We propose a nested EM routine which guarantees monotone log-likelihood sequences and improved convergence rates in maximum likelihood estimation of latent class models with covariates.

Durante, D., Canale, A., Rigon, T. (2019). A nested expectation–maximization algorithm for latent class models with covariates. STATISTICS & PROBABILITY LETTERS, 146, 97-103 [10.1016/j.spl.2018.10.015].

A nested expectation–maximization algorithm for latent class models with covariates

Rigon T.
Ultimo
2019

Abstract

We propose a nested EM routine which guarantees monotone log-likelihood sequences and improved convergence rates in maximum likelihood estimation of latent class models with covariates.
Articolo in rivista - Articolo scientifico
EM algorithm; Latent class model; Multivariate categorical data; Pólya-gamma;
EM algorithm; Latent class model; Multivariate categorical data; Pólya-gamma
English
2019
146
97
103
none
Durante, D., Canale, A., Rigon, T. (2019). A nested expectation–maximization algorithm for latent class models with covariates. STATISTICS & PROBABILITY LETTERS, 146, 97-103 [10.1016/j.spl.2018.10.015].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/289212
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
Social impact