We consider an elliptic equation in a cone, endowed with (possibly inhomogeneous) Neumann conditions. The operator and the forcing terms can also allow non-Lipschitz singularities at the vertex of the cone. In this setting, we provide unique continuation results, both in terms of interior and boundary points. The proof relies on a suitable Almgren-type frequency formula with remainders. As a byproduct, we obtain classification results for blow-up limits.

Dipierro, S., Felli, V., Valdinoci, E. (2020). Unique continuation principles in cones under nonzero Neumann boundary conditions. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 37(4), 785-815 [10.1016/j.anihpc.2020.01.005].

Unique continuation principles in cones under nonzero Neumann boundary conditions

Felli V.;
2020

Abstract

We consider an elliptic equation in a cone, endowed with (possibly inhomogeneous) Neumann conditions. The operator and the forcing terms can also allow non-Lipschitz singularities at the vertex of the cone. In this setting, we provide unique continuation results, both in terms of interior and boundary points. The proof relies on a suitable Almgren-type frequency formula with remainders. As a byproduct, we obtain classification results for blow-up limits.
Articolo in rivista - Articolo scientifico
Almgren's frequency formula; Blow-up limits; Conical geometry; Singular weights; Unique continuation;
English
4-feb-2020
2020
37
4
785
815
partially_open
Dipierro, S., Felli, V., Valdinoci, E. (2020). Unique continuation principles in cones under nonzero Neumann boundary conditions. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 37(4), 785-815 [10.1016/j.anihpc.2020.01.005].
File in questo prodotto:
File Dimensione Formato  
Felli-2020-AIHP-AAM.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 386.24 kB
Formato Adobe PDF
386.24 kB Adobe PDF Visualizza/Apri
Dipierro-2020-AHIP-VoR.pdf

Solo gestori archivio

Descrizione: Publisher’s Version
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 444.84 kB
Formato Adobe PDF
444.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/276409
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
Social impact