The integrated light of a stellar population, measured through photometric filters that are sensitive to the presence of young stars, is often used to infer the star formation rate (SFR) for that population. However, these techniques rely on an assumption that star formation is a continuous process, whereas in reality stars form in discrete spatially and temporally correlated structures. This discreteness causes the light output to undergo significant timedependent fluctuations, which, if not accounted for, introduce systematic errors in the inferred SFRs due to the intrinsic distribution of luminosities at any fix SFR. We use SLUG a code that Stochastically Lights Up Galaxies, to simulate galaxies undergoing stochastic star formation. We then use these simulations to present a quantitative analysis of these effects and provide tools for calculating probability distribution functions of SFRs given a set of observations.We show that, depending on the SFR tracer used, stochastic fluctuations can produce non-trivial errors at SFRs as high as 1 M⊙ yr-1 and biases ≳ 0.5 dex at the lowest SFRs. We emphasize that due to the stochastic behaviour of blue SFR tracers, one cannot assign a deterministic single value to the SFR of an individual galaxy, but we suggest methods by which future analyses that rely on integrated-light indicators can properly account for these stochastic effects.

Da Silva, R., Fumagalli, M., Krumholz, M. (2014). SLUG - stochastically lighting up galaxies - II. Quantifying the effects of stochasticity on star formation rate indicators. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 444(4), 3275-3287 [10.1093/mnras/stu1688].

SLUG - stochastically lighting up galaxies - II. Quantifying the effects of stochasticity on star formation rate indicators

Fumagalli M.
;
2014

Abstract

The integrated light of a stellar population, measured through photometric filters that are sensitive to the presence of young stars, is often used to infer the star formation rate (SFR) for that population. However, these techniques rely on an assumption that star formation is a continuous process, whereas in reality stars form in discrete spatially and temporally correlated structures. This discreteness causes the light output to undergo significant timedependent fluctuations, which, if not accounted for, introduce systematic errors in the inferred SFRs due to the intrinsic distribution of luminosities at any fix SFR. We use SLUG a code that Stochastically Lights Up Galaxies, to simulate galaxies undergoing stochastic star formation. We then use these simulations to present a quantitative analysis of these effects and provide tools for calculating probability distribution functions of SFRs given a set of observations.We show that, depending on the SFR tracer used, stochastic fluctuations can produce non-trivial errors at SFRs as high as 1 M⊙ yr-1 and biases ≳ 0.5 dex at the lowest SFRs. We emphasize that due to the stochastic behaviour of blue SFR tracers, one cannot assign a deterministic single value to the SFR of an individual galaxy, but we suggest methods by which future analyses that rely on integrated-light indicators can properly account for these stochastic effects.
Articolo in rivista - Articolo scientifico
Galaxies: star clusters: general; Galaxies: stellar content; Methods: numerical; Methods: statistical; Stars: formation; Techniques: photometric
English
2014
444
4
3275
3287
open
Da Silva, R., Fumagalli, M., Krumholz, M. (2014). SLUG - stochastically lighting up galaxies - II. Quantifying the effects of stochasticity on star formation rate indicators. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 444(4), 3275-3287 [10.1093/mnras/stu1688].
File in questo prodotto:
File Dimensione Formato  
stt2351.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/280676
Citazioni
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 90
Social impact