We consider the nonlinear fractional problem (-Δ)su+V(x)u=f(x,u)inRNWe show that ground state solutions converge (along a subsequence) in Lloc2(RN), under suitable conditions on f and V, to a ground state solution of the local problem as s→ 1 -.

Bieganowski, B., Secchi, S. (2020). Non-local to local transition for ground states of fractional Schrödinger equations on RN. JOURNAL OF FIXED POINT THEORY AND ITS APPLICATIONS, 22(3) [10.1007/s11784-020-00812-6].

Non-local to local transition for ground states of fractional Schrödinger equations on RN

Secchi S.
2020

Abstract

We consider the nonlinear fractional problem (-Δ)su+V(x)u=f(x,u)inRNWe show that ground state solutions converge (along a subsequence) in Lloc2(RN), under suitable conditions on f and V, to a ground state solution of the local problem as s→ 1 -.
Articolo in rivista - Articolo scientifico
fractional Schrödinger equation; ground state; Nehari manifold; non-local to local transition; Variational methods
English
27-ago-2020
2020
22
3
76
open
Bieganowski, B., Secchi, S. (2020). Non-local to local transition for ground states of fractional Schrödinger equations on RN. JOURNAL OF FIXED POINT THEORY AND ITS APPLICATIONS, 22(3) [10.1007/s11784-020-00812-6].
File in questo prodotto:
File Dimensione Formato  
10281-294086_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 396.25 kB
Formato Adobe PDF
396.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/294086
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
Social impact