We introduce a combinatorial method to construct indefinite Ricci-flat metrics on nice nilpotent Lie groups. We prove that every nilpotent Lie group of dimension $leq6$, every nice nilpotent Lie group of dimension $leq7$ and every two-step nilpotent Lie group attached to a graph admits such a metric. We construct infinite families of Ricci-flat nilmanifolds associated to parabolic nilradicals in the simple Lie groups SL(n), SO(p,q), Sp(n,R). Most of these metrics are shown not to be flat.

Conti, D., del Barco, V., Rossi, F. (2021). Diagram involutions and homogeneous Ricci-flat metrics. MANUSCRIPTA MATHEMATICA, 165(3-4), 381-413 [10.1007/s00229-020-01225-y].

Diagram involutions and homogeneous Ricci-flat metrics

Conti, Diego;Rossi, Federico A.
2021

Abstract

We introduce a combinatorial method to construct indefinite Ricci-flat metrics on nice nilpotent Lie groups. We prove that every nilpotent Lie group of dimension $leq6$, every nice nilpotent Lie group of dimension $leq7$ and every two-step nilpotent Lie group attached to a graph admits such a metric. We construct infinite families of Ricci-flat nilmanifolds associated to parabolic nilradicals in the simple Lie groups SL(n), SO(p,q), Sp(n,R). Most of these metrics are shown not to be flat.
Articolo in rivista - Articolo scientifico
Ricci-flat metrics, nilpotent Lie groups, pseudoriemannian homogeneous metrics
English
8-lug-2020
2021
165
3-4
381
413
open
Conti, D., del Barco, V., Rossi, F. (2021). Diagram involutions and homogeneous Ricci-flat metrics. MANUSCRIPTA MATHEMATICA, 165(3-4), 381-413 [10.1007/s00229-020-01225-y].
File in questo prodotto:
File Dimensione Formato  
Conti-2021-Manuscripta Math-VoR.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Altro
Dimensione 424.07 kB
Formato Adobe PDF
424.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/278909
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
Social impact