We study the correlation between the nodal length of random spherical harmonics and the length of a nonzero level set. We show that the correlation is asymptotically zero, while the partial correlation after removing the effect of the random L2-norm of the eigenfunctions is asymptotically one.
Marinucci, D., Rossi, M. (2021). On the Correlation Between Nodal and Nonzero Level Sets for Random Spherical Harmonics. ANNALES HENRI POINCARE', 22(1), 275-307 [10.1007/s00023-020-00985-3].
On the Correlation Between Nodal and Nonzero Level Sets for Random Spherical Harmonics
Rossi M.
2021
Abstract
We study the correlation between the nodal length of random spherical harmonics and the length of a nonzero level set. We show that the correlation is asymptotically zero, while the partial correlation after removing the effect of the random L2-norm of the eigenfunctions is asymptotically one.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10281-296733_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
598.02 kB
Formato
Adobe PDF
|
598.02 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.