We study the correlation between the nodal length of random spherical harmonics and the length of a nonzero level set. We show that the correlation is asymptotically zero, while the partial correlation after removing the effect of the random L2-norm of the eigenfunctions is asymptotically one.

Marinucci, D., Rossi, M. (2021). On the Correlation Between Nodal and Nonzero Level Sets for Random Spherical Harmonics. ANNALES HENRI POINCARE', 22(1), 275-307 [10.1007/s00023-020-00985-3].

On the Correlation Between Nodal and Nonzero Level Sets for Random Spherical Harmonics

Rossi M.
2021

Abstract

We study the correlation between the nodal length of random spherical harmonics and the length of a nonzero level set. We show that the correlation is asymptotically zero, while the partial correlation after removing the effect of the random L2-norm of the eigenfunctions is asymptotically one.
Articolo in rivista - Articolo scientifico
Random Spherical Harmonics; Excursion sets; Limit Theorems; Wiener Chaos.
English
1-dic-2020
2021
22
1
275
307
open
Marinucci, D., Rossi, M. (2021). On the Correlation Between Nodal and Nonzero Level Sets for Random Spherical Harmonics. ANNALES HENRI POINCARE', 22(1), 275-307 [10.1007/s00023-020-00985-3].
File in questo prodotto:
File Dimensione Formato  
10281-296733_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 598.02 kB
Formato Adobe PDF
598.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/296733
Citazioni
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
Social impact