Let C be a polarized nodal curve of compact type. In this paper we study coherent systems (E,V) on C given by a depth one sheaf E having rank r on each irreducible component of C and a subspace V⊂H0(E) of dimension k. Moduli spaces of stable coherent systems have been introduced by King and Newstead (1995) and depend on a real parameter α. We show that when k≥r, these moduli spaces coincide for α big enough. Then we deal with the case k=r+1: when the degrees of the restrictions of E are big enough we are able to describe an irreducible component of this moduli space by using the dual span construction.
Brivio, S., Favale, F. (2020). Coherent systems on curves of compact type. JOURNAL OF GEOMETRY AND PHYSICS, 158(December 2020) [10.1016/j.geomphys.2020.103850].
Coherent systems on curves of compact type
Brivio, S;Favale, F
2020
Abstract
Let C be a polarized nodal curve of compact type. In this paper we study coherent systems (E,V) on C given by a depth one sheaf E having rank r on each irreducible component of C and a subspace V⊂H0(E) of dimension k. Moduli spaces of stable coherent systems have been introduced by King and Newstead (1995) and depend on a real parameter α. We show that when k≥r, these moduli spaces coincide for α big enough. Then we deal with the case k=r+1: when the degrees of the restrictions of E are big enough we are able to describe an irreducible component of this moduli space by using the dual span construction.File | Dimensione | Formato | |
---|---|---|---|
Brivio-2020-AAM.pdf
accesso aperto
Descrizione: Articolo-AAM
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Creative Commons
Dimensione
469.69 kB
Formato
Adobe PDF
|
469.69 kB | Adobe PDF | Visualizza/Apri |
BRIVIO-2020-Jgeomphys-VoR.pdf
Solo gestori archivio
Descrizione: Articolo-VoR
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
568.25 kB
Formato
Adobe PDF
|
568.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.