Let C be a polarized nodal curve of compact type. In this paper we study coherent systems (E,V) on C given by a depth one sheaf E having rank r on each irreducible component of C and a subspace V⊂H0(E) of dimension k. Moduli spaces of stable coherent systems have been introduced by King and Newstead (1995) and depend on a real parameter α. We show that when k≥r, these moduli spaces coincide for α big enough. Then we deal with the case k=r+1: when the degrees of the restrictions of E are big enough we are able to describe an irreducible component of this moduli space by using the dual span construction.

Brivio, S., Favale, F. (2020). Coherent systems on curves of compact type. JOURNAL OF GEOMETRY AND PHYSICS, 158(December 2020) [10.1016/j.geomphys.2020.103850].

Coherent systems on curves of compact type

Brivio, S;Favale, F
2020

Abstract

Let C be a polarized nodal curve of compact type. In this paper we study coherent systems (E,V) on C given by a depth one sheaf E having rank r on each irreducible component of C and a subspace V⊂H0(E) of dimension k. Moduli spaces of stable coherent systems have been introduced by King and Newstead (1995) and depend on a real parameter α. We show that when k≥r, these moduli spaces coincide for α big enough. Then we deal with the case k=r+1: when the degrees of the restrictions of E are big enough we are able to describe an irreducible component of this moduli space by using the dual span construction.
Articolo in rivista - Articolo scientifico
Coherent system; Curves of compact type; Nodal curves; Stability;
English
12-ago-2020
2020
158
December 2020
103850
partially_open
Brivio, S., Favale, F. (2020). Coherent systems on curves of compact type. JOURNAL OF GEOMETRY AND PHYSICS, 158(December 2020) [10.1016/j.geomphys.2020.103850].
File in questo prodotto:
File Dimensione Formato  
Brivio-2020-AAM.pdf

accesso aperto

Descrizione: Articolo-AAM
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 469.69 kB
Formato Adobe PDF
469.69 kB Adobe PDF Visualizza/Apri
BRIVIO-2020-Jgeomphys-VoR.pdf

Solo gestori archivio

Descrizione: Articolo-VoR
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 568.25 kB
Formato Adobe PDF
568.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/281042
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
Social impact