsson, T; Michel-Dansac, L; Patricio, V; Schaye, J; Shirazi, M; Soto, K; Soucail, G; Steinmetz, M; Urrutia, T; Weilbacher, P; De Zeeuw, T
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/297363
Citazioni
  • Scopus 149
  • ???jsp.display-item.citation.isi??? 146
Social impact